
Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

An Introduction to Neural Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 1, Sections 1.1–1.2

Neural Networks

• Neural networks have seen an explosion in popularity in recent

years.

– Victories in eye-catching competitions like the ImageNet

contest have brought them fame.

– The potential of neural networks is now being realized

because of fundamental shifts in hardware paradigms and

data availability.

• The new term deep learning is a re-birth of the field of neural

networks (although it also emphasizes a specific aspect of

neural networks).

Overview of the Presented Material

• The videos are based on the book: C. Aggarwal. Neural

Networks and Deep learning, Springer, 2018.

– Videos not meant to be exhaustive with respect to book.

– Helpful in providing a firm grounding of important aspects.

– Videos can provide the initial background to study more

details from the book.

– Slides available for download at http://www.charuaggarwal.net

(with latex source).

Overview of Book

• The book covers both the old and the new in neural networks.

– The core learning methods like backpropagation, tradi-

tional architectures, and specialized architectures for se-

quence/image applications are covered.

– The latest methods like variational autoencoders, Genera-

tive Adversarial Networks, Neural Turing Machines, atten-

tion mechanisms, and reinforcement learning are covered.

∗ Reinforcement learning is presented from the view of

deep learning applications.

– The “forgotten architectures” like Radial Basis Function

networks and Kohonen self organizing maps are also cov-

ered.

Neural Networks: Two Views

• A way to simulate biological learning by simulating the ner-

vous system.

• A way to increase the power of known models in machine

learning by stacking them in careful ways as computational

graphs.

– The number of nodes in the computational graph controls

learning capacity with increasing data.

– The specific architecture of the computational graph

incorporates domain-specific insights (e.g., images,

speech).

– The success of deep computational graphs has led to the

coining of the term “deep learning.”

Historical Origins

• The first model of a computational unit was the perceptron

(1958).

– Was roughly inspired by the biological model of a neuron.

– Was implemented using a large piece of hardware.

– Generated great excitement but failed to live up to inflated

expectations.

• Was not any more powerful than a simple linear model that

can be implemented in a few lines of code today.

The Perceptron [Image Courtesy: Smithsonian Institute]

The First Neural Winter: Minsky and Papert’s Book

• Minsky and Papert’s Book ”Perceptrons” (1969) showed

that the perceptron only had limited expressive power.

– Essential to put together multiple computational units.

• The book also provided a pessimistic outlook on training

multilayer neural networks.

– Minsky and Papert’s book led to the first winter of neural

networks.

– Minsky is often blamed for setting back the field (fairly or

unfairly).

• Were Minsky/Papert justified in their pessimism?

Did We Really Not Know How to Train Multiple Units?

• It depends on who you ask.

– AI researchers didn’t know (and didn’t believe it possible).

– Training computational graphs with dynamic program-
ming had already been done in control theory (1960s).

• Paul Werbos proposed backpropagation in his 1974 thesis
(and was promptly ignored–formal publication was delayed).

– Werbos (2006): “In the early 1970s, I did in fact visit Minsky at

MIT. I proposed that we do a joint paper showing that MLPs can in

fact overcome the earlier problems if (1) the neuron model is slightly

modified to be differentiable; and (2) the training is done in a way

that uses the reverse method, which we now call backpropagation in

the ANN field. But Minsky was not interested. In fact, no one at

MIT or Harvard or any place I could find was interested at the time.”

General View of Artificial Intelligence (Seventies/Eighties)

• It was the era or work on logic and reasoning (discrete math-

ematics).

– Viewed as the panacea of AI.

– This view had influential proponents like Patrick Henry

Winston.

• Work on continuous optimization had few believers.

– Researchers like Hinton were certainly not from the main-

stream.

– This view has been completely reversed today.

– The early favorites have little to show in spite of the effort.

Backpropagation: The Second Coming

• Rumelhart, Hinton, and Williams wrote two papers on back-

propagation in 1986 (independent from prior work).

– Paul Werbos’s work had been forgotten and buried at the

time.

• Rumelhart et al’s work is presented beautifully.

• It was able to at least partially resurrect the field.

The Nineties

• Acceptance of backpropagation encouraged more research in

multilayer networks.

• By the year 2000, most of the modern architectures had

already been set up in some form.

– They just didn’t work very well!

– The winter continued after a brief period of excitement.

• It was the era of the support vector machine.

– The new view: SVM was the panacea (at least for super-

vised learning).

What Changed?

• Modern neural architectures are similar to those available in
the year 2000 (with some optimization tweaks).

• Main difference: Lots of data and computational power.

• Possible to train large and deep neural networks with millions
of neurons.

• Significant Events: Crushing victories of deep learning meth-
ods in ImageNet competitions after 2010.

• Anticipatory Excitement: In a few years, we will have the
power to train neural networks with as many computational
units as the human brain.

– Your guess is as good as mine about what happens then.

A Cautionary Note

• Deep learning has now assumed the mantle of the AI

panacea.

– We have heard this story before.

– Why should it be different this time?

– Excellent performance on richly structured data (images,

speech), but what about others?

• There are indeed settings where you are better off using a

conventional machine learning technique like a random forest.

How it All Started: The Biological Inspiration

• Neural networks were originally designed to simulate the

learning process in biological organisms.

• The human nervous system contains cells called neurons.

• The neurons are connected to one another with the use of

synapses.

– The strengths of synaptic connections often change in

response to external stimuli.

– This change causes learning in living organisms.

Neural Networks: The Biological Inspiration

NEURON

w1

w2

w3

w4

AXON

DENDRITES WITH
SYNAPTIC WEIGHTS

w5

(a) Biological neural network (b) Artificial neural network

• Neural networks contain computation units ⇒ Neurons.

• The computational units are connected to one another
through weights ⇒ Strengths of synaptic connections in bi-
ological organisms.

• Each input to a neuron is scaled with a weight, which affects
the function computed at that unit.

Learning in Biological vs Artificial Networks

• In living organisms, synaptic weights change in response to
external stimuli.

– An unpleasant experience will change the synaptic weights
of an organism, which will train the organism to behave
differently.

• In artificial neural networks, the weights are learned with the
use of training data, which are input-output pairs (e.g., im-
ages and their labels).

– An error made in predicting the label of an image is the
unpleasant “stimulus” that changes the weights of the
neural network.

– When trained over many images, the network learns to
classify images correctly.

Comments on the Biological Paradigm

• The biological paradigm is often criticized as a very inexact
caricature.

– The functions computed in a neural network are very dif-
ferent from those in the brain. ⇒ No one exactly knows
how the brain works.

• Nevertheless, there are several examples, where the principles
of neuroscience have been successfully applied in designing
neural networks.

– Convolutional neural networks are based on architectural
principles drawn from the cat’s visual cortex.

• There has been a renewed focus in recent years in leveraging
the principles of neuroscience in neural network design ⇒ The
“caricature” view is not fully justified.

An Alternative View: The Computational Graph
Extension of Traditional Machine Learning

• The elementary units compute similar functions to traditional
machine learning models like linear or logistic regression.

• Much of what you know about optimization-based machine
learning can be recast as shallow neural models.

– When large amounts of data are available, these models
are unable to learn all the structure.

• Neural networks provide a way to increase the capacity of
these models by connecting multiple units as a computational
graph (with an increased number of parameters).

• At the same time, connecting the units in a particular way
can incorporate domain-specific insights.

Machine Learning versus Deep Learning

AC
CU

RA
CY

AMOUNT OF DATA

DEEP LEARNING

CONVENTIONAL
MACHINE LEARNING

• For smaller data sets, traditional machine learning methods

often provide slightly better performance.

• Traditional models often provide more choices, interpretable

insights, and ways to handcraft features.

• For larger data sets, deep learning methods tend to dominate.

Reasons for Recent Popularity

• The recent success of neural networks has been caused by
an increase in data and computational power.

– Increased computational power has reduced the cycle
times for experimentation.

– If it requires a month to train a network, one cannot try
more than 12 variations in an year on a single platform.

– Reduced cycle times have also led to a larger number of
successful tweaks of neural networks in recent years.

– Most of the models have not changed dramatically from
an era where neural networks were seen as impractical.

• We are now operating in a data and computational regime
where deep learning has become attractive compared to tra-
ditional machine learning.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Single Layer Networks: The Perceptron

Neural Networks and Deep Learning, Springer, 2018

Chapter 1, Section 1.3

Binary Classification and Linear Regression Problems

• In the binary classification problem, each training pair (X, y)
contains feature variables X = (x1, . . . xd), and label y drawn
from {−1,+1}.

– Example: Feature variables might be frequencies of words
in an email, and the class variable might be an indicator
of spam.

– Given labeled emails, recognize incoming spam.

• In linear regression, the dependent variable y is real-valued.

– Feature variables are frequencies of words in a Web page,
and the dependent variable is a prediction of the number
of accesses in a fixed period.

• Perceptron is designed for the binary setting.

The Perceptron: Earliest Historical Architecture

INPUT NODES

∑
OUTPUT NODE

y

w1

w2

w3

 w4

x4

x3

x2

x1

x5

 w5

• The d nodes in the input layer only transmit the d features
X = [x1 . . . xd] without performing any computation.

• Output node multiplies input with weights W = [w1 . . . wd]
on incoming edges, aggregates them, and applies sign acti-
vation:

ŷ = sign{W ·X} = sign{
d∑

j=1

wjxj}

What is the Perceptron Doing?

• Tries to find a linear separator W · X = 0 between the two

classes.

• Ideally, all positive instances (y = 1) should be on the side

of the separator satisfying W ·X > 0.

• All negative instances (y = −1) should be on the side of the

separator satisfying W ·X < 0.

Bias Neurons

INPUT NODES

∑
OUTPUT NODE

w1

w2

w3

 w4

 w5

b
+1 BIAS NEURON

y

x4

x3

x2

x1

x5

• In many settings (e.g., skewed class distribution) we need an
invariant part of the prediction with bias variable b:

ŷ = sign{W ·X + b} = sign{
d∑

j=1

wjxj + b} = sign{
d+1∑
j=1

wjxj}

• On setting wd+1 = b and xd+1 as the input from the bias
neuron, it makes little difference to learning procedures ⇒
Often implicit in architectural diagrams

Training a Perceptron

• Go through the input-output pairs (X, y) one by one and

make updates, if predicted value ŷ is different from observed
value y ⇒ Biological readjustment of synaptic weights.

W ⇐ W + α (y − ŷ)︸ ︷︷ ︸
Error

X

W ⇐ W + (2α)yX [For misclassified instances y − ŷ = 2y]

• Parameter α is the learning rate ⇒ Turns out to be irrelevant
in the special case of the perceptron

• One cycle through the entire training data set is referred to
as an epoch ⇒ Multiple epochs required

• How did we derive these updates?

What Objective Function is the Perceptron Optimizing?

• At the time, the perceptron was proposed, the notion of loss
function was not popular ⇒ Updates were heuristic

• Perceptron optimizes the perceptron criterion for ith training
instance:

Li = max{−yi(W ·Xi),0}

– Loss function tells us how far we are from a desired so-
lution ⇒ Perceptron criterion is 0 when W · Xi has same
sign as yi.

• Perceptron updates use stochastic gradient descent to opti-
mize the loss function and reach the desired outcome.

– Updates are equivalent to W ⇐ W − α
(
∂Li
∂w1

. . . ∂Li
∂wd

)

Perceptron vs Linear SVMs

• Perceptron criterion is a shifted version of hinge-loss in SVM:

Lsvm
i = max{1− yi(W ·Xi),0}

– The pre-condition for updates in perceptron and SVMs is

different:

– In a perceptron, we update when a misclassification oc-

curs: −yi(W ·Xi) > 0

– In a linear SVM, we update when a misclassification occurs

or a classification is “barely correct”: 1− yi(W ·Xi) > 0

• Otherwise, primal updates of linear SVM are identical to per-

ceptron:

W ⇐ W + αyX

Perceptron vs Linear SVMs

OPTIMAL SOLUTION
FOUND BY PERCEPTRON

OPTIMAL SOLUTION
FOUND BY SVM

MARGINALLY
CORRECT PREDICTION

LOSS FUNCTION DISCOURAGES
MARGINALLY CORRECT PREDICTIONS

W X = 0W X = 0

• The more rigorous condition for the update in a linear SVM
ensures that points near the decision boundary generalize
better to the test data.

Where does the Perceptron Fail?

LINEARLY SEPARABLE NOT LINEARLY SEPARABLE
W X = 0

• The perceptron fails at similar problems as a linear SVM

– Classical solution: Feature engineering with Radial Basis

Function network ⇒ Similar to kernel SVM and good for

noisy data

– Deep learning solution: Multilayer networks with non-

linear activations ⇒ Good for data with a lot of structure

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Activation and Loss Functions

Neural Networks and Deep Learning, Springer, 2018

Chapter 1, Section 1.2

Why Do We Need Activation Functions?

