
Charu C. Aggarwal

IBM T J Watson Research Center

Yuchen Zhao, Philip S. Yu

University of Illinois at Chicago

Outlier Detection in Graph Streams

International Conference on Data Engineering, 2011

Introduction

• Many real life applications result in edge stream objects which

arrive continuously over time.

• Such edge streams may contain anomalies which provide use-

ful insights about the underlying stream

• We design methods for outlier detection in graph streams.

Examples

• A bibliographic object from the DBLP network may be ex-

pressed as a graph with nodes corresponding to authors, con-

ference, or topic area.

• A movie object from IMDB can be represented as an entity-

relation graph, with edges corresponding to relationships be-

tween different elements.

• Events in social networks may lead to local patterns of ac-

tivity, which may be modeled as streams of graph objects.

• The user browsing pattern at a web site is a stream of graph

objects.

– Edges ⇒ Path taken by the user across the different ob-

jects.

Challenges

• Graphs are defined over a massive domain of nodes.

– Node labels are drawn over universe of distinct identifers.

– URL addresses in a web graph

– IP-address in a network application

– User identifier in a social networking application.

• The stream scenario makes the problem even more challeng-

ing:

– The speed of the stream.

– The entire graph is not available at a given time for anal-

ysis.

Outliers in Graphs: Goals

• Outliers represent significant deviations from the “normal”

structural patterns in the underlying graphs.

• Unusual relationships in the graphs may be represented as

edges between regions of the graph that rarely occur to-

gether.

• The goal of a stream-based outlier detection algorithm is to

identify graph objects which contain such unusual bridging

edges.

• Challenging because of the speed of the stream and large

number of distinct edges.

Outlier Examples

• Objects correspond to entity-relation graphs for a movie.

The nodes could correspond to actors that are drawn from

very diverse genres or regions which do not normally occur

together.

• In an academic network, two co-authors which are drawn

from groups that usually do not work together may some-

times publish together (cross-disciplinary paper).

• Such outliers provide unique insights about the relationships

in the underlying network.

Contributions

• Propose a real-time algorithm for discovering outliers in a

graph stream.

• Additional Results: Dynamic construction of reservoir sam-

ples of the graph with specific structural criteria satisfying a

general condition referred to as set monotonicity.

– Many potential applications which require graph sampling

with structural criteria.

Notations and Definitions

• We have an incoming stream of graph objects, denoted by

G1 . . . Gt

– Graph objects could be information network objects.

– Entity-relation graphs for a stream of incoming complex

objects

– Local patterns of activity in a social network

– Patterns of intrusion in a computer network.

• Each graph Gi has a set of nodes, which are drawn from the

node set N (base domain).

Outlier Detection with Partitioning

• The large size of the underlying graph precludes the storage
of the entire network explicitly.

• The decision on whether an incoming graph object is an
outlier needs to be performed in real time.

• Solution: We dynamically maintain node partitions which can
expose abnormalities in the connectivity structure.

– Leverage partitions for making real-time decisions about
incoming graph objects.

• Partitions should ideally represent the dense regions in the
graph

• Rare edges across dense regions are exposed as outliers.

Challenges in Maintaining Dynamic
Partitions

• Dynamic maintenance of partitioning representing dense re-

gions in a graph stream is very challenging.

– Further challenge: A statistical model needs to be con-

currently maintained for outlier modeling.

• Design a structural reservoir-sampling approach in order to

dynamically maintain the partitioning.

• The structural sampling process is biased towards maintain-

ing the dense regions ⇒ Suffices for outlier detection as long

as multiple partitions are maintained.

Algorithm Components

• Creation of node partitions (structural reservoir sampling).

• Using of node partitions for the purpose of outlier modeling.

• Use of outlier model to make prediction about incoming ob-

ject.

• Describe outlier modeling first.

Outlier Modeling from the Use of
Partitions

• In order to define the abnormality of edge behavior we define

the likelihood fit of an edge with respect to a partition of the

nodes C = C1 . . . Ck(C).

• The number of node partitions in C is denoted by k(C).

• We define a structural generation model of edges with re-

spect to node partitioning C.

• This structural generation model will be useful in the proba-

bilistic modeling of outliers ⇒ Lower probability edge is more

indicative of outlier behavior.

