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Abstract

In this paper, we will propose a technique for multi-
dimensional enhancement of uncertain data. In many appli-
cations, the uncertainty in the different dimensions is caused
by independent factors, especially if the different dimensions
have been collected from independent sources. In such cases,
it is possible to enhance the quality of the data and reduce
the underlying uncertainty by using multidimensional uncer-
tainty analysis. In this paper, we will discuss techniques for
uncertainty reduction of multidimensional uncertain data.
We will examine the effectiveness of the approach over a
variety of real and synthetic data sets.

1 Introduction

In recent years, many new techniques have been devel-
oped for extracting uncertain data from a wide variety
of applications. This has resulted a need for developing
a variety of techniques for managing and mining un-
certain data [4, 5, 13]. For example, in sensor networks,
the data collected is often uncertain because of errors in
the underlying readings. Often, the uncertainty is cap-
tured with the use of sensor modeling techniques. In
techniques such as privacy-preserving data mining, the
errors may be intentionally added in order to increase
the uncertainty in the data. Some recent techniques [2]
explicitly model the data in uncertain format. In many
applications such as forecasting, the data may be syn-
thetically constructed. In such cases, the uncertainty
in the data may be modeled by using the known sta-
tistical characteristics of the underlying methodology of
synthetic data construction.

The field of uncertain data has seen a revival in
recent years, because of new ways of collecting such
information. Newly developed techniques include those
of clustering [3, 12, 15], classification [1], indexing
[7, 8, 14] and query processing [6, 9]. Clearly, the
quality of the final results are dependent upon the level
of uncertainty present in the data. The presence of
less uncertainty will create better quality results and
vice-versa. Therefore, uncertainty reduction is useful in
practical applications.

In many data mining and management models such
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as clustering, classification, and indexing [3, 12, 7, 8],
it is often assumed that the uncertainty in the differ-
ent attributes are independent of one another. This is
often a direct result of how the data is collected, since
different attributes in the data may be obtained from
different sources. In practice, most real data contains
considerable correlations, as a result of which the dif-
ferent data values are not independent of one another.
This structure in the data is useful information, when
the different attributes in the data have been collected
independently, and it is possible to use the correlation
structure in the data in order to reduce the uncertainty.
A related work [11] shows how to attack privacy of per-
turbed data values, when the entire distribution of the
perturbation is known, and all record are perturbed us-
ing the same distribution.

In this paper, we will examine the use of the
correlation structure in order to reduce the uncertainty
in the underlying data representation. This enhances
the quality of the data for mining and management
purposes. We will show the effectiveness of the approach
on a number of real and synthetic data sets.

This paper is organized as follows. In the next
section, we will propose techniques for reducing the
uncertainty in the underlying data. In section 3, we
will discuss the experimental results. Section 4 contains
the conclusions and summary.

2 Sharpening the Uncertain Representation

We will first introduce some notations and definitions.
It is assumed that the database D contains /N uncertain
records for which the average values are denoted by
X1 ... Xy. The dimensionality of each record is denoted
by d. The corresponding probability distributions are
denoted by f1(-) ... fx(-). Thus, X; is the mean value of
the probability distribution f;(-). It is assumed that the
jth component of record X;is denoted by x;;. Similarly,
the probability distribution for the jth component of
the ith record is denoted by f;;(-).

A key observation is that the uncertainty in the
data may often result from independent sources. For
example, different attributes may be collected from dif-
ferent measuring instruments, sensors, or other agents
for which the underlying uncertainty will be clearly in-




dependent, since they are specific to the approach being
used for data collection. Yet, the true values in the data
will continue to retain the underlying correlations, since
this is a natural property of most multidimensional data
sets. Furthermore, while the observed values clearly de-
pend upon the magnitude of the underlying noise, we
can assume that the noise is independent of the true (un-
known) values of the underlying data, since the noise is
assumed to be specific to the data collection methodol-
ogy rather than the value of the data collected.