• An activation function Φ(v) in the output layer can control
the nature of the output (e.g., probability value in [0,1])

• In multilayer neural networks, activation functions bring non-
linearity into hidden layers, which increases the complexity of
the model.

– A neural network with any number of layers but only linear
activations can be shown to be equivalent to a single-layer
network.

• Activation functions required for inference may be different
from those used in loss functions in training.

– Perceptron uses sign function Φ(v) = sign(v) for predic-
tion but does not use any activation for computing the
perceptron criterion (during training).

Perceptron: Activation Functions

∑

CONTINUOUS
SCORE OUTPUT

yLOSS = MAX(0,-y[W X])

LINEAR ACTIVATION

PERCEPTRON CRITERION

INPUT NODES
W

X

DISCRETE OUTPUT

SIGN ACTIVATION

• It is not quite correct to suggest that the perceptron uses
sign activation ⇒ Only for inference.

– The perceptron uses identity activation (i.e., no activation
function) for computing the loss function.

• Typically, a smooth activation function (unlike the sign func-
tion) is used to enable a differentiable loss function.

Why Do We Need Loss Functions?

• The loss function is typically paired with the activation func-
tion to quantify how far we are from a desired result.

• An example is the perceptron criterion.

Li = max{−y(W ·X),0}

• Note that loss is 0, if the instance (X, y) is classified correctly.

• Even though many machine learning problems have discrete
outputs, a smooth and continuous loss function is required
to enable gradient-descent procedures.

• Gradient descent is at the heart of neural network parameter
learning.

Identity Activation

• Identity activation Φ(v) = v is often used in the output layer,
when the outputs are real values.

• For a single-layer network, if the training pair is (X, y), the
output is as follows:

ŷ = Φ(W ·X) = W ·X

• Use of the squared loss function (y − ŷ)2 leads to the lin-
ear regression model with numeric outputs and Widrow-Hoff
learning with binary outputs.

• Identity activation can be combined with various types of
loss functions (e.g., perceptron criterion) even for discrete
outputs.

Sigmoid Activation

• Sigmoid activation is defined as Φ(v) = 1/(1 + exp(−v)).

• For a training pair (X, y), one obtains the following prediction

in a single-layer network:

ŷ = 1/(1 + exp(−W ·X))

• Prediction is the probability that class label is +1.

• Paired with logarithmic loss, which −log(ŷ) for positive in-

stances and −log(1− ŷ) for negative instances.

• Resulting model is logistic regression.

Tanh Activation

−10 −5 0 5 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Sigmoid (b) Tanh

• The tanh activation is a scaled and translated version of

sigmoid activation.

tanh(v) =
e2v − 1

e2v +1
= 2 · sigmoid(2v)− 1

• Often used in hidden layers of multilayer networks

Piecewise Linear Activation Functions

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) ReLU (b) Hard Tanh
Φ(v) = max{v,0} Φ(v) = max {min [v,1] ,−1}

• Piecewise linear activation functions are easier to train than

their continuous counterparts.

Softmax Activation Function

• All activation functions discussed so far map scalars to

scalars.

• The softmax activation function maps vectors to vectors.

• Useful in mapping a set of real values to probabilities.

– Generalization of sigmoid activation, which is used in mul-

tiway logistic regression.

• Discussed in detail in later lectures.

Derivatives of Activation Functions

• Neural network learning requires gradient descent of the loss.

• Loss is often a function of the output o, which is itself ob-

tained by using the activation function:

o = Φ(v) (1)

• Therefore, we often need to compute the partial derivative of

o with respect to v during neural network parameter learning.

• Many derivatives are more easily expressed in terms of the

output o rather than input v.

Useful Derivatives

• Sigmoid: ∂o
∂v = o(1− o)

• Tanh: ∂o
∂v = 1− o2

• ReLU: Derivative is 1 for positive values of v and 0 otherwise.

• Hard Tanh: Derivative is 1 for v ∈ (−1,1) and 0 otherwise.

• Best to commit to memory, since they are used repeatedly

in neural network learning.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Multilayer Neural Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 1, Section 1.3–1.6

Multilayer Neural Networks

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER
y

x4

x3

x2

x1

x5

• In multilayer networks, the output of a node can feed into

other hidden nodes, which in turn can feed into other hidden

or output nodes.

• Multilayer neural networks are always directed acyclic graphs

and usually arranged in layerwise fashion.

Multilayer Neural Networks

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER
y

x4

x3

x2

x1

x5

• The layers between the input and output are referred to as
hidden because they perform intermediate computations.

• Each hidden node uses a combination of a linear transforma-
tion and an activation function Φ(·) (like the output node of
the perceptron).

• The use of nonlinear activation functions in the hidden layer
is crucial in increasing learning capacity.

Scalar versus Vector Diagrams

y

x4

x3

x2

x1

x5

h11

h12

h13 h23

h22

h21

h1 h2

X SCALAR WEIGHTS ON CONNECTIONS

WEIGHT MATRICES ON CONNECTIONS

yX h1 h2X
5 X 3

MATRIX
3 X 3

MATRIX
3 X 1

MATRIX

• Hidden vectors h1 . . . hk and weight matrices W1 . . .Wk+1.

h1 = Φ(WT
1 x) [Input to Hidden Layer]

hp+1 = Φ(WT
p+1hp) ∀p ∈ {1 . . . k − 1} [Hidden to Hidden Layer]

o = Φ(WT
k+1hk) [Hidden to Output Layer]

• Φ(·) is typically applied element-wise (other than softmax).

Using Activation Functions

• The nature of the activation in output layers is often con-

trolled by the nature of output

– Identity activation for real-valued outputs, and sig-

moid/softmax for binary/categorical outputs.

– Softmax almost exclusively for output layer and is paired

with a particular type of cross-entropy loss.

• Hidden layer activations are almost always nonlinear and of-

ten use the same activation function over the entire network.

– Tanh often (but not always) preferable to sigmoid.

– ReLU has largely replaced tanh and sigmoid in many ap-

plications.

Why are Hidden Layers Nonlinear?

• A multi-layer network that uses only the identity activation
function in all its layers reduces to a single-layer network that
performs linear regression.

h1 = Φ(WT
1 x) = WT

1 x

hp+1 = Φ(WT
p+1hp) = WT

p+1hp ∀p ∈ {1 . . . k − 1}
o = Φ(WT

k+1hk) = WT
k+1hk

• We can eliminate the hidden variable to get a simple linear
relationship:

o = WT
k+1W

T
k . . .WT

1 x

= (W1W2 . . .Wk+1)
T

︸ ︷︷ ︸
WT

xo

x

• We get a single-layer network with matrix Wxo.

Role of Hidden Layers

• Nonlinear hidden layers perform the role of hierarchical fea-
ture engineering.

– Early layers learn primitive features and later layers learn
more complex features

– Image data: Early layers learn elementary edges, the mid-
dle layers contain complex features like honeycombs, and
later layers contain complex features like a part of a face.

– Deep learners are masters of feature engineering.

• The final output layer is often able to perform inference with
transformed features in penultimate layer relatively easily.

• Perceptron: Cannot classify linearly inseparable data but
can do so with nonlinear hidden layers.

Example of Classifying Inseparable Data

NOT LINEARLY SEPARABLE

 A B C

 X2

 X1

(-1,1) (0,1) (1,1)

FIRST LAYER

TRANSFORM

 h2

 h1

 A

 B C

 (0,1)

 (0,0) (1,0)

LINEARLY SEPARABLE

∑

∑

∑

 X1

 X2

 +1

 -1 0

 0

 h1

 h2

 +1

 +1

 O

INPUT LAYER
HIDDEN LAYER

OUTPUT

• The hidden units have ReLU activation, and they learn the
two new features h1 and h2 with linear separator h1 + h2 =
0.5:

h1 = max{x1,0} h2 = max{−x1,0}

The Feature Engineering View of Hidden Layers

IN
PU

T
LA

YE
R

W X = 0

HIDDEN LAYERS LEARN FEATURES THAT
ARE FRIENDLY TO MACHINE LEARNING

ALGORITHMS LIKE CLASSIFICATION

INPUT DISTRIBUTION
(HARD TO CLASSIFY
WITH SINGLE LAYER)

∑

OUTPUT NODE
(LINEAR CLASSIFIER)

yɸ

TRANSFORMED DISTRIBUTION
(EASY TO CLASSIFY

WITH SINGLE LINEAR LAYER)

LINEAR CLASSIFICATION OF
TRANSFORMED DATA WITH

SINGLE OUTPUT NODE

HIDDEN LAYER (NONLINEAR TRANSFORMATIONS)

NONLINEAR
TRANSFORMATIONS
OF HIDDEN LAYER

OUTPUT LAYER LEVERAGES
SIMPLIFIED DISTRIBUTION

• Early layers play the role of feature engineering for later lay-

ers.

Multilayer Networks as Computational Graphs

• Consider the case in which each layer computes the vector-

to-vector function fi.

• The overall composition function is fkofk−1o . . . of1

• Function of a function with k levels of recursive nesting!

• It is a complex and ugly-looking function, which is powerful

and typically cannot be expressed in closed form.

• The neural network architecture is a directed acyclic compu-

tational graph in which each layer is often fully connected.

How Do We Train?

• We want to compute the derivatives with respect to the

parameters in all layers to perform gradient descent.

• The complex nature of the composition function makes this

difficult.

• The key idea to achieve this goal is backpropagation.

• Use the chain rule of differential calculus as a dynamic pro-

gramming update on a directed acyclic graph.

• Details in later lectures.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Connecting Machine Learning with Shallow

Neural Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 2, Section 2.1

Neural Networks and Machine Learning

• Neural networks are optimization-based learning models.

• Many classical machine learning models use continuous op-

timization:

– SVMs, Linear Regression, and Logistic Regression

– Singular Value Decomposition

– (Incomplete) Matrix factorization for Recommender Sys-

tems

• All these models can be represented as special cases of shal-

low neural networks!

The Continuum Between Machine Learning and Deep

Learning

AC
CU

RA
CY

AMOUNT OF DATA

DEEP LEARNING

CONVENTIONAL
MACHINE LEARNING

• Classical machine learning models reach their learning capac-

ity early because they are simple neural networks.

• When we have more data, we can add more computational

units to improve performance.

The Deep Learning Advantage

• Exploring the neural models for traditional machine learning

is useful because it exposes the cases in which deep learning

has an advantage.

– Add capacity with more nodes for more data.

– Controlling the structure of the architecture provides a

way to incorporate domain-specific insights (e.g., recur-

rent networks and convolutional networks).

• In some cases, making minor changes to the architecture

leads to interesting models:

– Adding a sigmoid/softmax layer in the output of a neural

model for (linear) matrix factorization can result in logis-

tic/multinomial matrix factorization (e.g., word2vec).

Recap: Perceptron versus Linear Support Vector Machine

∑
OUTPUT NODE

y LOSS = MAX(0,-y[W X])

LINEAR ACTIVATION

PERCEPTRON CRITERION
(SMOOTH SURROGATE)

X

INPUT NODES
W

∑
OUTPUT NODE

y
LOSS = MAX(0,-y[W X]+1)

LINEAR ACTIVATION

HINGE LOSS

X

INPUT NODES
W

(a) Perceptron (b) SVM
Loss = max{0,−y(W ·X)} Loss = max{0,1− y(W ·X)}

• The Perceptron criterion is a minor variation of hinge loss

with identical update of W ⇐ W + αyX in both cases.

• We update only for misclassified instances in perceptron, but

update also for “marginally correct” instances in SVM.

Perceptron Criterion versus Hinge Loss

LO
SS

PERCEPTRON CRITERION HINGE LOSS

10
VALUE OF W X FOR

POSITIVE CLASS INSTANCE

• Loss for positive class training instance at varying values of

W ·X.

What About the Kernel SVM?

INPUT LAYER

HIDDEN LAYER
(RBF ACTIVATION)

OUTPUT LAYER

y

x3

x2

x1

+1
BIAS NEURON
(HIDDEN LAYER)

• RBF Network for unsupervised feature engineering.

– Unsupervised feature engineering is good for noisy data.

– Supervised feature engineering (with deep learning) is
good for learning rich structure.

Much of Machine Learning is a Shallow Neural Model

• By minor changes to the architecture of perceptron we can
get:

– Linear regression, Fisher discriminant, and Widrow-Hoff
learning ⇒ Linear activation in output node

– Logistic regression ⇒ Sigmoid activation in output node

• Multinomial logistic regression ⇒ Softmax Activation in Final
Layer

• Singular value decomposition ⇒ Linear autoencoder

• Incomplete matrix factorization for Recommender Systems
⇒ Autoencoder-like architecture with single hidden layer
(also used in word2vec)

Why do We Care about Connections?