Outlier Modeling

• Edge Generation Model: The structural generation model

of a node partitioning C = {C1 . . . Ck(C)} is defined as a set of

k(C)2 probabilities pij(C), such that pij(C) is the probability

of a randomly chosen edge in the incoming graph object to

be incident on partitions i and j.

• For a given node i, we denote the partition identifier for i by

I(i, C) (between 1 and k(C))

• Edge Likelihood Fit: Consider an edge (i, j), a node parti-

tion C, and edge generation probabilities pij(C) with respect

to the partition. Then, the likelihood fit of the edge (i, j)

with respect to the partition C is denoted by F(i, j, C) and is

given by pI(i,C),I(j,C).

Increasing Robustness with Multiple
Models

• We maintain multiple models in order to increase the robust-

ness of likelihood estimation.

• This smooths out the local variations which are specific to a

given partitioning.

• Edge Likelihood Fit: The composite edge likelihood fit

over the different partitionings C1 . . . Cr for the edge (i, j) is

the median of the values of F(i, j, C1) . . . F(i, j, Cr).

• This value is denoted by MF(i, j, C1 . . . Cr).

Likelihood Fit of Graph Object

• The likelihood fit for a graph object G is defined as a function

of the likelihood fits of the constituent edges in G.

• Graph Object Likelihood Fit: The likelihood fit

GF(G, C1 . . . Cr) for a graph object G with respect to the par-

titions C1 . . . Cr is the geometric mean of the (composite)

likelihood fits of the edges in G. Therefore, we have:

GF(G, C1 . . . Cr) =







∏

(i,j)∈G

MF(i, j, C1 . . . Cr)







1/|G|

(1)

Partitions from Edge Samples

• The outlier discovery algorithm uses the maintenance of a

group of r different partitions which are implicitly defined by

dynamically maintained reservoirs from the graph stream.

• At a given time, the algorithm maintains r different reservoir

samples (edges), which are denoted by S1 . . . Sr respectively.

• Each set Sm induces a different partitioning of the nodes in

the underlying network, which is denoted by the notation Cm.

• The partition Cm is induced by determining the connected

components in the subgraph defined by the edges in Sm.

Modeling Edge Generation Probabilities

• The statistical behavior of the edges in the set corresponding

to Qm = ∪r
j=1Sj − Sm is used in order to model the edge

generation probabilities.

• We model the sample-estimated probability of an edge be-

tween partitions i and j as the fraction of the number of

edges in Qm which exist between partitions i and j.

• We model the non-sample-estimated probability of an edge

between partitions i and j by assuming that the probability of

an edge between any pair of nodes is equal ⇒ pnij(Cm) (used

for smoothing).

• The estimated probability pij(Cm) of an edge between par-

titions i and j is a weighted combination of the above two

factors.

Online Outlier Detection

• For each incoming graph stream object, we compute the

likelihood fit with the use of the above-mentioned estimated

probabilities.

• Those objects for which this fit is t standard deviations be-

low the average of the likelihood probabilities of all objects

received so far are reported as outliers.

• We use the reservoir sampling approach in order to update

the edges in the different samples S1 . . . Sr.

• These are also used in order to update the partitions C1 . . . Cr.

Online Outlier Detection

• Need to determine whether the likelihood probability of an

object is t standard deviations below the likelihood probability

of all objects received so far.

– We need to dynamically maintain the mean and standard

deviation of the likelihood probabilities of all objects main-

tained so far, in a way which can be additively achieved

for a data stream.

• Can be achieved by maintaining all moments upto order 2

(micro-clustering concept).

Structural Reservoir Sampling (Aims
and Goals)

• The aim of the partitioning is to construct clusters of dense

nodes, which would expose the outliers well.

• Since clustering is a challenging problem for the stream sce-

nario, we induce node partitions from edge samples.

• It is well known that the use of edge sampling to create such

partitions are biased towards creating partitions which are

dense.

• We also need to maintain specific structural properties in the

underlying partitions.

– Eg. (a) The number of points in each partition is con-

strained. (b) Number of components are constrained

Structural Reservoir Sampling
(Definition)

• We extend the approach to an unbiased sample of a struc-

tured graph with a structural stopping criterion.

• Many natural and desirable structural properties of the sam-

ple are maintained with the help of a monotonic set function

of the underlying edges in the reservoir.

