
On Classification of High-Cardinality Data Streams

Charu C. Aggarwal∗ Philip S. Yu†

Abstract

The problem of massive-domain stream classification is

one in which each attribute can take on one of a large

number of possible values. Such streams often arise in

applications such as IP monitoring, super-store transactions

and financial data. In such cases, traditional models for

stream classification cannot be used because the size of the

storage required for intermediate storage of model statistics

can increase rapidly with domain size. Furthermore, the

one-pass constraint for data stream computation makes the

problem even more challenging. For such cases, there are no

known methods for data stream classification. In this paper,

we propose the use of massive-domain counting methods for

effective modeling and classification. We show that such an

approach can yield accurate solutions while retaining space-

and time-efficiency. We show the effectiveness and efficiency

of the sketch-based approach.

1 Introduction

A well known problem in the data mining domain is that
of classification [4, 12, 13]. In the classification problem,
we use a labeled training data set in order to supervise
the classification of unlabeled data instances. The
problem of classification has also been widely studied
in the data stream domain [1, 7, 8, 9, 11, 10, 14]. In
this paper we will examine the problem of massive-
domain stream classification. A massive-domain stream
is defined as one in which each attribute takes on
an extremely large number of possible values. Some
examples are as follows:
(1) In internet applications, the number of possible
source and destination addresses can be very large.
For example, there may be well over 108 possible IP-
addresses.
(2) The indiividual items in supermarket transactions
are often drawn from millions of possibilities.
(3) In general, when the attributes contain very detailed
information such as locations, addresses, names, phone-
numbers or other such information, the domain size
is very large. Recent years have seen a considerable
increase in such applications because of advances in data
collection techniques.

∗IBM T. J. Watson Research Center, charu@us.ibm.com
†University of Illinois at Chicago, psyu@cs.uic.edu

We note that the computational and space-
efficiency challenges are dual problems which arise in
the context of a variety of massive-domain scenarios.
For example, the techniques presented in [2] discuss
the computational and space-efficiency challenges asso-
ciated with clustering massive-domain data streams.

The problem of massive-domain size naturally oc-
curs in the space of discrete attributes, whereas most
of the known data stream classification methods are
designed on the space of continuous attributes. The
one-pass restrictions of data stream computation cre-
ate a further challenge for the computational approach
which may be used for discriminatory analysis. Thus,
the massive-domain size creates challenges in terms of
space-requirements, whereas the stream model further
restricts the classes of algorithms which may be used in
order to create space-efficient methods. For example,
consider the following types of classification models:
• Techniques such as decision trees [4, 13] require the
computation of the discriminatory power of each possi-
ble attribute value in order to determine how the splits
should be constructed. In order to compute the relative
behavior of different attribute values, the discriminatory
power of different attribute values (or combinations of
values) need to be maintained. This becomes difficult
in the context of massive data streams.
• Techniques such as rule-based classifiers [5, 12] require
the determination of combinations of attributes which
are relevant to classification. With increasing domain
size, it is no longer possible to compute this efficiently
either in terms of space or running time.

The stream scenario presents additional challenges
for classifiers. This is because the one-pass constraint
dictates the choice of data structures and algorithms
which can be used for the classification problem. All
stream classifiers such as that discussed in [7] implicitly
assume that the underlying domain size can be handled
with modest main memory or storage limitations.

One observation is that massive-domain data sets
are often noisy, and most combinations of dimensions
may not have any relationship with the true class la-
bel. While the number of possible relevant combina-
tions may be small enough to be stored within reason-
able space limitations, the intermediate computations
required for determining such combinations may not be

feasible from a space and time perspective. This is
because the determination of the most discriminatory
patterns requires intermediate computation of statistics
of patterns which are not relevant. When combined
with the one-pass constraint of data streams, this is a
very challenging problem. In this paper, we will use a
sketch-based approach to perform classification of data
streams with massive domain-sizes. The idea is to create
a sketch-based model which can approximately identify
combinations of attributes which have high discrimina-
tory power. This approximation is used for classifica-
tion.

This paper is organized as follows. In the next
section we will discuss the process of construction of
the sketch on the massive-domain data set, and its
use for classification. In section 3, we discuss the
experimental results. Section 4 contains the conclusions
and summary.

2 A Sketch Based Approach to Classification

We will first introduce some notations and defini-
tions. We assume that the data stream D contains d-
dimensional records which are denoted byX1 . . . XN
Associated with each records is a class which is drawn
from the index {1 . . . k}. The attributes of record Xi

are denoted by (x1
i . . . x

d
i). It is assumed that the at-

tribute value xk
i is drawn from the unordered domain

set Jk = {vk1 . . . vkMk}. We note that the value of Mk

denotes the domain size for the kth attribute. The value
of Mk can be very large, and may range in the order of
millions or billions. When the discriminatory power is
defined in terms of subspaces of higher dimensionality,
this number multiples rapidly to very large values. Such
intermediate computations will be difficult to perform
on even high-end machines.

Even though an extremely large number of
attribute-value combinations may be possible over the
different dimensions and domain sizes, only a limited
number of these possibilities are usually relevant for
classification purposes. Unfortunately, the intermedi-
ate computations required to effectively compare these
combinations may not be easily feasible. The one-pass
constraint of the data stream model creates an addi-
tional challenge in the computation process. In order to
perform the classification, it is not necessary to explic-
itly determine the combinations of attributes which are
related to a given class label. The more relevant ques-
tion is the determination of whether some combinations
of attributes exist that are strongly related to some class
label. We will see that a sketch-based approach is very
effective in such a scenario.