In order to reduce the uncertainty in the underlying
data, we will use an approach which is based on singular
value decomposition of the underlying data. The point
of using singular value decomposition is to determine
the hidden structure in the data, and exploit it in order
to sharpen the underlying uncertain representation.
The first step is to determine the covariance structure
of the underlying data records. This is a challenge,
since we do not have the true values of the records
available, but only the uncertain representations. Let
us assume that the original (unknown) value of the jth

dimension for record X; is denoted by z;;. Let D* be
the (unknown) database of original values. Then, the
value of z;; is obtained by adding r;; to x;;. Thus, 74

represents the noise in modeling the mean value of the
distribution f;;(-). Therefore, we have:

Zij = Tij + Tij
Tij = Zij — Tij

Let us denote that random variable corresponding
to the jth dimension of the database X, ... X, by X
Thus, there are N possible instantiations of this record
present in the data, which are denoted by zi;...xn;
respectively. Note that while X; represents the ith row
(or instantiation vector across all dimensions), the nota-
tion Xj represents the jth column (or dimension) of a
random variable. 1t is important to not confuse between
these two notations, since one represents an instanti-
ation, whereas another represents a random variable.
Furthermore, one corresponds to a row vector of [z;;],
whereas the (instantiation of the) other correspond to a
column vector of [x;;].

Similarly, we can define the random variable corre-
sponding to the true value [z;;] of the jth dimension of
the original data by Z}. The jth dimension of the ran-
dom variable corresponding to [r;] is denoted by R;.
Then, we have: . A
(2.1) Xj=Z;— R,

We note that the random variable 7éj is indepen-
dent of the random variable Z; corresponding to the
true record value. This is a key assumption which is
required in order to prove the result. We would like

to determine the covariance between the dimensions j
and k on the original data in terms of the covariances of
the observed data and the noise in the underlying data.
The covariance between the dimensions j and £ in the
original data is represented by Cov(Z; Z Z). We would
like to express Cov(Z;, Z;) in terms of C’ov( ., X)) and
Cov(R;,Ry). This Wlll be helpful in determming the
true covariance of the underlying data, and will be ex-
ploited for sharpening purposes. We claim the following
result:

LEMMA 2.1. The covariance matrices for the variables
[zi;], [2i;] and [ri;] are related as follows:

(2.2) Cov(X;,Xy,) = Cov(Z;, Z1,) + Cov(R;, Ri)

Proof. By expanding Xj =2Z; - 7€j, we get:

(2.3) Cov(X;, &) = Cov((Z; — R;), (Zk — Ra))

By expanding the expression on the right, we get:
Cov(X;, Xy) = Cov(ﬁj,zk) - Cov(ﬁj,ﬁk) -
—Cov(Z1, R;) + Cov(R;, Ry)

Since the true (unknown) values [z;;] and the noise val-
ues [r;;] are assumed to be independent of one another,
we know that Cov(Z;, Rg) = 0 and Cov(ﬁk,ﬁj) =0.
Therefore, we can simplify the expression above as
follows:

(2.4) Cov(X;,X,) = Cov(Z;, Z1,) + Cov(R;, Ri)

This proves the result.

We would like to use the above expression in
order to estimate the covariance C’ov(éj,ék). While
the value of Cov(.)fj,.)fk) can be estimated from the
underlying data, the estimation of Cou(R;, Ry) requires
some further explanation. When j # k, we have
Cov(ﬁj, Ri) = 0, because the noise from different data
sources are assumed to be independent. On the other
hand, when j = k, the value of C’ov(R],Rk) is simply
the variance of R We denote this by var(Rj)

Let us assume that the standard deviation of the
function f;;(-) is denoted by o;;. Then, the value of
var(R;) of the jth dimension of [;;] is given by the aver-
age of the corresponding variances of the corresponding
probability density functions. Therefore, we estimate
var(R;) as follows:

N

var(Téj) = Z ok /N

i=1

(2.5)



Figure 1: Uncertain Data Projection onto Principal
Components

The result of Equation 2.2 can then be used in order
in order to estimate the value of Cov(Z}, Z}), which can
be use to construct the covariance matrix of [z;;]. The
only difference between the covariance matrices of [x;;]
and [z;;] are the lower values on the diagonal matrix
of the latter. All other covariance values are the same.
Thus, we first determine the covariance matrix of the
[zi;], and then subtract the corresponding variances
var(R;) from the diagonal entries (j, 7).