• Monotonic Set Function A monotonically non-decreasing

(non-increasing) set function is a function f(·) whose ar-

gument is a set, and value is a real number which always

satisfies the following property:

– If S1 is a superset (subset) of S2, then f(S1) ≥ f(S2)

Stochastic Stopping Criterion

• Some examples of a monotonic set function:

– The function value is the number of connected compo-

nents in the edge set S (monotonically non-increasing).

– The function value is the number of nodes in the largest

connected component in edge set S (monotonically non-

decreasing).

• In some cases, we can use thresholds on the above properties,

which are also referred to as stochastic stopping criteria.

Stopping Criterion with Random Sort
Sample

• The edges are sorted in random order, and can be added to

S only in sort order priority.

• Sort Sample with Stopping Criterion: Let D be a set of

edges. A sort sample S from D with stopping threshold α is
defined as follows:

– We pick the smallest subset S from D among all subsets
which satisfy the sort-order priority, such that f(S) is
at least (at most) α.

• Example: Smallest subset of edges which results in viola-
tion of the size constraint on number of nodes in connected

component

– Use penultimate set by removing the last added edge

Observations

• For the case of a fixed data set, it is fairly easy to create a

sort sample with a structural stopping criterion.

• We achieve this by sorting the edges in random order and

adding them sequentially, until the stopping criterion can no

longer be satisfied.

• In the case of a data stream, a random sample or reservoir

needs to be maintained dynamically.

• Once edges have been dropped from the sample, how does

one compare their sort order to the incoming edges in the

stream, and correspondingly update the sample?

Maintaining Sort order in Stream Case

• The key idea is use a fixed random hash function, which is

computed as a function of the node labels on the edge.

• This hash function is used to create a sort order among the

different edges.

• This hash function serves to provide landmarks for incoming

edges when they are compared to the previously received

edges from the data stream.

• The use of a hash function fixes the sort order among the

edges throughout the stream computation.

• For edge (i, j) we compute the hash function h(i⊕ j), where

i⊕ j is the concatenation of the node labels i and j.

Stopping Criterion with Hash Function

• Let D be a set of edges. let f(·) be a monotonically

non-decreasing (non-increasing) set function defined on the

edges. A sort sample S from D with stopping threshold α is

equivalent to the following problem:

– Apply a uniform random hash function h(·) to each edge

(i, j) in D.

– Determine the smallest threshold q, such that the set S

of edges which have hash function value at most q satisfy

the condition that f(S) is at least (at most) α.

Properties of Hash Function

• We denote the corresponding threshold value with respect

to set function f , hash function h. data set D and stopping

threshold criterion α by H(f, h,D, α), and refer to it as the

stopping hash threshold for data set D.

• Result: The stopping hash threshold exhibits a version of

set monotonicity with respect to the underlying data set.

Specifically, let us consider the monotonic set function f(·),

hash function h(·), stopping threshold α. Let us consider

two data sets D1 and D2, such that D2 ⊇ D1. Then, the

stopping hash threshold H(f, h,D2, α) is at most equal to

H(f, h,D1, α).

Properties of Hash Function (Stream
Context)

• The stopping hash threshold is monotonically non-increasing

over the life of the data stream.

• This is a critical result, because it implies that edges which

have not been included in the current sample will never be

relevant for sampling over the future life of the data stream.

• The current sample is the only set we need for any future

decisions about reservoir sample maintenance.

Structural Reservoir Sampling Algorithm

• Previous result implies simple algorithm in order to maintain

the reservoir dynamically.

• We dynamically maintain the current hash threshold which is

used to make decisions on whether or not incoming elements

are to be included in the reservoir.

• For each incoming graph, we apply the hash function to each

of its edges, and we add the edge to the reservoir, if the hash

function value is less than the current threshold value.

Structural Reservoir Sampling Algorithm

• The addition of these edges will always result in the stopping

criterion being met because of set function monotonicity.

• The set may no longer be the smallest sort-ordered set to

do so.

• Edges may need to be removed in order to make it the small-

est sort-ordered set to satisfy the stopping criterion.

• Process the edges in the reservoir in decreasing order of the

hash function value, and continue to remove edges, until

we are satisfied that the resulting reservoir is the smallest

possible set which satisfies the stopping constraint.

Structural Reservoir Sampling Algorithm

• For each incoming graph, this process is repeated by first se-

lectively adding the edges for which the hash function meets

the threshold, and then removing edges if necessary.