• Connections tell us about the cases that it makes sense to

use conventional machine learning:

– If you have less data with noise, you want to use conven-

tional machine learning.

– If you have a lot of data with rich structure, you want to

use neural networks.

– Structure is often learned by using deep neural architec-

tures.

• Architectures like convolutional neural networks can use

domain-specific insights.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Neural Models for Linear Regression,

Classification, and the Fisher Discriminant

[Connections with Widrow-Hoff Learning]

Neural Networks and Deep Learning, Springer, 2018

Chapter 2, Section 2.2

Widrow-Hoff Rule: The Neural Avatar of Linear
Regression

• The perceptron (1958) was historically followed by Widrow-
Hoff Learning (1960).

• Identical to linear regression when applied to numerical tar-
gets.

– Originally proposed by Widrow and Hoff for binary targets
(not natural for regression).

• The Widrow-Hoff method, when applied to mean-centered
features and mean-centered binary class encoding, learns the
Fisher discriminant.

• We first discuss linear regression for numeric classes and then
visit the case of binary classes.

Linear Regression: An Introduction

• In linear regression, we have training pairs (Xi, yi) for i ∈
{1 . . . n}, so that Xi contains d-dimensional features and yi
contains a numerical target.

• We use a linear parameterized function to predict ŷi = W ·Xi.

• Goal is to learn W , so that the sum-of-squared differences
between observed yi and predicted ŷi is minimized over the
entire training data.

• Solution exists in closed form, but requires the inversion of
a potentially large matrix.

• Gradient-descent is typically used anyway.

Linear Regression with Numerical Targets:Neural Model

∑
OUTPUT NODE

y

LINEAR ACTIVATION

SQUARED LOSS

LOSS = (y-[W X])2 X

INPUT NODES
W

• Predicted output is ŷi = W ·Xi and loss is Li = (yi − ŷi)
2.

• Gradient-descent update is W ⇐ W−α∂Li
∂W

= W+α(yi−ŷi)Xi.

Widrow-Hoff: Linear Regression with Binary Targets

• For yi ∈ {−1,+1}, we use same loss of (yi− ŷi)
2, and update

of W ⇐ W + α (yi − ŷi)︸ ︷︷ ︸
delta

Xi.

– When applied to binary targets, it is referred to as delta
rule.

– Perceptron uses the same update with ŷi = sign{W ·Xi},
whereas Widrow-Hoff uses ŷi = W ·Xi.

• Potential drawback: Retrogressive treatment of well-
separated points caused by the pretension that binary targets
are real-valued.

– If yi = +1, and W · Xi = 106, the point will be heavily
penalized for strongly correct classification!

– Does not happen in perceptron.

Comparison of Widrow-Hoff with Perceptron and SVM

• Convert the binary loss functions and updates to a form more

easily comparable to perceptron using y2i = 1:

• Loss of (Xi, yi) is (yi −W ·Xi)
2 = (1− yi[W ·Xi])

2

Update: W ⇐ W + αyi(1− yi[W ·Xi])Xi

Perceptron L1-Loss SVM
Loss max{−yi(W ·Xi),0} max{1− yi(W ·Xi),0}

Update W ⇐ W + αyiI(−yi[W ·Xi] > 0)Xi W ⇐ W + αyiI(1− yi[W ·Xi] > 0)Xi

Widrow-Hoff Hinton’s L2-Loss SVM
Loss (1− yi(W ·Xi))2 max{1− yi(W ·Xi),0}2

Update W ⇐ W + αyi(1− yi[W ·Xi])Xi W ⇐ W + αyimax{(1− yi[W ·Xi]),0}Xi

Some Interesting Historical Facts

• Hinton proposed the SVM L2-loss three years before Cortes

and Vapnik’s paper on SVMs.

– G. Hinton. Connectionist learning procedures. Artificial

Intelligence, 40(1–3), pp. 185–234, 1989.

– Hinton’s L2-loss was proposed to address some of the

weaknesses of loss functions like linear regression on binary

targets.

– When used with L2-regularization, it behaves identically to

an L2-SVM, but the connection with SVM was overlooked.

• The Widrow-Hoff rule is also referred to as ADALINE, LMS

(least mean-square method), delta rule, and least-squares

classification.

Connections with Fisher Discriminant

• Consider a binary classification problem with training in-

stances (Xi, yi) and yi ∈ {−1,+1}.

– Mean-center each feature vector as Xi − μ.

– Mean-center the binary class by subtracting
∑n

i=1 yi/n

from each yi.

• Use the delta rule W ⇐ W + α (yi − ŷi)︸ ︷︷ ︸
delta

Xi for learning.

• Learned vector is the Fisher discriminant!

– Proof in Christopher Bishop’s book on machine learning.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Neural Models for Logistic Regression

Neural Networks and Deep Learning, Springer, 2018

Chapter 2, Section 2.2

Logistic Regression: A Probabilistic Model

• Consider the training pair (Xi, yi) with d-dimensional feature
variables in Xi and class variable yi ∈ {−1,+1}.

• In logistic regression, the sigmoid function is applied to W ·Xi,
which predicts the probability that yi is +1.

ŷi = P(yi = 1) =
1

1+ exp(−W ·Xi)

• We want to maximize ŷi for positive class instances and 1− ŷi
for negative class instances.

– Same as minimizing −log(ŷi) for positive class instances
and −log(1− ŷi) for negative instances.

– Same as minimizing loss Li = −log(|yi/2− 0.5 + ŷi|).

– Alternative form of loss Li = log(1+ exp[−yi(W ·Xi)])

Maximum-Likelihood Objective Functions

• Why did we use the negative logarithms?

• Logistic regression is an example of a maximum-likelihood

objective function.

• Our goal is to maximize the product of the probabilities of

correct classification over all training instances.

– Same as minimizing the sum of the negative log probabil-

ities.

– Loss functions are always additive over training instances.

– So we are really minimizing
∑

i−log(|yi/2−0.5+ ŷi|) which

can be shown to be
∑

i log(1 + exp[−yi(W ·Xi)]).

Logistic Regression: Neural Model

∑ y
LOSS = -LOG(|y/2 - 0.5 + ŷ|)

SIGMOID ACTIVATION

LOG LIKELIHOOD

ŷ = PROBABILITY OF +1
y = OBSERVED VALUE

(+1 OR -1)

ŷ

OUTPUT NODE

X

INPUT NODES
W

• Predicted output is ŷi = 1/(1 + exp(−W · Xi)) and loss is

Li = −log(|yi/2− 0.5+ ŷi|) = log(1 + exp[−yi(W ·Xi)]).

– Gradient-descent update is W ⇐ W − α∂Li
∂W

.

W ⇐ W + α
yiXi

1+ exp[yi(W ·Xi)]

Interpreting the Logistic Update

• An important multiplicative factor in the update increment

is 1/(1 + exp[yi(W ·Xi)]).

• This factor is 1− ŷi for positive instances and ŷi for negative

instances ⇒ Probability of mistake!

• Interpret as: W ⇐ W+α
[
Probability of mistake on (Xi, yi)

]
(yiXi)

Comparing Updates of Different Models

• The unregularized updates of the perceptron, SVM, Widrow-
Hoff, and logistic regression can all be written in the following
form:

W ⇐ W + αyiδ(Xi, yi)Xi

• The quantity δ(Xi, yi) is a mistake function, which is:

– Raw mistake value (1− yi(W ·Xi)) for Widrow-Hoff

– Mistake indicator whether (0− yi(W ·Xi)) > 0 for percep-
tron.

– Margin/mistake indicator whether (1− yi(W ·Xi)) > 0 for
SVM.

– Probability of mistake on (Xi, yi) for logistic regression.

Comparing Loss Functions of Different Models

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

PREDICTION= W.X FOR X IN POSITIVE CLASS

P
E

N
A

LT
Y

PERCEPTRON (SURROGATE)

WIDROW−HOFF/FISHER

SVM HINGE

LOGISTIC

DECISION
BOUNDARY

INCORRECT
PREDICTIONS

CORRECT
PREDICTIONS

• Loss functions are similar (note Widrow-Hoff retrogression).

Other Comments on Logistic Regression

• Many classical neural models use repeated computational

units with logistic and tanh activation functions in hidden

layers.

• One can view these methods as feature engineering models

that stack multiple logistic regression models.

• The stacking of multiple models creates inherently more pow-

erful models than their individual components.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

The Softmax Activation Function and

Multinomial Logistic Regression

Neural Networks and Deep Learning, Springer, 2018

Chapter 2, Section 2.3

Binary Classes versus Multiple Classes

• All the models discussed so far discuss only the binary class

setting in which the class label is drawn from {−1,+1}.

• Many natural applications contain multiple classes without a

natural ordering among them:

– Predicting the category of an image (e.g., truck, carrot).

– Language models: Predict the next word in a sentence.

• Models like logistic regression are naturally designed to pre-

dict two classes.

Generalizing Logistic Regression

• Logistic regression produces probabilities of the two out-
comes of a binary class.

• Multinomial logistic regression produces probabilities of mul-
tiple outcomes.

– In order to produce probabilities of multiple classes, we
need an activation function with a vector output of prob-
abilities.

– The softmax activation function is a vector-based gener-
alization of the sigmoid activation used in logistic regres-
sion.

• Multinomial logistic regression is also referred to as softmax
classifier.

The Softmax Activation Function

• The softmax activation function is a natural vector-centric
generalization of the scalar-to-scalar sigmoid activation ⇒
vector-to-vector function.

• Logistic sigmoid activation: Φ(v) = 1/(1 + exp(−v)).

• Softmax activation: Φ(v1 . . . vk) = 1∑k
i=1exp(vi)

[exp(v1) . . . exp(vk)]

– The k outputs (probabilities) sum to 1.

• Binary case of using sigmoid(v) is identical to using 2-element
softmax activation with arguments (v,0).

– Multinomial logistic regression with 2-element softmax is
equivalent to binary logistic regression.

Loss Functions for Softmax

• Recall that we use the negative logarithm of the probability

of observed class in binary logistic regression.

– Natural generalization to multiple classes.

– Cross-entropy loss: Negative logarithm of the probability

of correct class.

– Probability distribution among incorrect classes has no ef-

fect.

• Softmax activation is used almost exclusively in output layer

and (almost) always paired with cross-entropy loss.

Cross-Entropy Loss of Softmax

• Like the binary logistic case, the loss L is a negative log

probability.

Softmax Probability Vector ⇒ [ŷ1, ŷ2, . . . ŷk]

[ŷ1 . . . ŷk] =
1∑k

i=1 exp(vi)
[exp(v1) . . . exp(vk)]

• The loss is −log(ŷc), where c ∈ {1 . . . k} is the correct class

of that training instance.

• Cross entropy loss is −vc) + log[
∑k

j=1 exp(vj)]

Loss Derivative of Softmax

• Since softmax is almost always paired with cross-entropy loss

L, we can directly estimate ∂L
∂vr

for each pre-activation value

from v1 . . . vk.

• Differentiate loss value of −vc + log[
∑k

j=1 exp(vj)]

• Like the sigmoid derivative, the result is best expressed in

terms of the post-activation values ŷ1 . . . ŷk.

• The loss derivative of the softmax is as follows:

∂L

∂vr
=

⎧⎨
⎩
ŷr − 1 If r is correct class

ŷr If r is not correct class

Multinomial Logistic Regression

LOSS = -LOG(- ŷ2)

X

 vi =

v1

∑

∑

∑

v2

v3 W3

W2

W1

Wi X

TRUE CLASS

ŷ2 = exp(v2)/[∑exp(vi)]

ŷ1 = exp(v1)/[∑exp(vi)]

ŷ3 = exp(v3)/[∑exp(vi)]

SOFTMAX
LAYER

• The ith training instance is (Xi, c(i)), where c(i) ∈ {1 . . . k}
is class index ⇒ Learn k parameter vectors W1 . . .Wk.

– Define real-valued score vr = Wr ·Xi for rth class.

– Convert scores to probabilities ŷ1 . . . ŷk with softmax acti-
vation on v1 . . . vk ⇒ Hard or soft prediction

Computing the Derivative of the Loss

• The cross-entropy loss for the ith training instance is Li =

−log(ŷc(i)).

• For gradient-descent, we need to compute ∂Li
∂Wr

.