Sketch based approaches [6] were designed for enu-
meration of different kinds of frequency statistics of data

Algorithm SketchUpdate(Labeled Data Stream: D,
NumClasses: k, MaxDim: r)

begin
Initialize k sketch tables of size w · h each
with zero counts in each entry;
repeat

Receive next data point X from D;
Add 1 to each of the sketch counts in the
(class-specific) table for all L value-combinations

in X with dimensionality less than r;
until(all points in D have been processed);

end

Figure 1: Sketch Updates for Classification (Training)

sets. In this paper, we will extend the well known count-
min sketch [6] to the problem of classification of data
streams. In this sketch, we use w = �ln(1/δ)� pairwise
independent hash functions, each of which map onto
uniformly random integers in the range h = [0, e/ε],
where e is the base of the natural logarithm. The data
structure itself consists of a two dimensional array with
w · h cells with a length of h and width of w. Each
hash function corresponds to one of w 1-dimensional
arrays with h cells each. In standard applications of
the count-min sketch, the hash functions are used in or-
der to update the counts of the different cells in this
2-dimensional data structure. For example, consider a
1-dimensional data stream with elements drawn from
a massive set of domain values. When a new element
of the data stream is received, we apply each of the w
hash functions to map onto a number in [0 . . . h−1]. The
count of each of the set of w cells is incremented by 1. In
order to estimate the count of an item, we determine the
set of w cells to which each of the w hash-functions map,
and determine the minimum value among all these cells.
Let ct be the true value of the count being estimated.
We note that the estimated count is at least equal to ct,
since we are dealing with non-negative counts only, and
there may be an over-estimation because of collisions
among hash cells. As it turns out, a probabilistic upper
bound to the estimate may also be determined. It has
been shown in [6], that for a data stream with T ar-
rivals, the estimate is at most ct+ ε ·T with probability
at least 1− δ.

In typical subspace classifiers such as rule-based
classifiers, we use low dimensional projections such as 2-
dimensional or 3-dimensional combinations of attributes
in the antecedents of the rule. In the case of data sets
with massive domain sizes, the number of possible com-
binations of attributes (even for such low-dimensional
combinations) can be so large that the corresponding
statistics cannot be maintained explicitly during in-
termediate computations. However, the sketch-based

method provides a unique technique for maintaining
counts by creating super-items from different combina-
tions of attribute values. Each super-item V contain-
ing a concatenation of the attribute value strings along
with the dimension indices for which these strings be-
long to. Let the actual value-string corresponding to
value ir be S(ir), and let the dimension index corre-
sponding to the item ir be dim(ir). In order to rep-
resent the dimension-value combinations corresponding
to items i1 . . . ip, we create a new string by concatenat-
ing the strings S(i1) . . . S(ip) and the dimension indices
dim(i1) . . . dim(ip).

This new super-string is then hashed into the sketch
table as if it is the attribute value for the special super-
item V . For each of the k-classes, we maintain a sep-
arate sketch of size w · h, and we update the sketch
cells for a given class only when a data stream item
of the corresponding class is received. It is important
to note that the same set of w hash functions are used
for updating the sketch corresponding to each of the k
classes in the data. Then, we update the sketch once
for each 1-dimensional attribute value for the d different
attributes, and once for each of the super-items created
by attribute combinations. For example, consider the
case when we wish to determine discriminatory combi-
nations or 1- or 2-dimensional attributes. We note that
there are a total of d+ d · (d− 1)/2 = d · (d+ 1)/2 such
combinations. Then, the sketch for the corresponding
class is updated L = d · (d+ 1)/2 times for each of the
attribute-values or combinations of attribute-values. In
general, L may be larger if we choose to use even higher
dimensional combinations, though for cases of massive
domain sizes, even a low-dimensional subspace would
have a high enough level of specificity for classifica-
tion purposes. This is because of the extremely large
number of combinations of possibilities, most of which
would have very little frequency with respect to the data
stream. For all practical purposes, we can assume that
the use of 2-dimensional or 3-dimensional combinations
provides sufficient discrimination in the massive-domain
case. We further note that L is dependent only on the
dimensionality and is independent of the domain size
along any of the dimensions. For modest values of d,
the value of L is typically much lower than the number
of possible combinations of attribute values.

The sketch-based classification algorithm has the
advantage of being simple to implement. For each of
the classes, we maintain a separate sketch table with
w · d values. Thus, there are a total of w · d · k cells
which need to be maintained. When a new item from
the data stream arrives, we update L · w cells of the
ith sketch table. Specifically, for each item or super-
item we update the count of the corresponding w cells

in the sketch table by one unit. The overall approach
for updating the sketch table is illustrated in Figure 1.
The input to the algorithm is the data stream D, the
maximum dimensionality of the subspace combinations
which are tracked and the number of classes in the data
set.

2.1 Determining Discriminative Combinations
of Attributes The key to using the sketch-based ap-
proach effectively is to be able to efficiently determine
discriminative combinations of attributes. While one
does not need to determine such combinations explicitly
in closed form, it suffices to be able to test whether a
given combination of attributes is discriminative. As we
will see, this suffices to perform effective classification
of a given test instance. Let us consider the state of
the data stream, when N records have arrived so far.
The number of data streams records received from the
k different classes are denoted by N1 . . .Nk, so that we
have

∑k
i=1 Ni = N .