Since z;; is obtained by adding 74; to x;;, it would
seem counter-intuitive that the variances of the covari-
ance matrix of [z;;] are lower than those of [z;;]. How-
ever, we note that the noise r;; is assumed to be inde-
pendent of the true (unknown) value of the uncertain
data, and not the estimated average of the probability
density function. The estimated average of the proba-
bility density function contains added noise because of
modeling assumptions. This independence assumption
is critical in resulting in lower variances of the diago-
nal entries in the covariance matrix of [z;;]. Intuitively,
the variances for [z;;] are lower, since these are the true
values without the added noise, whereas the values [x;;]
include any noise from the uncertain measurements. We
further note that the covariance matrix for [z;;] is only
estimated from the available data, and can be somewhat
inaccurate for small data sets. Since the variance of
the diagonal entries of [z;;] are obtained by subtracting
the variances from the corresponding diagonal entries
of [x;;], it is possible that estimation inaccuracies may
lead to some diagonal values being slightly less than 0.
Since all diagonal values are variances, they cannot be
less than zero. In order to deal with such cases, we sim-
ply set any negative diagonal entry to 0. Let C* denote
the corresponding covariance matrix. This covariance
matrix can be diagonalized using the following expres-
sion:
(2.6)

Since C* is

Cc*=p-D-PT

a covariance-matrix, it is positive-

semidefinite, and it can be diagonalized with non-
negative eigenvalues. In this case, P is an orthonor-
mal matrix for which the columns are the orthonormal
eigenvectors of C#. The matrix D is a diagonal ma-
trix which contains the corresponding eigenvalues. The
eigenvectors are the principal components in the data,
along which the second-order correlations are zero. The
eigenvalues are the variances along these different prin-
cipal components in the data. It can also be shown that
for any given number k of dimensions, it is possible to
maximize the energy in the projected data by picking
only the eigenvectors which have zero second-order cor-
relations.

In most real data sets, a large fraction of these
eigenvalues are close to zero, since most of the infor-
mation in the data can be represented along a small
number k of principal components. However, since the
uncertainty in the unknown true values of the data is in-
dependent of the values in the original data, the average
values in the collected data may not lie along these prin-
cipal components. This provides information about how
the true values in the uncertain data are distributed. In
order to illustrate this point, we have shown an exam-
ple in Figure 1, in which the data points are mostly
distributed on a 2-dimensional plane in 3-dimensional
space. However, the average of the probability distri-
bution of the data point X does not lie on this plane.
Clearly, the probability distribution of X can be sharp-
ened to bring it closer to the plane. For example, if X
is projected onto X’ this brings it closer to the global
data distribution with the use of the principal compo-
nents. A variation of this broad principle is to try to
determine a fit for the average value based on both the
relative magnitude of the eigenvalues, and the local dis-
tribution of the provided density function. We will use
this variation in order to further improve the accuracy
of representation.

In practice, we may not choose to use a hard
threshold in order to project the data point X onto X’,
but we may choose to use a more refined approach with
the help of the underlying eigenvalues. Our goal here
is to combine the local data distribution of each point
with the global data distribution of the entire data set
in order to find an optimally sharpened local uncertain
distribution. We will show that such an approach has
considerable advantages in improving the quality of the
underlying data set. Next, we will discuss how the
sharpened uncertain distribution may be determined.
The process of determination of the covariance matrix
of the underlying data values is illustrated in Figure 2.