• Using chain rule of differential calculus, we get:

∂Li

∂Wr
=
∑
j

(
∂Li

∂vj

)(
∂vj

∂Wr

)
=

∂Li

∂vr

∂vr

∂Wr︸ ︷︷ ︸
Xi

+Zero-terms

=

⎧⎨
⎩
−Xi(1− ŷr) if r = c(i)

Xi ŷr if r �= c(i)

Gradient Descent Update

• Each separator Wr is updated using the gradient:

Wr ⇐ Wr − α
∂Li

∂Wr

• Substituting the gradient from the previous slide, we obtain:

Wr ⇐ Wr + α

⎧⎨
⎩
Xi · (1− ŷr) if r = c(i)

−Xi · ŷr if r �= c(i)

Summary

• The book also contains details of the multiclass Perceptron
and Weston-Watkins SVM.

• Multinomial logistic regression is a direct generalization of
logistic regression.

• If we apply the softmax classifier with two classes, we will
obtain W1 = −W2 to be the same separator as obtained in
logistic regression.

• Cross-entropy loss and softmax are almost always paired in
output layer (for all types of architectures).

– Many of the calculus derivations in previous slides are re-
peatedly used in different settings.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

The Autoencoder for Unsupervised

Representation Learning

Neural Networks and Deep Learning, Springer, 2018

Chapter 2, Section 2.5

Unsupervised Learning

• The models we have discussed so far use training pairs of

the form (X, y) in which the feature variables X and target

y are clearly separated.

– The target variable y provides the supervision for the learn-

ing process.

• What happens when we do not have a target variable?

– We want to capture a model of the training data without

the guidance of the target.

– This is an unsupervised learning problem.

Example

• Consider a 2-dimensional data set in which all points are
distributed on the circumference of an origin-centered circle.

• All points in the first and third quadrant belong to class +1
and remaining points are −1.

– The class variable provides focus to the learning process
of the supervised model.

– An unsupervised model needs to recognize the circular
manifold without being told up front.

– The unsupervised model can represent the data in only 1
dimension (angular position).

• Best way of modeling is data-set dependent ⇒ Lack of su-
pervision causes problems

Unsupervised Models and Compression

• Unsupervised models are closely related to compression be-

cause compression captures a model of regularities in the

data.

– Generative models represent the data in terms of a com-

pressed parameter set.

– Clustering models represent the data in terms of cluster

statistics.

– Matrix factorization represents data in terms of low-rank

approximations (compressed matrices).

• An autoencoder also provides a compressed representation

of the data.

Defining the Input and Output of an Autoencoder

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5

 OUTPUT OF THIS LAYER PROVIDES
REDUCED REPRESENTATION

x4

x3

x2

x1

x5

• All neural networks work with input-output pairs.

– In a supervised problem, the output is the label.

• In the autoencoder, the output values are the same as inputs:
replicator neural network.

– The loss function penalizes a training instance depending
on how far it is from the input (e.g., squared loss).

Encoder and Decoder

O
RI
G
IN
AL

DA
TA

RE
CO

N
ST
RU

CT
ED

DA
TA

CO
D
E

ENCODER
(MULTILAYER NEURAL

NETWORK)
FUNCTION F(.)

DECODER
(MULTILAYER NEURAL

NETWORK)
FUNCTION G(.)

X XI = (G o F) (X)

F(X)

CONSTRICTED
LAYERS IN
MIDDLE

• Reconstructing the data might seem like a trivial matter by

simply copying the data forward from one layer to another.

– Not possible when the number of units in the middle are

constricted.

– Autoencoder is divided into encoder and decoder.

Basic Structure of Autoencoder

• It is common (but not necessary) for an M-layer autoen-

coder to have a symmetric architecture between the input

and output.

– The number of units in the kth layer is the same as that

in the (M − k +1)th layer.

• The value of M is often odd, as a result of which the (M +

1)/2th layer is often the most constricted layer.

– We are counting the (non-computational) input layer as

the first layer.

– The minimum number of layers in an autoencoder would

be three, corresponding to the input layer, constricted

layer, and the output layer.

Undercomplete Autoencoders and Dimensionality

Reduction

• The number of units in each middle layer is typically fewer

than that in the input (or output).

– These units hold a reduced representation of the data, and

the final layer can no longer reconstruct the data exactly.

• This type of reconstruction is inherently lossy.

• The activations of hidden layers provide an alternative to

linear and nonlinear dimensionality reduction techniques.

Overcomplete Autoencoders and Representation Learning

• What happens if the number of units in hidden layer is equal

to or larger than input/output layers?

– There are infinitely many hidden representations with zero

error.

– The middle layers often do not learn the identity function.

– We can enforce specific properties on the redundant repre-

sentations by adding constraints/regularization to hidden

layer.

∗ Training with stochastic gradient descent is itself a form

of regularization.

∗ One can learn sparse features by adding sparsity con-

straints to hidden layer.

Applications

• Dimensionality reduction ⇒ Use activations of constricted
hidden layer

• Sparse feature learning ⇒ Use activations of con-
strained/regularized hidden layer

• Outlier detection: Find data points with larger reconstruction
error

– Related to denoising applications

• Generative models with probabilistic hidden layers (varia-
tional autoencoders)

• Representation learning ⇒ Pretraining

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Singular Value Decomposition with

Autoencoders

Neural Networks and Deep Learning, Springer, 2018

Chapter 2, Section 2.5

Singular Value Decomposition

• Truncated SVD is the approximate decomposition of an n×d

matrix D into D ≈ QΣPT , where Q, Σ, and P are n×k, k×k,

and d× k matrices, respectively.

– Orthonormal columns of each of P , Q, and nonnegative

diagonal matrix Σ.

– Minimize the squared sum of residual entries in D−QΣPT .

– The value of k is typically much smaller than min{n, d}.

– Setting k to min{n, d} results in a zero-error decomposi-

tion.

Relaxed and Unnormalized Definition of SVD

• Two-way Decomposition: Find and n × k matrix U , and

d× k matrix V so that ||D − UV T ||2 is minimized.

– Property: At least one optimal pair U and V will have

mutually orthogonal columns (but non-orthogonal alter-

natives will exist).

– The orthogonal solution can be converted into the 3-way

factorization of SVD.

– Exercise: Given U and V with orthogonal columns, find

Q, Σ and P .

• In the event that U and V have non-orthogonal columns at

optimality, these columns will span the same subspace as the

orthogonal solution at optimality.

Dimensionality Reduction and Matrix Factorization

• Singular value decomposition is a dimensionality reduction

method (like any matrix factorization technique).

D ≈ UV T

• The n rows of D contain the n training points.

• The n rows of U provide the reduced representations of the

training points.

• The k columns of V contain the orthogonal basis vectors.

The Autoencoder Architecture for SVD

INPUT LAYER

OUTPUT OF THIS LAYER PROVIDES
REDUCED REPRESENTATION

x4

x3

x2

x1

x5

WT

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5

VT

• The rows of the matrix D are input to encoder.

• The activations of hidden layer are rows of U and the weights
of the decoder contain V .

• The reconstructed data contain the rows of UV T .

Why is this SVD?

• If we use the mean-squared error as the loss function, we are

optimizing ||D − UV T ||2 over the entire training data.

– This is the same objective function as SVD!

• It is possible for gradient-descent to arrive at an optimal

solution in which the columns of each of U and V might not

be mutually orthogonal.

• Nevertheless, the subspace spanned by the columns of each

of U and V will always be the same as that found by the

optimal solution of SVD.

Some Interesting Facts

• The optimal encoder weight matrix W will be the pseudo-
inverse of the decoder weight matrix V if the training data
spans the full dimensionality.

W = (V TV)−1V T

– If the encoder and decoder weights are tied W = V T ,
the columns of the weight matrix V will become mutually
orthogonal.

– Easily shown by substituting W = V T above and postmul-
tiplying with V to obtain V TV = I.

– This is exactly SVD!

• Tying encoder-decoder weights does not lead to orthogonal-
ity for other architectures, but is a common practice anyway.

Deep Autoencoders

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

POINT A

POINT C

POINT B

−5

0

5

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

POINT A

POINT B POINT C

• Better reductions are obtained by using increased depth and

nonlinearity.

• Crucial to use nonlinear activations with deep autoencoders.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Row-Index to Row-Value Autoencoders:

Incomplete Matrix Factorization for

Recommender Systems

Neural Networks and Deep Learning, Springer, 2018

Chapter 2, Section 2.6

Recommender Systems

• Recap of SVD: Factorizes D ≈ UV T so that the sum-of-

squares of residuals ||D − UV T ||2 is minimized.

– Helpful to watch previous lecture on SVD

• In recommender systems (RS), we have an n×d ratings matrix

D with n users and d items.

– Most of the entries in the matrix are unobserved

– Want to minimize ||D − UV T ||2 only over the observed

entries

– Can reconstruct the entire ratings matrix using UV T ⇒
Most popular method in traditional machine learning.

Difficulties with Autoencoder

• If some of the inputs are missing, then using an autoencoder

architecture will implicitly assume default values for some

inputs (like zero).

– This is a solution used in some recent methods like Au-

toRec.

– Does not exactly simulate classical MF used in recom-

mender systems because it implicitly makes assumptions

about unobserved entries.

• None of the proposed architectures for recommender systems

in the deep learning literature exactly map to the classical

factorization method of recommender systems.

Row-Index-to-Row-Value Autoencoder

• Autoencoders map row values to row values.

– Discuss an autoencoder architecture to map the one-hot

encoded row index to the row values.

– Not standard definition of autoencoder.

– Can handle incomplete values but cannot handle out-of-

sample data.

– Also useful for representation learning (e.g., node repre-

sentation of graph adjacency matrix).

• The row-index-to-row-value architecture is not recognized

as a separate class of architectures for MF (but used often

enough to deserve recognition as a class of MF methods).

Row-Index-to-Row-Value Autoencoder for RS

0

1

0

0

5

MISSING

4

ALICE

BOB

SAYANI

JOHN

ONE-HOT ENCODED INPUT

SHREK

E.T.

NIXON

GANDHI

NERO

MISSING

MISSING

U
VT

USERS ITEMS

• Encoder and decoder weight matrices are U and V T .

– Input is one-hot encoded row index (only in-sample)

– Number of nodes in hidden layer is factorization rank.

– Outputs contain the ratings for that row index.

How to Handle Incompletely Specified Entries?

0

1

0

0

5

4
ALICE

BOB

SAYANI

JOHN

SHREK

E.T.

OBSERVED RATINGS (SAYANI): E.T., SHREK

0

0

1

0

 5

ALICE

BOB

SAYANI

JOHN

E.T.

NIXON

GANDHI

NERO

4

3

2

OBSERVED RATINGS (BOB): E.T., NIXON, GANDHI, NERO

• Each user has his/her own neural architecture with missing

outputs.

• Weights across different user architectures are shared.

Equivalence to Classical Matrix Factorization for RS

• Since the two weight matrices are U and V T , the one-hot

input encoding will pull out the relevant row from UV T .

• Since the outputs only contain the observed values, we are

optimizing the sum-of-square errors over observed values.

• Objective functions in the two cases are equivalent!

Training Equivalence

• For k hidden nodes, there are k paths between each user and

each item identifier.

• Backpropagation updates weights along all k paths from each

observed item rating to the user identifier.

– Backpropagation in a later lecture.

• These k updates can be shown to be identical to classical ma-

trix factorization updates with stochastic gradient descent.

• Backpropagation on neural architecture is identical to classi-

cal MF stochastic gradient descent.

Advantage of Neural View over Classical MF View

• The neural view provides natural ways to add power to the
architecture with nonlinearity and depth.

– Much like a child playing with a LEGO toy.

– You are shielded from the ugly details of training by an
inherent modularity in neural architectures.

– The name of this magical modularity is backpropagation.

• If you have binary data, you can add logistic outputs for
logistic matrix factorization.

• Word2vec belongs to this class of architectures (but direct
relationship to nonlinear matrix factorization is not recog-
nized).

Importance of Row-Index-to-Row-Value Autoencoders

• Several MF methods in machine learning can be expressed

as row-index-to-row-value autoencoders (but not widely

recognized–RS matrix factorization a notable example).

• Several row-index-to-row-value architectures in NN literature

are also not fully recognized as matrix factorization methods.

– The full relationship of word2vec to matrix factorization

is often not recognized.

– Indirect relationship to linear PPMI matrix factorization

was shown by Levy and Goldberg.

– In a later lecture, we show that word2vec is directly a form

of nonlinear matrix factorization because of its row-index-

to-row-value architecture and nonlinear activation.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Word2vec: The Skipgram Model

Neural Networks and Deep Learning, Springer, 2018

Chapter 2, Section 2.7

Word2Vec: An Overview

• Word2vec computes embeddings of words using sequential

proximity in sentences.