We note that most combinations of attribute val-
ues have very low frequency of presence in the data
stream. Here, we are interested in those combinations
of attribute-values which have high relative presence in
one class compared to the other classes. We note that we
are referring to high relative presence for a given class in
combination with a moderate amount of absolute pres-
ence. For example, if a particular combination of values
occurs in 0.5% of the records corresponding to the class
i, but it occurs in less than 0.1% of the records belong-
ing to the other classes, then the relative presence of
the combination in that particular class is high enough
to be considered significant. Therefore, we will define
the discriminative power of a given combination of val-
ues (or super-item) V . Let fi(V) denote the fractional
presence of the super-item V in class i, and gi(V) be
the fractional presence of the super-item V in all classes
other than i. In order to identify classification behav-
ior specific to class i, we are interested in a super-item
V , if fi(V) is significantly greater than gi(V). There-
fore, we will define the discriminatory power of a given
super-item V .

Definition 1. The discriminatory power θi(V) of the
super-item V is defined as the fractional difference in the
relative frequency of the attribute-value combination V
in class i versus the relative presence in classes other
than i. Formally, the value of θi(V) is defined as
follows:

θi(V) =
fi(V)− gi(V)

fi(V)
(2.1)

Since we are interested only in items from which fi(V)
is greater than gi(V) the value of θi(V) in super-items

of interest will lie between 0 and 1. The larger the
value of θi(V), the greater the correlation between
the attribute-combination V and the class i. A value
of θi(V) = 0 indicates no correlation, whereas the
value of θi(V) = 1 indicates perfect correlation. In
addition, we have interested in those combinations of
attribute values which occur in at least a fraction s of
the records belonging to any class i. Such attribute
value combinations are referred to as discriminatory.
We formally define the concept of (θ, s)-discriminatory
as follows:

Definition 2. We define an attribute value-
combination V as (θ, s)-discriminatory with respect to
class i, if fi(V) ≥ s and θi(V) ≥ θ.

In other words, the attribute-value combination V
occurs in at least a fraction s of the records belonging to
class i, and has a discriminatory power of at least θ with
respect to class i. Next, we will discuss an approach for
the decision problem of testing whether or not a given
attribute-value combination is discriminatory. We will
leverage this approach for the classification process.

In order to estimate the value of θi(V), we need
to estimate the value of fi(V) and gi(V). We note
that the value of Ni is simply the sum of the counts
in the table corresponding to the ith class divided by
L. This is because we update exactly L sketch-table
entries for each incoming record. In order to estimate
fi(V) we take the minimum of the w hash cells to which
V maps for various hash functions in the sketch table
corresponding to class i. This is the approach used for
estimating the counts as discussed in [6]. The value
of gi(V) can be estimated similarly, except that we
compute a sketch table which contains the sum of the
(corresponding cell-specific) counts in the (k−1) classes
other than i. We note that this composite sketch table
represents the other (k−1) classes, since we use the same
hash-function on each table. As in the previous case, we
estimate the value of gi(V) be using the minimum cell
value from all the w cells to which V maps. The value of
θi(V) can then be estimated from these values of fi(V)
and gi(V). We make the following observation:

Lemma 2.1. With probability at least (1−δ), the values
of fi(V) and gi(V) are respectively over-estimated to
within L·ε of their true values when we use sketch tables
with size w = �ln(1/δ)� and h = �e/ε�.
Proof. The above result is a direct corollary of the
results presented in [6], since each incoming record adds
a count of at least L to the hash table. The values of
fi(V) and gi(V) are never under-estimated since the
counts are non-negative. Note that fi(V) and gi(V) are
fractional counts obtained by dividing the counts by Ni

and (N − Ni) respectively. Since the true counts are
over-estimated to within Ni · l · ε and (N − Ni) · L · ε
respectively according to [6], the result follows.

Next, we will try to compute the accuracy of es-
timation of θi(V). Note that we are only interested in
those attribute-combinations V for which fi(V) ≥ s and
fi(V) ≥ gi(V), since such patterns have sufficient statis-
tical counts and are also discriminatory with θi(V) ≥ 0.

Lemma 2.2. Let βi(V) be the estimated value of θi(V)
for an attribute-combination V with fractional selectiv-
ity at least s and fi(V) ≥ gi(V). Let ε be chosen such
that ε′ = ε · L/s << 1. With probability at least 1 − δ,
it is the case that βi(V) ≤ θi(V) + ε′.

Proof. Let f ′
i(V) be the estimated value of fi(V) and

g′i(V) be the estimated value of gi(V). Then we have:

βi(V) = 1− g′i(V)/f ′
i(V)(2.2)

Note that βi(V) is as large as possible when g′i(V) is
as small as possible (as close to gi(V) as possible) and
f ′
i(V) is as large as possible. According to Lemma 2.1,
we know that with probability at least 1 − δ, f ′

i(V) is
no larger than fi(V) + ε · L.

βi(V) ≤ 1− gi(V)

(fi(V) + ε · L)
= 1− gi(V)

fi(V) · (1 + ε · L/fi(V))

≤ 1− gi(V)

fi(V) · (1 + ε · L/s)
= 1− gi(V)

fi(V) · (1 + ε′)

≈ 1− gi(V) · (1− ε′)
fi(V)

(since ε′ << 1)

= θi(V) + ε′ · fi(V)/gi(V)

≤ θi(V) + ε′ (since fi(V) ≤ gi(V))

This completes the proof.