• The corresponding hash threshold is then reduced to the

largest hash function value of the remaining edges in the

reservoir after removal.

• The removal of edges may result in a reduction of the hash

threshold in each iteration.

• It will never result in an increase in the threshold.

Choice of Structural Function

• It is useful to set the function in such a way so as to prevent
too small components from the reservoir.

• A good choice is to set f(S) to the number of nodes in the
largest connected component induced by the reservoir edge
sample S.

• A corresponding stopping threshold of α is used on the func-
tion f(S).

• The stopping criterion ensures that the sort sample defines
the smallest set of edges, such that the largest connected
component is at least α.

• This ensures that the largest partition has at most α nodes,
when the penultimate set derived from S is used.

Experimental Results

• Tested on two real (IMDB and DBLP) and one synthetic

data sets.

• For real data sets case studies are presented for effectiveness

• For synthetic data sets, precision and recall can be presented.

• Efficiency results are presented for both types of data sets.

Examples of Anomalous Bibliographic
Objects (DBLP)

• Yihong Gong, Guido Proietti, Christos Faloutsos, Image In-

dexing and Retrieval Based on Human Perceptual Color Clus-

tering, CVPR 1998: 578-585.

– Edges across different kinds of partitions (a) Computer

Vision and Multimedia Dominated : Yihong Gong (b)

Database and Data Mining Dominated : Christos Falout-

sos

• The two kinds of nodes were assigned to different partitions

by the structural reservoir sampling algorithm

Examples of Anomalous Bibliographic
Objects (DBLP)

• Natasha Alechina, Mehdi Dastani, Brian Logan, John-Jules

Ch Meyer, A Logic of Agent Programs, AAAI 2007: 795-800.

• The co-authorship behavior of these cohorts was defined by

geographical proximity.

• The first partition includes a group of researchers in the

United Kingdom, while the second partition is composed of

researchers in the Netherlands.

• The different groups were naturally assigned to different clus-

ters.

Examples of Anomalous Movie Objects

• Movie Title: Cradle 2 the Grave (2003)

• This movie was directed by Andrzej Bartkowiak, and the

actors include Jet Li, DMX (I), etc.

• Non-chinese director which contains an international cast

along with many chinese actors.

• Movie Title: Memoirs of a Geisha, 2005: Contains partici-

pants from Chinese, Japanese and American backgrounds

Effectiveness Results On Synthetic
Data Set

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 8000 12000 16000

F
A

LS
E

 P
O

S
IT

IV
E

 R
A

T
E

GRAPHS PROCESSED

GOutlier
GMicro

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 8000 12000 16000

F
A

LS
E

 N
E

G
A

T
IV

E
 R

A
T

E

GRAPHS PROCESSED

GOutlier
GMicro

• Effectiveness Results on Synthetic Data Set

Effectiveness Results On Synthetic
Data Set

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

F
A

LS
E

 N
E

G
A

T
IV

E
 R

A
T

E

FALSE POSITIVE RATE

GOutlier
GMicro

0.80.91
1.1

1.2

1.3

1.3

1.2

0.8

• Effectiveness Results on Synthetic Data Set

Efficiency Results (Real Data Sets)

 0

 20

 40

 60

 80

 40 60 80 100 120 140 160

P
R

O
C

E
S

S
IN

G
 R

A
T

E
(E

D
G

E
S

/S
E

C
)

TIME (SECONDS)

GOutlier
GMicro

 0

 100

 200

 300

 400

 500

 600

 700

 800

 40 60 80 100 120 140 160

P
R

O
C

E
S

S
IN

G
 R

A
T

E
(E

D
G

E
S

/S
E

C
)

TIME (SECONDS)

GOutlier
GMicro

• Efficiency Results on Real Data Sets (DBLP and IMDB)

Efficiency Results (Synthetic Data Sets)

 0

 1000

 2000

 3000

 4000

 5000

 60 80 100 120

P
R

O
C

E
S

S
IN

G
 R

A
T

E
(E

D
G

E
S

/S
E

C
)

TIME (SECONDS)

GOutlier
GMicro

• Efficiency Results on Synthetic Data Set

Conclusions and Summary

• New method for outlier detection in graphs streams

• Proposed methods for structural reservoir sampling, which

may have other applications

• Presented results on real and synthetic data sets