– If Paris is closely related to France, then Paris and France

must occur together in small windows of sentences.

∗ Their embeddings should also be somewhat similar.

– Continuous bag-of-words predicts central word from con-

text window.

– Skipgram model predicts context window from central

word.

Words and Context

• A window of size t on either side is predicted using a word.

• This model tries to predict the context wi−twi−t+1 . . . wi−1

wi+1 . . . wi+t−1wi+t around word wi, given the ith word in

the sentence, denoted by wi.

• The total number of words in the context window is m = 2t.

• One can also create a d × d word-context matrix C with

frequencies cij.

• We want to find an embedding of each word.

Where have We Seen this Setup Before?

• Similar to recommender systems with implicit feedback.

• Instead of user-item matrices, we have square word-context
matrices.

– The frequencies correspond to the number of times a con-
textual word (column id) appears for a target word (row
id).

– Analogous to the number of units bought by a user (row
id) of an item (column id).

– An unrecognized fact is that skipgram word2vec uses an
almost identical model to current recommender systems.

• Helpful to watch previous lecture on recommender systems
with row-index-to-value autoencoders.

Word2Vec: Skipgram Model

x1x2x3

xd

h1h2

hp

y11y12y13

y1d

yj1yj2yj3

yjd

ym1ym2ym3

ymd

U=[ujq]

V=[vqj]

V=[vqj]

V=[vqj]

d X p matrix

p X d matrix

p X d matrix

p X d matrix

• Input is the one-hot encoded word identifier and output con-
tains m identical softmax probability sets.

Word2Vec: Skipgram Model

x1x2x3

xd

h1h2

hp

yj1
yj2yj3

yjd

U=[ujq] V=[vqj]
d X p matrix p X d matrix

MINIBATCH THE m d-DIMENSIONAL OUTPUT VECTORS IN EACH
CONTEXT WINDOW DURING STOCHASTIC GRADIENT DESCENT.
THE SHOWN OUTPUTS CORRESPOND TO THE jth OF m OUTPUTS.yjk

• Since the m outputs are identical, we can collapse the m
outputs into a single output.

• Mini-batch the words in a context window to achieve the
same effect.

• Gradient descent steps for each instance are proportional to
d ⇒ Expensive.

Word2Vec: Skipgram Model with Negative Sampling

x1x2x3

xd

h1h2

hp

yj1
yj2yj3

yjd

U=[ujq] V=[vqj]
d X p matrix p X d matrix

MINIBATCH THE m d-DIMENSIONAL OUTPUT VECTORS IN EACH
CONTEXT WINDOW DURING STOCHASTIC GRADIENT DESCENT.
THE SHOWN OUTPUTS CORRESPOND TO THE jth OF m OUTPUTS.yjk

• Change the softmax layer into sigmoid layer.

• Of the d outputs, keep the positive output and sample k out

of the remaining d− 1 (with log loss).

• Where have we seen missing outputs before?

Can You See the Similarity?

x1x2x3

xd

h1h2

hp

yj1
yj2yj3

yjd

U=[ujq] V=[vqj]
d X p matrix p X d matrix

THE VAST MAJORITY OF ZERO
OUTPUTS ARE MISSING
(NEGATIVE SAMPLING)

0

1

0

0

5

MISSING

4

ALICE

BOB

SAYANI

JOHN

ONE-HOT ENCODED INPUT

SHREK

E.T.

NIXON

GANDHI

NERO

MISSING

MISSING

U
VT

USERS ITEMS

• Main difference: Sigmoid output layer with log loss.

Word2Vec is Nonlinear Matrix Factorization

• Levy and Goldberg showed an indirect relationship between

word2vec SGNS and PPMI matrix factorization.

• We provide a much more direct result in the book.

– Word2vec is (weighted) logistic matrix factorization.

– Not surprising because of the similarity with the recom-

mender architecture.

– Logistic matrix factorization is already used in recom-

mender systems!

– Neither the word2vec authors nor the community have

pointed out this direct connection.

Other Extensions

• We can apply a row-index-to-value autoencoder to any type

of matrix to learn embeddings of either rows or columns.

• Applying to graph adjacency matrix leads to node embed-

dings.

– Idea has been used by DeepWalk and node2vec after (in-

directly) enhancing the matrix entries with random-walk

methods.

– Details of graph embedding methods in book.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Backpropagation I: Computing Derivatives

in Computational Graphs [without

Backpropagation] in Exponential Time

Neural Networks and Deep Learning, Springer, 2018

Chapter 3, Section 3.2

Why Do We Need Backpropagation?

• To perform any kind of learning, we need to compute the

partial derivative of the loss function with respect to each

intermediate weight.

– Simple with single-layer architectures like the perceptron.

– Not a simple matter with multi-layer architectures.

The Complexity of Computational Graphs

• A computational graph is a directed acyclic graph in which
each node computes a function of its incoming node vari-
ables.

• A neural network is a special case of a computational graph.

– Each node computes a combination of a linear vector mul-
tiplication and a (possibly nonlinear) activation function.

• The output is a very complicated composition function of
each intermediate weight in the network.

– The complex composition function might be hard to ex-
press neatly in closed form.

∗ Difficult to differentiate!

Recursive Nesting is Ugly!

• Consider a computational graph containing two nodes in a

path and input w.

• The first node computes y = g(w) and the second node

computes the output o = f(y).

– Overall composition function is f(g(w)).

– Setting f() and g() to the sigmoid function results in the

following:

f(g(w)) =
1

1+ exp
[
− 1

1+exp(−w)

]
|

(1)

– Increasing path length increases recursive nesting.

Backpropagation along Single Path (Univariate Chain
Rule)

w
g(w)=w2 f(y)=

cos(y)
O = f(g(w))=cos(w2)

INPUT
WEIGHT

OUTPUT
y=g(w)

• Consider a two-node path with f(g(w)) = cos(w2)

• In the univariate chain rule, we compute product of local
derivatives.

∂f(g(w))

∂w
=

∂f(y)

∂y︸ ︷︷ ︸
−sin(y)

· ∂g(w)

∂w︸ ︷︷ ︸
2w

= −2w · sin(y) = −2w · sin(w2)

• Local derivatives are easy to compute because they care
about their own input and output.

Backpropagation along Multiple Paths (Multivariate Chain

Rule)

• Neural networks contain multiple nodes in each layer.

• Consider the function f(g1(w), . . . gk(w)), in which a unit

computing the multivariate function f(·) gets its inputs from

k units computing g1(w) . . . gk(w).

• The multivariable chain rule needs to be used:

∂f(g1(w), . . . gk(w))

∂w
=

k∑
i=1

∂f(g1(w), . . . gk(w))

∂gi(w)
· ∂gi(w)

∂w
(2)

Example of Multivariable Chain Rule

w
f(w)=w2

g(y)=
cos(y)

h(z)=
sin(z)

K(p,q)
=p+q

O = [cos(w2)] + [sin(w2)]

O

INPUT
WEIGHT

OUTPUT

∂o

∂w
=

∂K(p, q)

∂p︸ ︷︷ ︸
1

· g′(y)︸ ︷︷ ︸
-sin(y)

· f ′(w)︸ ︷︷ ︸
2w

+
∂K(p, q)

∂q︸ ︷︷ ︸
1

· h′(z)︸ ︷︷ ︸
cos(z)

· f ′(w)︸ ︷︷ ︸
2w

= −2w · sin(y) + 2w · cos(z)
= −2w · sin(w2) + 2w · cos(w2)

• Product of local derivatives along all paths from w to o.

Pathwise Aggregation Lemma

• Let a non-null set P of paths exist from a variable w in the

computational graph to output o.

– Local gradient of node with variable y(j) with respect to

variable y(i) for directed edge (i, j) is z(i, j) = ∂y(j)
∂y(i)

• The value of ∂o
∂w is given by computing the product of the

local gradients along each path in P, and summing these

products over all paths.

∂o

∂w
=

∑
P∈P

∏
(i,j)∈P

z(i, j) (3)

• Observation: Each z(i, j) easy to compute.

An Exponential Time Algorithm for Computing Partial

Derivatives

• The path aggregation lemma provides a simple way to com-
pute the derivative with respect to intermediate variable w

– Use computational graph to compute each value y(i) of
nodes i in a forward phase.

– Compute local derivative z(i, j) = ∂y(j)
∂y(i) on each edge (i, j)

in the network.

– Identify the set P of all paths from the node with variable
w to the output o.

– For each path P ∈ P compute the product M(P) =∏
(i,j)∈P z(i, j) of the local derivatives on that path.

– Add up these values over all paths P ∈ P.

Example: Deep Computational Graph with Product Nodes

O
w

INPUT
WEIGHT OUTPUT

w

w2

w4w2

w4w

w8

w8

w16

w16

O=w32

EACH NODE COMPUTES THE PRODUCT OF ITS INPUTS

h(1,1)

h(1,2) h(2,2) h(3,2) h(4,2) h(5,2)

h(2,1) h(3,1) h(4,1) h(5,1)

• Each node computes product of its inputs ⇒ Partial deriva-
tive of xy with respect to one input x is the other input y.

• Computing product of partial derivatives along a path is
equivalent to computing product of values along the only
other node disjoint path.

• Aggregative product of partial derivatives (only in this case)
equals aggregating products of values.

Example of Increasing Complexity with Depth

O
w

INPUT
WEIGHT OUTPUT

w

w2

w4w2

w4w

w8

w8

w16

w16

O=w32

EACH NODE COMPUTES THE PRODUCT OF ITS INPUTS

h(1,1)

h(1,2) h(2,2) h(3,2) h(4,2) h(5,2)

h(2,1) h(3,1) h(4,1) h(5,1)

∂O

∂w
=

∑
j1,j2,j3,j4,j5∈{1,2}5

∏
h(1, j1)︸ ︷︷ ︸

w

h(2, j2)︸ ︷︷ ︸
w2

h(3, j3)︸ ︷︷ ︸
w4

h(4, j4)︸ ︷︷ ︸
w8

h(5, j5)︸ ︷︷ ︸
w16

=
∑

All 32 paths
w31 = 32w31

• Impractical with increasing depth.

Observations on Exponential Time Algorithm

• Not very practical approach ⇒ Million paths for a network
with 100 nodes in each layer and three layers.

• This is the approach of traditional machine learning with
complex objective functions in closed form.

– For a composition function in closed form, manual differ-
entiation explicitly traverses all paths with chain rule.

– The algebraic expression of the derivative of a complex
function might not fit the paper you write on.

– Explains why most of traditional machine learning is a
shallow neural model.

• The beautiful dynamic programming idea of backpropagation
rescues us from complexity.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Backpropagation II: Using Dynamic

Programming [Backpropagation] to

Compute Derivatives in Polynomial Time

Neural Networks and Deep Learning, Springer, 2018

Chapter 3, Section 3.2

Differentiating Composition Functions

• Neural networks compute composition functions with a lot of

repetitiveness caused by a node appearing in multiple paths.

• The most natural and intuitive way to differentiate such a

composition function is not the most efficient way to do it.

• Natural approach: Top down

f(w) = sin(w2) + cos(w2)

• We should not have to differentiate w2 twice!

• Dynamic programming collapses repetitive computations to

reduce exponential complexity into polynomial complexity!

11
w

INPUT
WEIGHT OUTPUT

1

4

53

62

7

8

9

10

EACH NODE i CONTAINS y(i) AND EACH EDGE BETWEEN i AND j CONTAINS z(i, j)
EXAMPLE: z(4, 6)= PARTIAL DERIVATIVE OF y(6) WITH RESPECT TO y(4)

y(4) y(6)z(4, 6)

O

• We want to compute the derivative of the output with re-

spect to variable w.

• We can easily compute z(i, j) = ∂y(j)
∂y(i) .

• Naive approach computes S(w, o) = ∂o
∂w =

∑
P∈P

∏
(i,j)∈P z(i, j)

by explicit aggregation over all paths in P.

Dynamic Programming and Directed Acyclic Graphs

• Dynamic programming used extensively in directed acyclic
graphs.

– Typical: Exponentially aggregative path-centric functions
between source-sink pairs.

– Example: Polynomial solution to longest path problem in
directed acyclic graphs (NP-hard in general).

– General approach: Starts at either the source or sink and
recursively computes the relevant function over paths of
increasing length by reusing intermediate computations.

• Our path-centric function: S(w, o) =
∑

P∈P
∏
(i,j)∈P z(i, j).

– Backwards direction makes more sense here because we
have to compute derivative of output (sink) with respect
to all variables in early layers.

Dynamic Programming Update

• Let A(i) be the set of nodes at the ends of outgoing edges
from node i.