Next, we will examine the case when the value of θi(V)
is under-estimated.

Lemma 2.3. Let βi(V) be the estimated value of θi(V)
for an attribute-combination V with fractional selectiv-
ity at least s and fi(V) ≥ gi(V). Let ε be chosen such
that ε′ = ε · L/s << 1. With probability at least 1 − δ,
it is the case that βi(V) ≥ θi(V)− ε′.

Proof. As in the previous lemma, let f ′
i(V) be the

estimated value of fi(V) and g′i(V) be the estimated
value of gi(V). Then we have:

βi(V) = 1− g′i(V)/f ′
i(V)(2.3)

Data Max. Pattern L ε = ε′ · s/L # Cells= Storage Storage
Dimensionality Dimensionality �e · ln(1/δ)/ε� Required ε′X20

10 2 55 10−4/55 6884350 26.3 MB 1.315 MB

10 3 175 10−4/175 21.9 ∗ 106 83.6 MB 4.18 MB

20 2 210 10−4/210 26.3 ∗ 106 100.27 MB 5.01 MB

20 3 1920 10−4/1920 24 ∗ 107 916.85 MB 45.8 MB

50 2 1275 10−4/1275 15.96 ∗ 106 608.85 MB 30.5 MB

100 2 5050 10−4/5050 63.21 ∗ 107 2.41 GB 120.5 MB

200 2 20100 10−4/20100 25.16 ∗ 108 9.6 GB 480 MB

Table 1: Storage Req. of sketch table for different data and pattern dimensionalities (ε′ = 0.01, δ = 0.01, s = 0.01)

Note that βi(V) is as large as possible when f ′
i(V) is

as small as possible (as close to fi(V) as possible) and
g′i(V) is as large as possible. According to Lemma 2.1,
we know that with probability at least 1 − δ, g′i(V) is
no larger than gi(V)+ ε ·L. Therefore, with probability
at least (1− δ), we have: Therefore, with probability at
least (1− δ), we have:

βi(V) ≥ 1− gi(V) + ε · L
fi(V)

= 1− gi(V) · (1 + ε · L/fi(V))

fi(V)

≥ 1− gi(V) · (1 + ε · L/s)
fi(V)

= 1− gi(V) · (1 + ε′)
fi(V)

=

(
1− gi(V)

fi(V)

)
− ε′ · gi(V)

fi(V)

= θi(V)− ε′ · gi(V)

fi(V)

≥ θi(V)− ε′ (since fi(V) ≤ gi(V))

This completes the proof.

We can combine the results of Lemma 2.2 and 2.3 to
conclude the following:

Lemma 2.4. Let βi(V) be the estimated value of θi(V)
for an attribute-combination V with fractional selectiv-
ity at least s and fi(V) ≥ gi(V). Let ε be chosen such
that ε′ = ε ·L/s << 1. With probability at least 1− 2 · δ,
it is the case that βi(V) ∈ (θi(V)− ε′, θi(V) + ε′).

This result follows from the fact each of the inequalities
in Lemmas 2.2 and 2.3 are true with probability at
least 1 − δ. Therefore, both inequalities are true with
probability at least (1−2 ·δ). Another natural corollary
of this result is that any pattern which is truly (θ, s)-
discriminatory will be discovered with probability at
least (1 − 2 · δ) by using the sketch based approach

Algorithm SketchClassify(Test Data Point: Y ,
NumClasses: k, MaxDim: r)

begin
Determine all L value-combinations specific
to test instance;
Use sketch-based approach to determine which
value-combinations are (θ, s)-discriminatory;
Add 1 vote to each class for which a pattern is

(θ, s)-discriminatory;
Report class with largest number of votes;

end

Figure 2: Classification (Testing Phase)

in order to determine all patterns which are at least
(θ − ε′, s · (1 − ε′))-discriminatory. Furthermore, the
discriminatory power of such patterns will not be over-
or under-estimated by an inaccuracy greater than ε′.

The process of determining whether a super-item
V is (θ, s) requires us to determine fi(V) and gi(V)
only. The value of fi(V) may be determined in a
straightforward way by using the sketch based technique
of [6] in order to determine the estimated frequency of
the item. We note that fi(V) can be determined quite
accurately since we are only considering those patterns
which have a certain minimum support. The value of
gi(V) may be determined by adding up the sketch tables
for all the other different classes, and then using the
same technique.

At this point, we will provide a practical feel of the
space requirements of using such an approach. What
are the space requirements of the approach for classi-
fying large data streams under a variety of practical
parameter settings? Consider the case where we have
a 10-dimensional massive domain data set which has at
least 107 values over each attribute. Then, the num-
ber of possible 2-dimensional and 3-dimensional value
combinations are 1014 ∗ 10 ∗ (10 − 1)/2 and 1021 ∗ 10 ∗
(10 − 1) ∗ (10 − 2)/6 respectively. We note that even
the former require translates to an order of magnitude
of about 4500 tera-bytes. Clearly, the intermediate-