2.1 Determining an Optimally Fitting Distri-
bution The process of determining an optimally fitting



Algorithm DataCovariance( X1 ... Xy, f1(-)... fn ()
begin
Let C* be covariance matrix of
X1... XN
Let 01.2. be the variance of the

density function f;;(-);
Construct the d % d matrix C”
such that the i¢th diagonal entry

is E;izl 02.2]. and
all other entries are 0;
C? =(C% — CT;
Diagonalize C* = P - D - PT;
return(P, D);
end

Figure 2: Determining Covariance Matrix

distribution consists of two steps: (1) We first deter-
mine the optimal central point of the sharpened proba-
bility density function. This is done by finding a point
at which the combination of global and local fits is max-
imized. (2) For simplicity, the overall shape of the new
distribution is assumed to be the same as that of the
original distribution. However, the variances are opti-
mized in order to fit the old observation (central point)
with the newly computed central point of the distribu-
tion.

In order to determine the global fit, we use our ear-
lier methodology for determining the principal compo-
nents in the data. We first construct the covariance
matrix and diagonalize it using principal component
analysis. Let ey...eq be the eigenvectors along the d
different directions in the data, and A; ... Az be the d
different eigenvalues. Without loss of generality, we can
assume that that the eigenvectors are arranged in order
of decreasing eigenvalues. Then, we define the global
data distribution as a gaussian distribution along d dif-
ferent directions with variances \i...\q. It is assumed
that the variances along these N different directions are
independent of one another. We will refer to this dis-
tribution as G(-). In typical real data sets, the inter-
attribute correlations ensure that most of the variance
is preserved in a small number of eigenvectors ey .. .e€,.
These are also the eigenvectors with the largest eigen-
values A1 ...\,.. The fact that only a small number of
the eigenvectors contain most of the variance can be
used in order to sharpen the accuracy of representation.

Now, let us consider the data point X; with prob-
ability density function which is denoted by f;(-). Let
Y be the newly estimated central point of the data dis-
tribution. This newly estimated central point may be
determined by calculating the combined fits of the data
point Y to the distributions fi(-) and G(-). We define

the combined fit F(Y) of the data point Y as follows:

Algorithm DetermineSharp(X;, fi(-),
A ... Ag, €1...€q);
begin
Let X’ be the projection of X
onto €1 ...er;

Y -x,
while not(termination) do
begin
Determine ¢t such that
F(Y + ¢t - VF(Y)) is maximized;
Y=Y +c - VFY);
end
Let ggj(-) be the density function which
is the same as function f;;(-), except that
it is centered at y;;
Pick ¢ using binary search, so that the
fit of z;; with ggj(-)
is maximized;
end

Figure 3: Determining the Sharpened Distribution

DEFINITION 1. The combined fit F(Y) Jor the new
center Y for the uncertain data point (X, fi(+)) in
a data set with global distribution G(-) is equal to

log(G(Y)) + log(fi(Y))-

We note that the above is simply an indirect represen-
tation of the product of the corresponding probability
density functions at data point Y. By using the loga-
rithm of G(Y) - f;(Y), it is possible to avoid numerical
errors and achieve better accuracy of representation and
computation. In order to maximize the sharpening of
the uncertain representation, we would like to find the
optimal point Y, at which F(Y) is maximized. We state
this problem as follows:

PROBLEM 2.1. Find the point Y at which F(Y) is
mazximized.

Note that this is a difficult problem, since we are trying
to optimize a nonlinear objection function. A natural
choice is to use a gradient descent (ascent)! approach
in order to find the optimal value of the data point
Y. The gradient of the fit F(Y) is defined by VF(Y),
and defines a direction along which incremental changes
maximize the increase in the objection function value
of F(Y). The length ¢; of the tth step creates a step
which is denoted by F(Y)+¢; - VF(Y). The value of ¢;
is picked using binary search in order to maximize the
improvement in a single step. The termination criterion
for the algorithm is defined by its convergence behavior.
The algorithm converges when its improvement in a

TGradient descent is used for minimization, whereas gradient

ascent is used for maximization.



given step is less than its improvement in the first step
by a factor of less than 1%. The final data point thus
determined is denoted by Y = (y1 ...94).