• Let S(i, o) be the intermediate variable indicating the same
path aggregative function from i to o.

S(i, o) ⇐ ∑
j∈A(i)

S(j, o) · z(i, j) (4)

• Initialize S(o, o) to 1 and compute backwards to reach S(w, o).

– Intermediate computations like S(i, o) are also useful for
computing derivatives in other layers.

• Do you recognize the multivariate chain rule in Equation 4?

∂o

∂y(i)
=

∑
j∈A(i)

∂o

∂y(j)
· ∂y(j)
∂y(i)

How Does it Apply to Neural Networks?

∑ ɸ
BREAK UP

∑ ɸ ∑ ɸ

h=ɸ(W X).

ah

POST-ACTIVATION
VALUE

PRE-ACTIVATION
VALUE

= W X.{X
W

h=ɸ(ah)

{X
W

• A neural network is a special case of a computational graph.

– We can define the computational graph in multiple ways.

– Pre-activation variables or post-activation variables or
both as the node variables of the computation graph?

– The three lead to different updates but the end result is
equivalent.

Pre-Activation Variables to Create Computational Graph

• Compute derivative δ(i, o) of loss L at o with respect to pre-
activation variable at node i.

• We always compute loss derivatives δ(i, o) with respect to
activations in nodes during dynamic programming rather than
weights.

– Loss derivative with respect to weight wij from node i

to node j is given by the product of δ(j, o) and hidden
variable at i (why?)

• Key points: z(i, j) = wij ·Φ′
i, Initialize S(o, o) = δ(o, o) = ∂L

∂oΦ
′
o

δ(i, o) = S(i, o) = Φ′
i

∑
j∈A(i)

wijS(j, o) = Φ′
i

∑
j∈A(i)

wijδ(j, o)

(5)

Post-Activation Variables to Create Computation Graph

• The variables in the computation graph are hidden values

after activation function application.

• Compute derivative Δ(i, o) of loss L at o with respect to

post-activation variable at node i.

• Key points: z(i, j) = wij ·Φ′
j, Initialize S(o, o) = Δ(o, o) = ∂L

∂o

Δ(i, o) = S(i, o) =
∑

j∈A(i)

wijS(j, o)Φ
′
j =

∑
j∈A(i)

wijΔ(j, o)Φ′
j

(6)

– Compare with pre-activation approach δ(i, o) = Φ′
i
∑

j∈A(i)wijδ(j, o)

– Pre-activation approach more common in textbooks.

Variables for Both Pre-Activation and Post-Activation

Values

• Nice way of decoupling the linear multiplication and activa-

tion operations.

• Simplified approach in which each layer is treated as a single

node with a vector variable.

– Update can be computed in vector and matrix multiplica-

tions.

• Topic of discussion in next part of the backpropagation series.

Losses at Arbitrary Nodes

• We assume that the loss is incurred at a single output node.

• In case of multiple output nodes, one only has to add up the

contributions of different outputs in the backwards phase.

• In some cases, penalties may be applied to hidden nodes.

• For a hidden node i, we add an “initialization value” to S(i, o)

just after it has been computed during dynamic program-

ming, which is based on its penalty.

– Similar treatment as the initialization of an output node,

except that we add the contribution to existing value of

S(i, o).

Handling Shared Weights

• You saw an example in autoencoders where encoder and de-
coder weights are shared.

• Also happens in specialized architectures like recurrent or
convolutional neural networks.

• Can be addressed with a simple application of the chain rule.

• Let w1 . . . wr be r copies of the same weight w in the neural
network.

∂L

∂w
=

r∑
i=1

∂L

∂wi
· ∂wi

∂w
=

r∑
i=1

∂L

∂wi
(7)

• Pretend all weights are different and just add!

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Backpropagation III: A Decoupled View of

Vector-Centric Backpropagation

Neural Networks and Deep Learning, Springer, 2018

Chapter 3, Section 3.2

Multiple Computational Graphs from Same Neural

Network

• We can create a computational graph in multiple ways from

the variables in a neural network.

– Computational graph of pre-activation variables (part II of

lecture)

– Computational graph of post-activation variables (part II

of lecture)

– Computational graph of both (this part of the lecture)

• Using both pre-activation and post-activation variables cre-

ates decoupled backpropagation updates for linear layer and

for activation function.

Scalar Versus Vector Computational Graphs

• The backpropagation discussion so far uses scalar operations.

• Neural networks are constructed in layer-wise fashion.

• We can treat an entire layer as a node with a vector variable.

• We want to use layer-wise operations on vectors.

– Most real implementations use vector and matrix multi-

plications.

• Want to decouple the operations of linear matrix multiplica-

tion and activation function in separate “layers.”

Vector-Centric and Decoupled View of Single Layer

MULTIPLY WITH WT ɸ

MULTIPLY WITH W ɸ’

LINEAR
TRANSFORM ACTIVATION

(ELEMENTWISE)

(ELEMENTWISE)

APPLY

MULTIPLY

DE
CO

U
PL

ED
 L

AY
ER

 (i
-1

)

DE
CO

U
PL

ED
 L

AY
ER

 i

DE
CO

U
PL

ED
 L

AY
ER

 (i
+1

)

DE
CO

U
PL

ED
 L

AY
ER

 (i
+2

)

DE
CO

U
PL

ED
 L

AY
ER

 (i
+3

)

SOME
FUNCTION

SOME
FUNCTION

SOME
LOSS

• Note that linear matrix multiplication and activation function

are separate layers.

• Method 1 (requires knowledge of matrix calculus): You can

use the vector-to-vector chain rule to backpropagate on a

single path!

Converting Scalar Updates to Vector Form

• Recap: When the partial derivative of node q with respect

to node p is z(p, q), the dynamic programming update is:

S(p, o) =
∑

q∈Next Layer
S(q, o) · z(p, q) (8)

• We can write the above update in vector form by creating a

single column vector gi for layer i ⇒ Contains S(p, o) for all

values of p.

gi = Zgi+1 (9)

• The matrix Z = [z(p, q)] is the transpose of the Jacobian!

– We will use the notation J = ZT in further slides.

The Jacobian

• Consider layer i and layer-(i+1) with activations zi and zi+1.

– The kth activation in layer-(i+1) is obtained by applying

an arbitrary function fk(·) on the vector of activations in

layer-i.

• Definition of Jacobian matrix entries:

Jkr =
∂fk(zi)

∂z
(r)
i

(10)

• Backpropagation updates:

gi = JTgi+1 (11)

Effect on Linear Layer and Activation Functions

MULTIPLY WITH WT ɸ

MULTIPLY WITH W ɸ’

LINEAR
TRANSFORM ACTIVATION

(ELEMENTWISE)

(ELEMENTWISE)

APPLY

MULTIPLY

DE
CO

U
PL

ED
 L

AY
ER

 (i
-1

)

DE
CO

U
PL

ED
 L

AY
ER

 i

DE
CO

U
PL

ED
 L

AY
ER

 (i
+1

)

DE
CO

U
PL

ED
 L

AY
ER

 (i
+2

)

DE
CO

U
PL

ED
 L

AY
ER

 (i
+3

)

SOME
FUNCTION

SOME
FUNCTION

SOME
LOSS

• Backpropagation is multiplication with transposed weight

matrix for linear layer.

• Elementwise multiplication with derivative for activation

layer.

Table of Forward Propagation and Backward Propagation

Function Forward Backward

Linear zi+1 = WTzi gi = Wgi+1
Sigmoid zi+1 =sigmoid(zi) gi = gi+1 � zi+1 � (1− zi+1)
Tanh zi+1 =tanh(zi) gi = gi+1 � (1− zi+1 � zi+1)
ReLU zi+1 = zi � I(zi > 0) gi = gi+1 � I(zi > 0)
Hard Set to ±1 (�∈ [−1,+1]) Set to 0 (�∈ [−1,+1])
Tanh Copy (∈ [−1,+1]) Copy (∈ [−1,+1])
Max Maximum of inputs Set to 0 (non-maximal inputs)

Copy (maximal input)

Arbitrary z(k)i+1 = fk(zi) gi = JTgi+1

function fk(·) J is Jacobian (Equation 10)

• Two types of Jacobians: Linear layers are dense and activa-

tion layers are sparse.

• Maximization function used in max-pooling.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Neural Network Training [Initialization,

Preprocessing, Mini-Batching, Tuning, and

Other Black Art]

Neural Networks and Deep Learning, Springer, 2018

Chapter 3, Section 3.3

How to Check Correctness of Backpropagation

• Consider a particular weight w of a randomly selected edge

in the network.

• Let L(w) be the current value of the loss.

• The weight of this edge is perturbed by adding a small

amount ε > 0 to it.

• Estimate of derivative:

∂L(w)

∂w
≈ L(w + ε)− L(w)

ε
(12)

• When the partial derivatives do not match closely enough, it

might be indicative of an incorrectness in implementation.

What Does “Closely Enough” Mean?

• Algorithm-determined derivative is Ge and the approximate

derivative is Ga.

ρ =
|Ge −Ga|
|Ge +Ga|

(13)

• The ratio should be less than 10−6.

• If ReLU is used, the ratio should be less than 10−3.

• Should perform the checks for a sample of the weights a few

times during training.

Stochastic Gradient Descent

• We have always worked with point-wise loss functions so far.

– Corresponds to stochastic gradient descent.

– In practice, stochastic gradient descent is only a random-

ized approximation of the true loss function.

• True loss function is typically additive over points.

– Example: Sum-of-squared errors in regression.

– Computing gradient over a single point is like sampled

gradient estimate.

Mini-batch Stochastic Gradient Descent

• One can improve accuracy of gradient computation by using

a batch of instances.

– Instead of holding a vector of activations, we hold a matrix

of activations in each layer.

– Matrix-to-matrix multiplications required for forward and

backward propagation.

– Increases the memory requirements.

• Typical sizes are powers of 2 like 32, 64, 128, 256

Why Does Mini-Batching Work?

• At early learning stages, the weight vectors are very poor.

– Training data is highly redundant in terms of important

patterns.

– Small batch sizes gives the correct direction of gradient.

• At later learning stages, the gradient direction becomes less

accurate.

– But some amount of noise helps avoid overfitting anyway!

• Performance on out-of-sample data does not deteriorate!

Feature Normalization

• Standardization: Normalize to zero mean and unit variance.

• Whitening: Transform the data to a de-correlated axis

system with principal component analysis (mean-centered

SVD).

– Truncate directions with extremely low variance.

– Standardize the other directions.

• Basic principle: Assume that data is generated from Gaus-

sian distribution and give equal importance to all directions.

Weight Initialization

• Initializations are surprisingly important.

– Poor initializations can lead to bad convergence behavior.

– Instability across different layers (vanishing and exploding

gradients).

• More sophisticated initializations such as pretraining covered

in later lecture.

• Even some simple rules in initialization can help in condition-

ing.

Symmetry Breaking

• Bad idea to initialize weights to the same value.

– Results in weights being updated in lockstep.

– Creates redundant features.

• Initializing weights to random values breaks symmetry.

• Average magnitude of the random variables is important for

stability.

Sensitivity to Number of Inputs

• More inputs increase output sensitivity to the average weight.

– Additive effect of multiple inputs: variance linearly in-

creases with number of inputs r.

– Standard deviation scales with the square-root of number

of inputs r.

• Each weight is initialized from Gaussian distribution with

standard deviation
√
1/r (

√
2/r for ReLU).

• More sophisticated: Use standard deviation of
√
2/(rin + rout).

Tuning Hyperparameters

• Hyperparameters represent the parameters like number of

layers, nodes per layer, learning rate, and regularization pa-

rameter.

• Use separate validation set for tuning.

• Do not use same data set for backpropagation training as

tuning.

Grid Search

• Perform grid search over parameter space.

– Select set of values for each parameter in some “reason-

able” range.

– Test over all combination of values.

• Careful about parameters at borders of selected range.

• Optimization: Search over coarse grid first, and then drill

down into region of interest with finer grids.

How to Select Values for Each Parameter

• Natural approach is to select uniformly distributed values of

parameters.

– Not the best approach in many cases! ⇒ Log-uniform

intervals.

– Search uniformly in reasonable values of log-values and

then exponentiate.

– Example: Uniformly sample log-learning rate between −3

and −1, and then raise it to the power of 10.

Sampling versus Grid Search

• With a large number of parameters, grid search is still ex-

pensive.

• With 10 parameters, choosing just 3 values for each param-

eter leads to 310 = 59049 possibilities.

• Flexible choice is to sample over grid space.

• Used more commonly in large-scale settings with good re-

sults.

Large-Scale Settings

• Multiple threads are often run with sampled parameter set-

tings.