space requirements for aggregation based computations
of many standard classifiers are beyond most modern
computers. On the other hand, for the sketch-based
technique, the requirements continue to be quite mod-
est. For example, let us consider the case where we use
the sketch based approach with ε′ = 0.01 and δ = 0.01.
Also, let us assume that we wish to have the ability to
perform discriminatory classification on patterns with
specificity at least s = 0.01. We have illustrated the
storage requirements for data sets of different dimen-
sionalities in Table 1. While the table is constructed for
the case of ε′ = 0.01, the storage numbers in the last col-
umn of the table are illustrated for the case of ε′ = 0.2.
We will see later that the use of much large values of
ε′ can provide effective and accurate results. It is clear
that the storage requirements are quite modest, and can
be held in main memory in most cases. For the case of
stringent accuracy requirements of ε′ = 0.01, the high
dimensional data sets may require a modest amount of
disk storage in order to capture the sketch table. How-
ever, a practical choice of ε = 0.2 always results in a
table which can be stored in main memory. These re-
sults are especially useful in light of the fact that even
data sets of small dimensionalities cannot be effectively
processed with the use of traditional methods.

2.2 Classification with Sketch Table In this sec-
tion, we will show how to leverage the sketch table in
order to perform the classification for a given test in-
stance Y . The first step is to extract all the L pat-
terns in the test instance with dimensionality less than
r. Then, we determine those patterns which are (θ, s)-
discriminatory with respect to at least one class. The
process of finding (θ, s)-discriminatory patterns has al-
ready been discussed in the last section. We use a voting
scheme in order to determine the final class label. Each
pattern which is (θ, s)-discriminatory constitutes a vote
for that class. The class with the highest number of
votes is reported as the relevant class label. The overall
procedure is reported in Figure 2.

2.3 Optimizations The approach discussed above
can be optimized in several ways. One key bottle neck is
the case when the data dimensionality is on the higher
side, and the value of L becomes large. For each training
instance all L patterns need to be processed. This
can reduce the computational efficiency of processing
each record. However, for a fast data stream it may
not be necessary to process all the patterns in a given
record. Instead, we may use only a random sample of
L′ < L patterns from each training instance. In such
cases, both the time and space-complexity is reduced
by a factor of L′/L. We note that the use of sampling

results in a sampled specificity of s′ for a given pattern,
which is slightly different from s. Since the sketch-based
approach tries to estimate this sampled specificity, an
additional inaccuracy of |(s − s′)| arises from the use
of this approach. As long as the value of |(s′ − s)|/s
is small, the sampling based approach estimates the
true value of s quite effectively. It can be shown that
the standard deviation of s′/s for a pattern in class
i by a random sample of size Ni · L′/L is given by
O(

√
L/

√
L′ ·Ni). For large values of Ni, this standard-

deviation is almost zero. Furthermore, this inaccuracy
reduces with progression of the data stream, since the
value of Ni increases continually over time. Even for
small values of L′, the value of O(

√
L/

√
L′ ·Ni) is likely

to reduce rapidly in most cases. For example, in the case
of Table 1, a choice of L′ = 100 for the most challenging
case of 200-dimensional data would result in a standard
deviation of about 10−2, once Ni exceeds two million.
The requirement is much lower for all the other cases
in the table. It is reasonable to expect Ni to be large,
since our approach is designed for the case of fast data
streams. Thus, the large volume of the stream works
in favor of the accuracy of sampling the intermediate
patterns.

2.4 Computational and Space Complexity Let
us examine the case where we wish to track patterns
with specificity s. Also assume that we wish to obtain
an accuracy within ε′ with probability at least (1 − δ),
and the number of patterns tracked for each record
is L. Then, the size of the sketch table is given by
O(e · ln(1/δ) · L/ε′). In the event that only L′ samples
are used from each record, the size of the corresponding
sketch table is O(e · ln(1/δ) · L′/ε′). The algorithm
for updating the sketch table requires O(ln(1/δ) · L)
operations for each record. As in the previous case,
if we sample only L′ patterns from each record, this can
be reduced to O(ln(1/δ) ·L′) operations for each record.

3 Experimental Results

In this section, we will discuss the experimental results
of the sketch-based technique. All results were tested on
an IBM T41p laptop running Windows XP Professional,
a CPU speed of 1.69 GHz and 1 GB of main memory.

We note that most known data stream classifica-
tion methods are designed for the continuous domain,
and this does not work well for the case of large dis-
crete domain sizes. Furthermore, the massive size of
the domain ensures that straightforward modifications
of stream- and other known classifiers cannot be used in
this case. The only classifier which can be implemented
in a limited way is the nearest neighbor classifier. Even
in the case of the nearest neighbor classifier, one cannot

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

50

100

150

200

250

EPSILON

S
TO

R
A

G
E

 R
E

Q
U

IR
E

M
E

N
T

(K
IL

O
B

Y
TE

S
/C

LA
S

S
)

Figure 3: Storage Requirement with increasing ε for δ =
0.01 (Analytical Curve which plots e · ln(1/δ)/(512 · ε))

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

EPSILON

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING
1% SAMPLING
0.2% SAMPLING

Figure 4: Classification Accuracy with increasing ε for
data set IP2007.06.01

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

EPSILON

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING

1% SAMPLING

0.2% SAMPLING

Figure 5: Classification Accuracy with increasing ε for
data set IP2007.06.02

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0.77

0.78

0.79

0.8

0.81

0.82

0.83

EPSILON

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING
1% SAMPLING
0.2% SAMPLING