An important issue in the effective implementation
of the algorithm is the creation of a good starting point.
In order to pick a good starting point, we simply pick the
eigenvectors {e7...e;} which contain 99% of the vari-
ance and project the data point X; onto the hyperplane
created by this set of eigenvectors denoted by {e7 ... }.
If Y{ be the corresponding projected data point, then
it is used as the starting point for the gradient ascent
method. We note that a good starting point ensures
that the gradient descent method converges quickly to
an accurate solution. We note that more effective solu-
tions are possible for picking the starting point. When
an eigenvector is excluded from the selection, we lose
information which is proportional to the square root of
the eigenvalue (standard deviation of the original data
along that eigenvector), but we also lose noise which
is equal to the sum of the uncertainty standard devia-
tion projections of the different dimensions along that
eigenvector. As long as the information loss is less than
the noise less, the corresponding eigenvector can be pro-
jected out. Next, we will discuss the gradient descent
method for determining the optimal position of the final
data point.

Let g;(.) represent the same function as fi;(.)
except that it is centered at y; instead of z;;, and
the standard deviation is given by ¢ - 0,5, where ¢
is a proportionality constant. For simplicity, we are
assuming that the overall shape of the uncertain data
distribution along a given dimension remains the same.
It remains to determine g. Since the function gf;(-)
represents the local data distribution of point x;; (with
the addition of global distribution information), we
would like to pick ¢ such that the density of our original
model mean x;; is maximized. The idea here is that
the original model mean was an instantiation of the
uncertain data behavior, and we would like to maximize
its fit with the new model. Therefore, we need to

determine the value of ¢ such that g;(X;) is maximized.

PROBLEM 2.2. Determine the wvalue of q such that
9 (wi5) is mazimized.

For general distributions, the value of ¢ may be deter-
mined by binary search, since the value of gf’j(a:ij) first
increases with increasing ¢ and then reduces. There-
fore, by starting off with a value of ¢ much smaller than
the distance between x;; and y; (in terms of standard
deviations), and doubling in each iteration, it is possi-
ble to determine a range in which gf;(-) peaks. Once
this range has been determined, we can use a bracket
bisection technique in order to narrow down to the fi-

nal value of ¢ to any desired degree of accuracy. The
overall process of determination of the density function
is illustrated in Figure 3.

For some special distributions, it is possible to
compute the value of ¢ in closed form. Closed form
solutions are always desirable for ease in computation.
Two such distributions are the gaussian distribution and
the uniform distribution. For the case of the gaussian
distribution, the density fit g{;(zi; at the point z;; is as
follows:

(2.7) gij(') = 7M€

Since this expression needs to maximized with
respect to the variable ¢, we can differentiate with
respect to ¢ and set the resulting expression to zero.
Therefore, we have dgf;(-)dg = 0. It follows that:

_ (wi5—y;)>

g2.02
2-q Uij

—1/¢% + (x5 —y;)? 4-02-2- ~;e
(=1/q" + (@ij —y;)°/(a" - o3;)) Vom o

q=|(zij —y;)l/oi

=0

Therefore, we summarize as follows:

LEMMA 2.2. The optimal value of q which optimizes
Problem 2.2 for the gaussian distribution qgj(-) s given
by:
(2.8) q = |(zij —y;)|/ o3

We can also derive the range of the sharpened distri-
bution for the case when the f;;(-) is a uniform distri-
bution. This case is much easer to derive, since the
range of the new distribution is given by oy; - ¢ - V12,
and the corresponding probability density is given by
1/(o4; - q - v/12). This density is a monotonically de-
creasing function of ¢q. Therefore, we wish to pick the
smallest value of ¢ such at ¥;; is included in a distribu-
tion with range o;; - g - V12, and centered at y;. There-
fore, the minimum such range of the new distribution is
given by 2 - |z;; — y;|, in order to include z;; within the
end points of this range. Therefore, it follows that:

(2.9)
(2.10)

0ij - q- V12 =2 |zi; — yj
q=|(zij —y;)l/ (05 - V3)

Therefore, we summarize as follows:

LEMMA 2.3. The optimal value of q which optimizes
Problem 2.2 for the uniform distribution qu(-) is given
by:

(2.11) —y;)l/ (o3 - V3)

q = |(wij
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Figure 4: Average (per dimension) deterministic RMS
distance of mid-point of uncertain data distribution
from true data point (Corel.U(f) Data Set)

For the case of general distributions, a closed form
solution may not be derived, but we can use binary
search in order to derive the value of q. This is used
to reconstruct the final distribution.