• Accuracy tracked on a separate out-of-sample validation set.

• Bad runs are detected and killed after a certain number of

epochs.

• New runs may also be started after killing threads (if needed).

• Only a few winners are trained to completion and the pre-

dictions combined in an ensemble.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Gradient Ratios, Vanishing and Exploding

Gradient Problems

Neural Networks and Deep Learning, Springer, 2018

Chapter 3, Section 3.4

Effect of Varying Slopes in Gradient Descent

• Neural network learning is a multivariable optimization prob-
lem.

• Different weights have different magnitudes of partial deriva-
tives.

• Widely varying magnitudes of partial derivatives affect the
learning.

• Gradient descent works best when the different weights have
derivatives of similar magnitude.

– The path of steepest descent in most loss functions is
only an instantaneous direction of best movement, and is
not the correct direction of descent in the longer term.

Example

VALUE OF x

V
A

L
U

E
 O

F
 y

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

VALUE OF x

V
A

L
U

E
 O

F
 y

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

(a) Loss function is circular bowl (b) Loss function is elliptical bowl
L = x2 + y2 L = x2 + 4y2

• Loss functions with varying sensitivity to different attributes

Revisiting Feature Normalization

• In the previous lecture, we discussed feature normalization.

• When features have very different magnitudes, gradient ra-

tios of different weights are likely very different.

• Feature normalization helps even out gradient ratios to some

extent.

– Exact behavior depends on target variable and loss func-

tion.

The Vanishing and Exploding Gradient Problems

• An extreme manifestation of varying sensitivity occurs in deep

networks.

• The weights/activation derivatives in different layers affect

the backpropagated gradient in a multiplicative way.

– With increasing depth this effect is magnified.

– The partial derivatives can either increase or decrease with

depth.

Example

x w1 ∑ ∑w2 wm-1w3 ∑
h1 h2 hm-1

wm ∑ o

• Neural network with one node per layer.

• Forward propagation multiplicatively depends on each weight
and activation function evaluation.

• Backpropagated partial derivative get multiplied by weights
and activation function derivatives.

• Unless the values are exactly one, the partial derivatives will
either continuously increase (explode) or decrease (vanish).

• Hard to initialize weights exactly right.

Activation Function Propensity to Vanishing Gradients

• Partial derivative of sigmoid with output o ⇒ o(1− o).

– Maximum value at o = 0.5 of 0.25.

– For 10 layers, the activation function alone will multiply

by less than 0.2510 ≈ 10−6.

• At extremes of output values, the partial derivative is close

to 0, which is called saturation.

• The tanh activation function with partial derivative (1 − o2)

has a maximum value of 1 at o = 0, but saturation will still

cause problems.

Exploding Gradients

• Initializing weights to very large values to compensate for the

activation functions can cause exploding gradients.

• Exploding gradients can also occur when weights across dif-

ferent layers are shared (e.g., recurrent neural networks).

– The effect of a finite change in weight is extremely un-

predictable across different layers.

– Small finite change changes loss negligibly, but a slightly

larger value might change loss drastically.

Cliffs

0 5 10 15 20 25 300
5

10
15

20
25

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

yx

L
O

S
S

GENTLE GRADIENT BEFORE
CLIFF OVERSHOOTS

• Often occurs with the exploding gradient problem.

A Partial Fix to Vanishing Gradients

• The ReLU has linear activation for nonnegative values and

otherwise sets outputs to 0.

• The ReLU has a partial derivative of 1 for nonnegative inputs.

• However, it can have a partial derivative of 0 in some cases

and never get updated.

– Neuron is permanently dead!

Leaky ReLU

• For negative inputs, the leaky ReLU can still propagate some

gradient backwards.

– At the reduced rate of α < 1 times the learning case for

nonnegative inputs:

Φ(v) =

⎧⎨
⎩
α · v v ≤ 0

v otherwise
(14)

• The value of α is a hyperparameter chosen by the user.

• The gains with the leaky ReLU are not guaranteed.

Maxout

• The activation used is max{W1·X,W2·X} with two coefficient

vectors.

• One can view the maxout as a generalization of the ReLU.

– The ReLU is obtained by setting one of the coefficient

vectors to 0.

– The leaky ReLU can also be simulated by setting the other

coefficient vector to W2 = αW1.

• Main disadvantage is that it doubles the number of parame-

ters.

Gradient Clipping for Exploding Gradients

• Try to make the different components of the partial deriva-

tives more even.

– Value-based clipping: All partial derivatives outside ranges

are set to range boundaries.

– Norm-based clipping: The entire gradient vector is nor-

malized by the L2-norm of the entire vector.

• One can achieve a better conditioning of the values, so that

the updates from mini-batch to mini-batch are roughly sim-

ilar.

• Prevents an anomalous gradient explosion during the course

of training.

Other Comments on Vanishing and Exploding Gradients

• The methods discussed above are only partial fixes.

• Other fixes discussed in later lectures:

– Stronger initializations with pretraining.

– Second-order learning methods that make use of second-

order derivatives (or curvature of the loss function).

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

First-Order Gradient Descent Methods

Neural Networks and Deep Learning, Springer, 2018

Chapter 3, Section 3.5

First-Order Descent

• First-order methods work with steepest-descent directions.

• Modifications to basic form of steepest-descent:

– Need to reduce step sizes with algorithm progression.

– Need a way of avoiding local optima.

– Need to address widely varying slopes with respect to dif-

ferent weight parameters.

Learning Rate Decay

• Initial learning rates should be high but reduce over time.

• The two most common decay functions are exponential decay

and inverse decay.

• The learning rate αt can be expressed in terms of the initial

decay rate α0 and epoch t as follows:

αt = α0 exp(−k · t) [Exponential Decay]

αt =
α0

1 + k · t [Inverse Decay]

The parameter k controls the rate of the decay.

Momentum Methods: Marble Rolling Down Hill

LO
SS

VALUE OF NEURAL NETWORK PARAMETER

GD SLOWS DOWN
IN FLAT REGION

GD GETS TRAPPED
IN LOCAL OPTIMUM

• Use a friction parameter β ∈ (0,1) to gain speed in direction

of movement.

V ⇐ βV − α
∂L

∂W
; W ⇐ W + V

Avoiding Zig-Zagging with Momentum

STARTING
POINT

WITHOUT
MOMENTUM

WITH
MOMENTUM

STARTING
POINT

OPTIMUM

(b) WITHOUT MOMENTUM

STARTING
POINT

OPTIMUM

(c) WITH MOMENTUM(a) RELATIVE DIRECTIONS

Nesterov Momentum

• Modification of the traditional momentum method in which
the gradients are computed at a point that would be reached
after executing a β-discounted version of the previous step
again.

• Compute at a point reached using only the momentum por-
tion of the current update:

V ⇐ βV︸︷︷︸
Momentum

−α
∂L(W + βV)

∂W
; W ⇐ W + V

• Put on the brakes as the marble reaches near bottom of hill.

• Nesterov momentum should always be used with mini-batch
SGD (rather than SGD).

AdaGrad

• Aggregate squared magnitude of ith partial derivative in Ai.

• The square-root of Ai is proportional to the root-mean-
square slope.

– The absolute value will increase over time.

Ai ⇐ Ai +

(
∂L

∂wi

)2
∀i (15)

• The update for the ith parameter wi is as follows:

wi ⇐ wi −
α√
Ai

(
∂L

∂wi

)
; ∀i (16)

• Use
√
Ai + ε in the denominator to avoid ill-conditioning.

AdaGrad Intuition

• Scaling the derivative inversely with
√
Ai encourages faster

relative movements along gently sloping directions.

– Absolute movements tend to slow down prematurely.

– Scaling parameters use stale values.

RMSProp

• The RMSProp algorithm uses exponential smoothing with

parameter ρ ∈ (0,1) in the relative estimations of the gradi-

ents.

– Absolute magnitudes of scaling factors do not grow with

time.

– Problem of staleness is ameliorated.

Ai ⇐ ρAi + (1− ρ)

(
∂L

∂wi

)2
∀i (17)

wi ⇐ wi −
α√
Ai

(
∂L

∂wi

)
; ∀i

• Use
√
Ai + ε to avoid ill-conditioning.

RMSProp with Nesterov Momentum

• Possible to combine RMSProp with Nesterov Momentum

vi ⇐ βvi −
α√
Ai

(
∂L(W + βV)

∂wi

)
; wi ⇐ wi + vi ∀i

• Maintenance of Ai is done with shifted gradients as well.

Ai ⇐ ρAi + (1− ρ)

(
∂L(W + βV)

∂wi

)2
∀i (18)

AdaDelta and Adam

• Both methods derive intuition from RMSProp

– AdaDelta track of an exponentially smoothed value of the

incremental changes of weights Δwi in previous iterations

to decide parameter-specific learning rate.

– Adam keeps track of exponentially smoothed gradients

from previous iterations (in addition to normalizing like

RMSProp).

• Adam is extremely popular method.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Second-Order Gradient Descent Methods

Neural Networks and Deep Learning, Springer, 2018

Chapter 3, Section 3.5.5

Why Second-Order Methods?

0 5 10 15 20 25 300
5

10
15

20
25

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

yx

L
O

S
S

GENTLE GRADIENT BEFORE
CLIFF OVERSHOOTS

• First-order methods are not enough when there is curvature.

Revisiting the Bowl

VALUE OF x

V
A

L
U

E
 O

F
 y

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

VALUE OF x

V
A

L
U

E
 O

F
 y

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

(a) Loss function is circular bowl (b) Loss function is elliptical bowl
L = x2 + y2 L = x2 + 4y2

• High curvature directions cause bouncing in spite of higher

gradient ⇒ Need second-derivative for more information.

A Valley

−2

−1

0

1

2

−1

−0.5

0

0.5

1
−1

0

1

2

3

4

5

xy

f(
x,

 y
)

LEAST
CURVATURE
DIRECTION

• Gently sloping directions are better with less curvature!

The Hessian

• The second-order derivatives of the loss function L(W) are

of the following form:

Hij =
∂2L(W)

∂wi∂wj

• The partial derivatives use all pairwise parameters in the de-

nominator.

• For a neural network with d parameters, we have a d × d

Hessian matrix H, for which the (i, j)th entry is Hij.

Quadratic Approximation of Loss Function

• One can write a quadratic approximation of the loss function

with Taylor expansion about W0:

L(W) ≈ L(W0)+(W−W0)
T [∇L(W 0)]+

1

2
(W−W0)

TH(W−W0)

(19)

• One can derive a single-step optimality condition from initial

point W0 by setting the gradient to 0.

Newton’s Update

• Can solve quadratic approximation in one step from initial

point W0.

∇L(W) = 0 [Gradient of Loss Function]

∇L(W 0) +H(W −W0) = 0 [Gradient of Taylor approximation]

• Rearrange optimality condition to obtain Newton update:

W
∗ ⇐ W0 −H−1[∇L(W 0)] (20)

• Note the ratio of first-order to second-order ⇒ Trade-off

between speed and curvature

• Step-size not needed!

Why Second-Order Methods?

• Pre-multiplying with the inverse Hessian finds a trade-off be-

tween speed of descent and curvature.

Basic Second-Order Algorithm and Approximations

• Keep making Newton’s updates to convergence (single step

needed for quadratic function)

– Even computing the Hessian is difficult!

– Inverting it is even more difficult

• Solutions:

– Approximate the Hessian.

– Find an algorithm that works with projection Hv for some

direction v.

Conjugate Gradient Method

• Get to optimal in d steps (instead of single Newton step)
where d is number of parameters.

• Use optimal step-sizes to get best point along a direction.

• Thou shalt not worsen with respect to previous directions!

• Conjugate direction: The gradient of the loss function on
any point on an update direction is always orthogonal to the
previous update directions.

qt+1 = −∇L(Wt+1) +

(
qTt H[∇L(Wt+1)]

qTt Hqt

)
qt (21)

• For quadratic function, it requires d updates instead of single
update of Newton method.

Conjugate Gradients on 2-Dimensional Quadratic

• Two conjugate directions are required to reach optimality

Conjugate Gradient Algorithm

• For quadratic functions only.

– Update Wt+1 ⇐ Wt +αtqt. Here, the step size αt is com-

puted using line search.

– Set qt+1 = −∇L(Wt+1) +
(
qTt H[∇L(Wt+1)]

qTt Hqt

)
qt. Increment

t by 1.

• For non-quadratic functions approximate loss function with

Taylor expansion and perform � d of the above steps. Then

repeat.

Efficiently Computing Projection of Hessian

• The update requires computation of the projection of the

Hessian rather than inversion of Hessian.

qt+1 = −∇L(Wt+1) +

(
qTt H[∇L(Wt+1)]

qTt Hqt

)
qt (22)

• Easy to perform numerically!