Figure 6: Classification Accuracy with increasing ε for
data set IP2007.06.03

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

DELTA

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING
1% SAMPLING
0.2% SAMPLING

Figure 7: Classification Accuracy with increasing δ for
data set IP2007.06.01

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

DELTA

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING

1% SAMPLING

0.2% SAMPLING

Figure 8: Classification Accuracy with increasing δ for
data set IP2007.06.02

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.77

0.78

0.79

0.8

0.81

0.82

0.83

DELTA

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING

1% SAMPLING

0.2% SAMPLING

Figure 9: Classification Accuracy with increasing δ for
data set IP2007.06.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.7

0.75

0.8

0.85

0.9

0.95

THRESHOLD THETA

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING
1% SAMPLING
0.2% SAMPLING

Figure 10: Classification Accuracy with increasing θ for
data set IP2007.06.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

THRESHOLD THETA

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y NO SAMPLING

1% SAMPLING

0.2% SAMPLING

Figure 11: Classification Accuracy with increasing θ for
data set IP2007.06.02

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.77

0.78

0.79

0.8

0.81

0.82

0.83

THRESHOLD THETA

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING

1% SAMPLING

0.2% SAMPLING

Figure 12: Classification Accuracy with increasing θ for
data set IP2007.06.03

use the nearest neighbor over the entire training stream
because of efficiency reasons. Therefore, we will show
that when a truncated training data set is used (for both
classifiers) in order to allow for implementation of the
nearest neighbor classifier, our classification technique
is significantly superior on the truncated data. Then,
we will show that our technique is extremely robust
and efficient on the full stream for a very broad range
of parameter-settings. In fact, we will show that our
technique is so insensitive to parameter-settings, that
one can confidently pick parameters from a wide range
without significantly affecting the accuracy of the tech-
nique. We will study the following: (1) Robustness of
the technique for a variety of sketch table storage re-
quirements, sampling rates, and and parameter values.
(2) Efficiency of sketch table construction for a variety
of storage requirements, sampling rates, and parameter
values.

We tested the algorithms on intrusion detection
data sets from the log files of a large network server
of IBM. These data sets contained alerts from different
sensors. Each alert comprised several pieces of informa-
tion including the source and destination IP addresses,
sensor id, time stamp, and severity level. The alert also
had a class label attached to it depending upon the na-
ture of the alert. Three of the attributes corresponding
to the source and destination IP addresses, and the sen-
sor id are massive domain attributes. Clearly, it is infea-
sible to utilize known data stream classification methods
for such domains from a space-efficiency perspective. It
is also non-trivial to modify traditional classifiers for
use with such a domain in the stream scenario. For our
experimental testing, we used three data sets denoted
by IP2007.06.01, IP2007.06.02 and IP2007.06.03 re-
spectively. Each data stream consisted of a set of alerts
received over a period of one day. The labels on the data
sets correspond to the dates on which the corresponding

1 2 3 4 5 6 7 8 9 10

x 10−4

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

THRESHOLD SUPPORT

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING
1% SAMPLING
0.2% SAMPLING

Figure 13: Classification Accuracy with increasing sup-
port for data set IP2007.06.01

1 2 3 4 5 6 7 8 9 10

x 10−4

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

THRESHOLD SUPPORT

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING
1% SAMPLING
0.2% SAMPLING

Figure 14: Classification Accuracy with increasing sup-
port for data set IP2007.06.02

alerts were collected.
We will first illustrate the effectiveness of the tech-

nique over a variety of parameter settings. Unless
otherwise mentioned, the default values for different
parameters were as follows: ε = 0.003, δ = 0.01,
samplefactor = 1, θ = 0.4, and minsupport = 0.0001.
We note that this choice of parameters was deliberately
picked in the middle of the ranges along which the al-
gorithm was tested, and are not necessarily the optimal
values. We will also show that the effectiveness of the
technique is extremely high over a wide range of param-
eter values. We further note that only 81 Kilobytes of
sketch table space is required for each class at the de-
fault value of the parameters. This is well within the
limitations of most systems, even when there are a very
large number of classes.

In Figure 3, we have illustrated the storage re-
quirements for each class-specific sketch table (given by
e · ln(1/δ)/(ε · 512) Kilobytes) with increasing values of
ε for the range of parameters tested in the paper. The
value of ε is illustrated on the X-axis, and the stor-

1 2 3 4 5 6 7 8 9 10

x 10−4

0.77

0.78

0.79

0.8

0.81

0.82

0.83

THRESHOLD SUPPORT

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

NO SAMPLING

1% SAMPLING

0.2% SAMPLING

Figure 15: Classification Accuracy with increasing sup-
port for data set IP2007.06.03

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SAMPLING RATE (%)

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

EPSILON=0.0003

EPSILON=0.001

EPSILON=0.003

Figure 16: Classification Accuracy with increasing sam-
pling rate for data set IP2007.06.01

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SAMPLING RATE (%)

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

EPSILON=0.0003
EPSILON=0.001
EPSILON=0.003

Figure 17: Classification Accuracy with increasing sam-
pling rate for data set IP2007.06.02

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SAMPLING RATE (%)

C
LA

S
S

IF
IC

A
TI

O
N

 A
C

C
U

R
A

C
Y

EPSILON=0.0003
EPSILON=0.001
EPSILON=0.003

Figure 18: Classification Accuracy with increasing sam-
pling rate for data set IP2007.06.03