3 Experimental Results

We designed a number of experimental tests in order
to measure the effectiveness of the algorithm for sharp-
ening the underlying data. One inherent difficulty with
measuring the effectiveness of the sharpening process, is
that in most uncertain data applications (such as those
involving measurement or hardware errors), only the un-
certain data distribution is known, though the true data
values may not be known. In order to develop a bench-
mark for effectiveness, we need to create the uncertainty
synthetically, so that the true data values are known.
In order to achieve this goal, we will add uncertainty to
the real data sets from the UCI machine learning repos-
itory, and then apply our algorithms for sharpening the
resulting representation. This is a particularly effec-
tive way to test the effectiveness of sharpening, since
the true data set is known before the uncertainty was
added. Therefore, it is possible to meaningfully measure
the effects of the sharpening process.

Each data set was normalized, so that the standard
deviation along each dimension was one unit. This was
done in order to provide better interpretability to the
errors in the results in terms of the standard deviations
along each dimension. Errors were added to the data
set with the use of a normal distribution with zero
mean, and a standard deviation whose parameter was
chosen as follows. For each entry, the standard deviation
parameter of the normal distribution was chosen from
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Figure 5: Variance (per dimension) of uncertain data
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Figure 11: Variance (per dimension) of uncertain data
point (Wisconsin Breast Cancer Data Set)
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a uniform distribution in the range [0,2 - f]. Thus,
by changing the value of f, it is possible to vary
the uncertainty level in the data set. We refer to f
as the input perturbation parameter. For each entry,
we assumed that the normal distribution was centered
at the point which was obtained after adding errors
to the true data set from the UCI machine learning
repository. We note that the errors in the central point
of the uncertain data distribution may correspond to the
measurement or modeling errors in a real application.
The true data point value may never really be known
in a real application. Therefore, for the purpose of the
experiments we would like to distinguish between the
term original data and true data. The original data
corresponds to the data before sharpening, but with
the uncertainty incorporated in it. This is the data
available in a real application and includes both the
error in modeling as well as the uncertain distribution
associated with it. Therefore, it is the original data
available in a real application. The true data are
the true (deterministic) values from the UCI machine
learning repository. In a real application, these true
deterministic values may never be known. However, our
uncertainty generation process provides us a benchmark
to measure the effectiveness of the sharpening process.
A data set < DataSet Name > to which the uncertainty
level f was added is denoted by < DataSetName >
().

In order for the sharpened data to be better than
the original data set, we would like the mean of the
new uncertain distribution to be closer to the true
values. Additionally, we would like the variance of the
sharpened distribution to be competitive or lower than
the original data. Finally, the expected error of the
entire uncertain distribution from the true (unknown)
values should be smaller than those of the original data
set to which the transformation was applied. Therefore,
the primary measures use to judge the quality of the
final data were as follows:

e We calculated the RMS distance (averaged along
each dimension and data point) between the mean
of the probability distribution of both representa-
tion of the uncertain data (original data and per-
turbed data) with the true values (which are avail-
able from the base data) that was perturbed. We
note that this is a deterministic value rather than
an expected value.

e We computed the variance of the probability dis-
tribution of the original and sharpened data sets.

e This measure computed the expected probabilis-
tic mean square error (per data point and per di-
mension) between the true data point and the two

uncertain representations (original and sharpened)
representations. Thus, for a data point with prob-
ability density function f;;(-) and true value Z, the
measure Pdist(Z, fi;(-)) for this single point and
dimension j is computed as follows:

(3.12Pdist(Z, fi;()) = / 1Z — 2l - fis (x)da

The corresponding mean square error M SE over all
data points and dimensions is computed as follows:

MSE= Y Y

All Z All dim. j

Pdist(Z, fi;(-))*/(N - d)

(3.13)

We note that the main distance between the third
measure and the first is that the latter accounts
for the entire pdf of the underlying uncertainty,
whereas the former only looks at the accuracy of
the mid-point of the uncertain probability density
function.

One of the points to be noted is that all of the above
measures are characteristic of the uncertainty in the
data rather than the global distribution of the data.
Therefore, if the same perturbation parameter f is used
in order to add uncertainty to the data sets from the
UCT repository, the resulting measures will be very
similar irrespective of the nature of the underlying
true data values. On the other hand, we will also
see that the level of sharpening is sensitive of the
behavior of the underlying data. Therefore, when the
above measures are plotted with respect to increasing
uncertainty level, the resulting curves look very similar
on the different data sets. On the other hand, the results
on the sharpened data look quite different for different
data sets, since the effectiveness of the sharpening is
somewhat dependent on the characteristics of the base
data. We will explore the sensitivity of the sharpening
to the base data characteristics in the experimental
section.

We used three real data sets and one synthetic data
set in order to test our approach. The real data sets
were the Musk, Corel histogram, and Wisconsin Breast
Cancer data sets (WBC), which were obtained from
the UCI machine learning repository. We further note
that the intermediate estimation steps are particularly
difficult for smaller data sets. Therefore two of the
real data sets (Musk and WBC) were particularly small,
containing 476 and 569 data points respectively.

In order to test the effects of different data set
characteristics, we also generated a series of synthetic
data sets. We note that the main characteristics which
affect multi-dimensional sharpening are (1) Data size



(2) Dimensionality (3) Correlations between different
dimensions. Therefore, we need a controlled way of
varying these parameters for a given data set. In
order to generate such a series of data sets, we first
generated an axis system with random orientation. This
axis system represents the directions of correlation.
The level of correlation can be varied by changing the
variances along the different axis directions. Note that
in a data set with low implicit dimensionality, most
of the variance is concentrated along a few of the
axis-directions which are also referred to as principal
components. Therefore, in order to create skew in the
variance along the different principal components, we
determined the standard-deviation along the ith axis
direction using the Zipf distribution 1/i%. Therefore,
the implicit dimensionality can be varied by changing
the value of #. Increasing values of 6 lead to a larger
level of correlation. Since the data set is synthetic,
it is also easy to vary the dimensionality and number
of points. When the data set is generated with N
points, a dimensionality of [, and a correlation factor
of ¢, then the corresponding data set is referred to as
D(N).d(1).6(c).

The overall deterministic errors for the mean of
the distribution are illustrated in Figures 4, 7, 10 and
13 respectively. In each case, the uncertainty level f
is modeled on the X-axis, whereas the deterministic
error is modeled on the Y-axis. Thus, the figures can
show the relative behavior of the different data sets
with increasing uncertainty level. As discussed earlier,
these curves represent the deterministic RMS error (per
dimension) in the mean of the uncertain distribution
from the true values for the sharpened and unsharpened
data sets respectively. In each figure, the dotted
curves represent the behavior of the unsharpened data,
whereas the solid curves represent the behavior of the
sharpened data. Since the measure is only dependent
upon the errors in the uncertain data and not on the
behavior of the base data, the dotted curves look very
similar across all data sets. However, the sharpening
process is dependent upon correlation characteristics of
the data sets, and therefore there is variation in the
behavior of the solid curve across the different data sets.
However, in each case, the sharpened data has much
lower error as compared to the unsharpened data. The
second observation is that the difference in the quality
of the sharpened and unsharpened data increases with
error level. Thus, the greater the errors in the data set,
the greater the utility of our technique.

In addition to the mean errors of the uncertain
distribution, we also compared the variances of the
unsharpened and sharpened data. The results are
illustrated in Figures 5, 8, 11 and 14 respectively. In

each case, the uncertainty level f is illustrated on the
X-axis, and the variance of the uncertainty is illustrated
on the Y-axis. In each case, the sharpened data has
somewhat lower variance of the uncertainty than the
unsharpened data. This is because the mean values of
the new probability density functions have now been
corrected, and therefore a lower variance is required
in order to represent the behavior of the underlying
data. Clearly, it is desirable to have lower variances
on the uncertain distributions in order to obtain the
most effective results for data mining and management
applications.