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

SAMPLING RATE (%)

R
U

N
N

IN
G

 T
IM

E
 (

S
E

C
O

N
D

S
)

EPSILON=0.0003

EPSILON=0.001

EPSILON=0.003

Figure 19: Running Time with increasing sampling rate
for data set IP2007.06.01

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

SAMPLING RATE (%)

R
U

N
N

IN
G

 T
IM

E
 (

S
E

C
O

N
D

S
)

EPSILON=0.0003

EPSILON=0.001

EPSILON=0.003

Figure 20: Running Time with increasing sampling rate
for data set IP2007.06.02

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

SAMPLING RATE (%)

R
U

N
N

IN
G

 T
IM

E
 (

S
E

C
O

N
D

S
)

EPSILON=0.0003

EPSILON=0.001

EPSILON=0.003

Figure 21: Running Time with increasing sampling rate
for data set IP2007.06.03

Data Set Sketch-Based Nearest Neighbor
(Accuracy) (Accuracy)

IP2007.06.01.c 79.23% 67.52%

IP2007.06.02.c 80.49% 70.86%

IP2007.06.03.c 81.31% 70.03%

Table 2: Comparison with Nearest Neighbor Classifier
for Limited Case of Truncated Data Sets

age requirements are illustrated on the Y -axis. This
analytical curve makes the assumption that 2 bytes are
required for each entry in the sketch table. In each case,
the sketch table contains only a few kilobytes, and can
therefore be implemented even on the simplest of hard-
ware.

We compared the sketch-based classifier to the near-
est neighbor classifier. We note that the nearest neigh-
bor classifier cannot be used directly with the entire
training data stream, since it is not practical to de-
termine the nearest neighbor over the entire training
data. Therefore, we used a sample of 105 points from
the original training data stream in order to create trun-
cated data sets. We refer to these truncated data sets
as IP2007.06.01.c, IP2007.06.02.c and IP2007.06.03.c,
with the last two characters “.c” representing the trun-
cated nature of the data set. We used these truncated
data sets for both classifiers, and even for the truncated
case, the nearest neighbor classifier was more than four
times as slow as the sketch-based classifier. In Table 2,
we have illustrated the accuracy of the two classifiers
for the three data sets. In each case, the sketch-based
classifier had an accuracy which was typically at least
10% higher than the nearest neighbor classifier. This is
in spite of the fact that the nearest neighbor classifier
was at least four times as slow as the sketch-based clas-
sifier. Thus, while our limited data scenario makes the

nearest neighbor classifier implementable, it continues
to be less accurate than the sketch-based classifier.

Next, we will illustrate the robustness of our classi-
fier on the entire training stream, a case for which our
classifier is the only available technique because of its
ability to summarize the classification behavior of the
massive domain in a compact way. We will show that
the sketch-based classifier continues to maintain its high
accuracy over the entire data stream over a very wide
range of input parameters. This illustrates the tech-
nique is extremely robust to the size of the data, as well
as the parameter settings which are used for classifica-
tion. In Figures 4, 5, and 6, we have illustrated the
classification accuracy of the technique with increasing
value of the parameter ε. On the X-axis, we have illus-
trated the parameter ε, whereas the classification accu-
racy is illustrated on the Y -axis. The other parameters
were set at the default values specified at the beginning
of this section. We have illustrated the classification ac-
curacy with different levels of sampling. The solid line
corresponds to the original algorithm where sampling
is not used. The other two lines correspond to vary-
ing levels of sampling. We have also shown curves for
sampling levels of 0.2% and 1% respectively. As we will
see, such levels of sampling lead to large speedup factors
of 500 and 100 respectively. In all cases, the classifica-
tion accuracy of the technique was well above 75%. In
cases where sampling was not used the classification ac-
curacy was over 80% over a large range of the parameter
ε in all three data sets. This is an extremely high level
of accuracy since the data set contained well over a 100
classes, which makes the classification process extremely
difficult. We further note that even when the value of
ε = 0.01 was used (which corresponds to a very low stor-
age requirement of 2.44KB per class), the classification
accuracy was essentially unchanged in most cases from
more refined versions of the sketch table. While such
large values of ε no longer provide theoretical guaran-
tees, the results show that the accuracy is maintained
from a practical point of view. This is because even
when there are collisions in the sketch table, the overall
bias in the class distribution of individual cells is suffi-
cient for maintaining the accuracy of the classification
process. The other observation is that even though a
very low rate of sampling is used, the classification ac-
curacy continues to be robust. For such sampling rates,
we will see that the training stream can be processed
very efficiently.

In Figures 7, 8, and 9, we have illustrated the classi-
fication accuracy of the approach with increasing value
of the parameter δ. The parameter δ is illustrated on the
X-axis, and the classification accuracy is illustrated on
the Y -axis. The other parameters were set at the default

values specified at the beginning of this section. As in
the previous cases, the algorithms were tested over the
three different sampling rates. In each case, the classi-
fication accuracy is extremely stable for different values
of the parameter δ on all three data sets. Furthermore,
the techniques did not degrade significantly for the use
of lower sampling rate.

We also tested the robustness of the technique
for different values of the parameter θ. The other
parameters were set to the default values specified at
the beginning of this section. The results are illustrated
in Figures 10, 11 and 12 for the three data sets. In
each cases, the accuracy was stable for different values
of the parameter θ, though the accuracy sometimes
dropped for very low values of the parameter. We
further note that the default choice of θ = 0.4 was
picked along the middle of the range, and was not
necessarily tailored to optimizing the accuracy over the
other charts. Nevertheless, the stability in the accuracy
values ensured that the results in other charts continued
to be quite accurate.

In Figures 13, 14, and 15, we have illustrated the
accuracy of the technique for increasing values of the
support parameter. All other parameters were set to
their default values specified earlier. The minimum
support threshold is denoted on the X-axis, and the
classification accuracy is denoted on the Y -axis. The
only exception is Figure 14 in which the classification
accuracy dips at high values of the support. This dip
happens only for the case when the entire data stream
is used. The reason for this is that at large values of the
support, many spurious patterns are created because of
collisions in the underlying sketch table. The collisions
are fewer when sampling is used, and the classification
accuracy continues to be robust for the sampled data.
Thus, this is one of the interesting cases in which the
sampled data actually provided higher accuracy because
of fewer collisions in the sketch table.

We also tested the classification accuracy and the
efficiency with increasing sampling rate. In this case, we
used three different values of ε corresponding to 0.0003,
0.001 and 0.003 respectively. The results are illustrated
in Figures 16, 17, and 18 respectively. The sampling
rates are illustrated in the X-axis, and the classification
accuracy is illustrated on the Y -axis. All other param-
eters were set to their default values. An interesting
observation is that the classification accuracy is main-
tained even at very low sampling rates. In most data
sets, the reduction in classification accuracy from the
use of 1% sampling all the way to 100% sampling was
less than 1%.

We also tested the running time of the method
for different sampling rates. The running time was

defined in terms of the portion of the time required
for training on the entire data stream. The sampling
rate is illustrated on the X-axis, and the running time
is illustrated on the Y -axis. As in the previous case,
we used the same three settings for the parameter ε.
Thus, we can examine the behavior of different sampling
rates over different sketch table sizes. The results are
illustrated in Figures 19, 20, and 21 respectively. The
sampling rate is illustrated on the X-axis, and the
overall running time was illustrated on the Y -axis. In
each case, it is clear that the running time scaled linearly
with the sampling rate. This is important because
it means that we can scale up the running time by
large factors by using low sampling rates such a 1%.
For example, the use of 1% sampling typically requires
less than 5 seconds of processing on each of the three
data streams. This translated to a processing rate of
over 105 records per second in the sampled case. As
is evident from our earlier charts, such sampling rates
did not significantly reduce the classification accuracy
of the method. Thus, robust classification results can
be obtained very efficiently with the use of the sketch-
based technique.

4 Conclusions and Summary

In this paper, we presented a first approach for clas-
sification of massive-domain data streams. Such data
domains cannot be handled with traditional classifiers
because of the fact that the intermediate computations
are computationally and storage intensive. This prob-
lem is further exacerbated in the case of a data stream,
because of the one-pass constraint. The use of a sketch
based approach alleviates this problem since it is able to
track the relevant attribute combinations in an effective
way in very low storage requirements. The technique is
also extremely efficient, since only a few updates to the
sketch table are required for each record. If desired, the
technique can made substantially more efficient with the
use of sampling. Our experimental results show that the
technique is extremely stable and robust over different
choices of the input parameters and sampling rates.

References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, A
Framework for On-Demand Classification of Evolving
Data Streams, IEEE Transactions on Knowledge and
Data Engineering, 18(5), (2006), pp. 577–589.

[2] C. C. Aggarwal, A Framework for Clustering Massive-
Domain Data Streams, ICDE Conference, (2009) pp.
102–113.

[3] C. C. Aggarwal, Data Streams: Models and Algorithms,
Springer, (2007).

[4] L. Brieman, J. Friedman, and C. Stone, Classification
and Regrssion Trees, Chapman and Hall, (1984).

[5] W. Cohen, Fast Effective Rule Induction, ICML Con-
ference, (1995), pp. 115–123.

[6] G. Cormode, and S. Muthukrishnan, An Improved
Data-Stream Summary: The Count-min Sketch and its
Applications, Journal of Algorithms, 55(1), (2005), pp.
58–75.

[7] P. Domingos, and G. Hulten, Mining High-Speed Data
Streams, ACM KDD Conference, (2000) pp. 71–80.

[8] W. Fan, Systematic data selection to mine concept-
drifting data streams, ACM KDD Conference, (2004),
pp. 128–137.

[9] J. Gama, R. Rocha, and P. Medas, Accurate Decision
Trees for Mining High-Speed Data Streams, ACM KDD
Conference, (2003), pp. 523–528.

[10] G. Hulten, L. Spencer, and P. Domingos, Mining
Time-Changing Data Streams, ACM KDD Conference,
(2001), pp. 97–106.

[11] R. Jin, and G. Agrawal, Efficient Decision Tree Con-
struction on Streaming Data, ACM KDD Conference,
(2003), pp. 571–576.

[12] B. Liu, W. Hsu, and Y. Ma, Integrating Classification
and Association Rule Mining, ACM KDD Conference,
(1998), pp. 80–86.

[13] J. R. Quinlan, C4.5: Programs in Machine Learning,
Morgan-Kaufmann Inc, (1993).

[14] H. Wang, W. Fan, P. S. Yu, and J. Han, Mining
Concept-Drifting Data Streams using Ensemble Clas-
sifiers, ACM KDD Conference, (2003), pp. 226–235.