Finally, we measured the expected probabilistic
square error with respect to the true values. The results
are illustrated in Figures 6, 9, 12 and 15 respectively.
We note that this measure accounts for both the mean
errors and the variances in the uncertainty. In each case,
the uncertainty level f is illustrated on the X-axis, and
the expected square error (per dimension) is illustrated
on the Y-axis. As in the case of the deterministic
measures, the sharpened data has much lower expected
error. Furthermore, this difference in quality increased
with increasing uncertainty level in each case.

Finally, we also tested the effectiveness of the sharp-
ening method with the underlying characteristics of the
data sets. Clearly, many of the underlying characteris-
tics of the data sets such as the correlation factor, the
dimensionality and the data set size affect the sharpen-
ing process. In Figure 16, we have illustrated the ef-
fectiveness of the sharpening process with an increasing
correlation factor 6. In each case, the uncertainty level
f was fixed at 1.6. For this purpose, we used the series
of data sets denoted by D5000.d100.0(x).U(1.6), where
x denotes the varying value. The value of 6 is illustrated
on the X-axis, whereas the error of the mean of the dis-
tribution is illustrated on the Y-axis. In each case, it is
clear that the quality difference between the sharpened
and unsharpened data increases with increasing value of
the skew parameter 6. The error levels on the original
data do not change very much with increasing correla-
tion, since the error metric is essentially independent of
the underlying data. However, the quality of the sharp-
ened data increases significantly with increasing corre-
lation level. This is to be expected, since the sharpen-
ing process uses the relationship between the different
dimensions in order to improve the quality of the repre-
sentation. Therefore, a higher level of correlation leads
to greater predictability of each value, since the inter-
attribute correlations can be used in order increase the
accuracy and reduce the uncertainty of each data value.

We also examined the behavior of the sharpening
method with increasing data dimensionality. In Figure
18, we have illustrated the error level of the data set



with increasing dimensionality. In this case, the data set
series was denoted by D(100).d(z).0(2).U(1.6), where
x denotes the changing variable. The dimensionality
is illustrated on the X-axis, whereas the error is illus-
trated on the Y-axis. The errors (per dimension) on the
unsharpened data do not change much with increasing
data dimensionality. However, the errors reduce signif-
icantly with increasing data dimensionality, because a
greater number of dimensions are now available in order
to reduce the errors and uncertainty in the correlation-
based sharpening process. Since high dimensional data
sets are quite common in real applications, this is quite
promising for the utility of the sharpening method.

In Figure 18, we have illustrated the error level of
the data set with increasing number of data points.
In this case, the data set series was denoted by
D(x).d100.6(2).U(1.6), where = denotes the changing
variable. The number of data points are illustrated on
the X-axis, whereas the error is illustrated on the Y-axis.
As in the previous case, the errors on the unsharpened
data do not increase with data set size. However, the er-
rors on the unsharpened data reduce considerably with
data size. This is because of the intermediate steps is ap-
proximate covariance estimation which is most accurate
with increasing data size. While the accuracy increased
considerably with increasing data size, it is interesting
to see that the sharpening process continues to be effec-
tive even for very small data sets containing only 500
points. This illustrates the robustness of the sharpening
method.

4 Conclusions and Summary

In this paper, we presented a method for multidimen-
sional sharpening of uncertain data sets. The pro-
cess of sharpening improves the quality of the under-
lying representation by using the correlation informa-
tion which is usually available in the underlying in-
formation. Since most real data sets have underlying
inter-attribute correlations, this means that the tech-
nique is usually quite helpful in improving the accuracy
of representation. Our results show that the technique
not only improves the mean of the representation, but
also reduces the variance of the underlying uncertainty.
Furthermore, the technique continues to be effective on
relatively small data sets, whose statistical parameters
are often difficult to estimate accurately because of the
underlying uncertainty. Our results show that the tech-
nique is extremely effective on a wide variety of data
sets, and improves with increasing data set size and di-
mensionality.
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