Hv ≈ ∇L(W0 + δv)−∇L(W 0)

δ
(23)

Other Second-Order Methods

• Quasi-Newton Method: A sequence of increasingly accurate

approximations of the inverse Hessian matrix are used in var-

ious steps.

• Many variations of this approach.

• Commonly-used update is BFGS, which stands for the

Broyden–Fletcher–Goldfarb–Shanno algorithm and its lim-

ited memory variant L-BFGS.

Problems with Second-Order Methods

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y
g

(x
, y

)

SADDLE
POINT

(a) f(x) = x3 (b) f(x) = x2 − y2

Degenerate Stationary

• Saddle points: Whether it is maximum or minimum depends

on which direction we approach it from.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Batch Normalization

Neural Networks and Deep Learning, Springer, 2018

Chapter 3, Section 3.6

Revisiting the Vanishing and Exploding Gradient Problems

x w1 ∑ ∑w2 wm-1w3 ∑
h1 h2 hm-1

wm ∑ o

• Neural network with one node per layer.

• Forward propagation multiplicatively depends on each weight
and activation function evaluation.

• Backpropagated partial derivative get multiplied by weights
and activation function derivatives.

• Unless the values are exactly one, the partial derivatives will
either continuously increase (explode) or decrease (vanish).

• Hard to initialize weights exactly right.

Revisiting the Bowl

VALUE OF x

V
A

L
U

E
 O

F
 y

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

VALUE OF x

V
A

L
U

E
 O

F
 y

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

(a) Loss function is circular bowl (b) Loss function is elliptical bowl
L = x2 + y2 L = x2 + 4y2

• Varying scale of different parameters will cause bouncing

• Varying scale of features causes varying scale of parameters

Input Shift

• One can view the input to each layer as a shifting data set

of hidden activations during training.

• A shifting input causes problems during learning.

– Convergence becomes slower.

– Final result may not generalize well because of unstable

inputs.

• Batch normalization ensures (somewhat) more stable inputs

to each layer.

Solution: Batch Normalization

∑ ɸ
ADD BATCH
NORMALIZATION

BN ∑ ɸ

∑ ɸ
BREAK UP

∑ ɸ ∑ ɸaiBN
vi

(a) Post-activation normalization (b) Pre-activation normalization

• Add an additional layer than normalizes in batch-wise fashion.

• Additional learnable parameters to ensure that optimal level

of nonlinearity is used.

• Pre-activation normalization more common than post-

activation normalization.

Batch Normalization Node

• The ith unit contains two parameters βi and γi that need to
be learned.

• Normalize over batch of m instances for ith unit.

μi =

∑m
r=1 v

(r)
i

m
∀i [Batch Mean]

σ2i =

∑m
r=1(v

(r)
i − μi)

2

m
+ ε ∀i [Batch Variance]

v̂
(r)
i =

v
(r)
i − μi

σi
∀i, r [Normalize Batch Instances]

a
(r)
i = γi · v̂(r)i + βi ∀i, r [Scale with Learnable Parameters]

• Why do we need βi and γi?

– Most activations will be near zero (near-linear regime).

Changes to Backpropagation

• We need to backpropagate through the newly added layer of

normalization nodes.

– The BN node can be treated like any other node.

• We want to optimize the parameters βi and γi.

– The gradients with respect to these parameters are com-

puted during backpropagation.

• Detailed derivations in book.

Issues in Inference

• The transformation parameters μi and σi depend on the
batch.

• How should one compute them during testing when a single
test instance is available?

• The values of μi and σi are computed up front using the entire
population (of training data), and then treated as constants
during testing time.

– One can also maintain exponentially weighted averages
during training.

• The normalization is a simple linear transformation during
inference.

Batch Normalization as Regularizer

• Batch normalization also acts as a regularizer.

• Same data point can cause somewhat different updates de-

pending on which batch it is included in.

• One can view this effect as a kind of noise added to the

update process.

• Regularization is can be shown to be equivalent to adding a

small amount of noise to the training data.

• The regularization is relatively mild.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Model Generalization and the Bias-Variance

Trade-Off

Neural Networks and Deep Learning, Springer, 2018

Chapter 4, Section 4.1-4.2

What is Model Generalization?

• In a machine learning problem, we try to generalize the known

dependent variable on seen instances to unseen instances.

– Unseen ⇒ The model did not see it during training.

– Given training images with seen labels, try to label an

unseen image.

– Given training emails labeled as spam or nonspam, try to

label an unseen email.

• The classification accuracy on instances used to train a model

is usually higher than on unseen instances.

– We only care about the accuracy on unseen data.

Memorization vs Generalization

• Why is the accuracy on seen data higher?

– Trained model remembers some of the irrelevant nuances.

• When is the gap between seen and unseen accuracy likely to
be high?

– When the amount of data is limited.

– When the model is complex (which has higher capacity to
remember nuances).

– The combination of the two is a deadly cocktail.

• A high accuracy gap between the predictions on seen and
unseen data is referred to as overfitting.

Example: Predict y from x

LINEAR SIMPLIFICATION

TRUE MODEL

x=2

Y

X

• First impression: Polynomial model such as y = w0+w1x+
w2x

2 + w3x
3 + w4x

4 is “better” than linear model y = w0 +
w1x.

– Bias-variance trade-off says: “Not necessarily! How much
data do you have?”

Different Training Data Sets with Five Points

LINEAR SIMPLIFICATION

TRUE MODEL

x=2 x=2

x=2 POLYNOMIAL PREDICTION AT x=2

LINEAR PREDICTION AT x=2

x=2

• Zero error on training data but wildly varying predictions of
x = 2

Observations

• The higher-order model is more complex than the linear

model and has less bias.

– But it has more parameters.

– For a small training data set, the learned parameters will

be more sensitive to the nuances of that data set.

– Different training data sets will provide different predic-

tions for y at a particular x.

– This variation is referred to as model variance.

• Neural networks are inherently low-bias and high-variance

learners ⇒ Need ways of handling complexity.

Noise Component

• Unlike bias and variance, noise is a property of the data rather
than the model.

• Noise refers to unexplained variations εi of data from true
model yi = f(xi) + εi.

• Real-world examples:

– Human mislabeling of test instance ⇒ Ideal model will
never predict it accurately.

– Error during collection of temperature due to sensor mal-
functioning.

• Cannot do anything about it even if seeded with knowledge
about true model.

Bias-Variance Trade-off: Setup

• Imagine you are given the true distribution B of training data
(including labels).

• You have a principled way of sampling data sets D ∼ B from
the training distribution.

• Imagine you create an infinite number of training data sets
(and trained models) by repeated sampling.

• You have a fixed set T of unlabeled test instances.

– The test set T does not change over different training
data sets.

– Compute prediction of each instance in T for each trained
model.

Informal Definition of Bias

• Compute averaged prediction of each test instance x over

different training models g(x,D).

• Averaged prediction of test instance will be different from

true (unknown) model f(x).

• Difference between (averaged) g(x,D) and f(x) caused by

erroneous assumptions/simplifications in modeling ⇒ Bias

– Example: Linear simplification to polynomial model

causes bias.

– If the true (unknown) model f(x) were an order-4 poly-

nomial, and we used any polynomial of order-4 or greater

in g(x,D), bias would be 0.

Informal Definition of Variance

• The value g(x,D) will vary with D for fixed x.

– The prediction of the same test instance will be different

over different trained models.

• All these predictions cannot be simultaneously correct ⇒
Variation contributes to error

• Variance of g(x,D) over different training data sets ⇒ Model

Variance

– Example: Linear model will have low variance.

– Higher-order model will have high variance.

Bias-Variance Equation

• Let E[MSE] be the expected mean-squared error of the fixed

set of test instances over different samples of training data

sets.

E[MSE] = Bias2 + Variance + Noise (1)

– In linear models, the bias component will contribute more

to E[MSE].

– In polynomial models, the variance component will con-

tribute more to E[MSE].

• We have a trade-off, when it comes to choosing model com-

plexity!

The Bias-Variance Trade-Off

SQ
UA

RE
D

 E
RR

O
R

MODEL COMPLEXITY

OVERALL ERROR

OPTIMAL
COMPLEXITY

• Optimal point of model complexity is somewhere in middle.

Key Takeaway of Bias-Variance Trade-Off

• A model with greater complexity might be theoretically more

accurate (i.e., low bias).

– But you have less control on what it might predict on a

tiny training data set.

– Different training data sets will result in widely varying

predictions of same test instance.

– Some of these must be wrong ⇒ Contribution of model

variance.

• A more accurate model for infinite data is not a more accu-

rate model for finite data.

– Do not use a sledgehammer to swat a fly!

Model Generalization in Neural Networks

• The recent success of neural networks is made possible by

increased data.

– Large data sets help in generalization.

• In a neural network, increasing the number of hidden units

in intermediate layers tends to increase complexity.

• Increasing depth often helps in reducing the number of units

in hidden layers.

• Proper design choices can reduce overfitting in complex mod-

els ⇒ Better to use complex models with appropriate design

choices

How to Detect Overfitting

• The error on test data might be caused by several reasons.

– Other reasons might be bias (underfitting), noise, and

poor convergence.

• Overfitting shows up as a large gap between in-sample and

out-of-sample accuracy.

• First solution is to collect more data.

– More data might not always be available!

Improving Generalization in Neural Networks

• Key techniques to improve generalization:

– Penalty-based regularization.

– Constraints like shared parameters.

– Using ensemble methods like Dropout.

– Adding noise and stochasticity to input or hidden units.

• Discussion in upcoming lectures.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Penalty-Based Regularization

Neural Networks and Deep Learning, Springer, 2018

Chapter 4, Section 4.4

Revisiting Example: Predict y from x

LINEAR SIMPLIFICATION

TRUE MODEL

x=2

Y

X

• First impression: Polynomial model such as y = w0+w1x+

w2x
2 + w3x

3 + w4x
4 is “better” than linear model y = w0 +

w1x.

– However, with less data, using the linear model is better.

Economy in Parameters

• A lower-order model has economy in parameters.

– A linear model uses two parameters, whereas an order-4

model uses five parameters.

– Economy in parameters discourages overfitting.

• Choosing a neural network with fewer units per layer enforces

economy.

Soft Economy vs Hard Economy

• Fixing the architecture up front is an inflexible solution.

• A softer solution uses a larger model but imposes a (tunable)
penalty on parameter use.

ŷ =
d∑

i=0

wix
i (2)

• Loss function: L =
∑

(x,y)∈D(y − ŷ)2 + λ ·
d∑

i=0

w2
i

︸ ︷︷ ︸
L2−Regularization

• The (tuned) value of λ decides the level of regularization.

• Softer approach with a complex model performs better!

Effect on Updates

• For learning rate α, effect on update is to multiply parameter

with (1− αλ) ∈ (0,1).

wi ⇐ wi(1− αλ)− α
∂L

∂wi

– Interpretation: Decay-based forgetting!

• Unless a parameter is important, it will have small absolute

value.

– Model decides what is important.

– Better than inflexibly deciding up front.

L1-Regularization

• In L1-regularization, an L1-penalty is imposed on the loss

function.

L =
∑

(x,y)∈D
(y − ŷ)2 + λ ·

d∑
i=0

|wi|1

• Update has slightly different form:

wi ⇐ wi − αλsi − α
∂L

∂wi

• The value of si is the partial derivative of |wi| w.r.t. wi:

si =

⎧⎨
⎩
−1 wi < 0

+1 wi > 0

L1- or L2-Regularization?

• L1-regularization leads to sparse parameter learning.

– Zero values of wi can be dropped.

– Equivalent to dropping edges from neural network.

• L2-regularization generally provides better performance.

Connections with Noise Injection

• L2-regularization with parameter λ is equivalent to adding

Gaussian noise with variance λ to input.

– Intuition: Bad effect of noise will be minimized with sim-

pler models (smaller parameters).

– Proof in book.

• Result is only true for single layer network (linear regression).

– Main value of result is in providing general intuition.

• Similar results can be shown for denoising autoencoders.

Penalizing Hidden Units

• One can also penalize hidden units.

• Applying L1-penalty leads to sparse activations.

• More common in unsupervised applications for sparse feature

learning.

• Straightforward modification of backpropagation.

– Penalty contributions from hidden units are picked up in

backward phase.

Hard and Soft Weight Sharing

• Fix particular weights to be the same based on domain-

specific insights.

– Discussed in lecture on backpropagation.

• Soft Weight Sharing: Add the penalty λ(wi−wj)
2/2 to loss

function.

– Update to wi includes the extra term αλ(wj − wi).

– Update to wj includes the extra term αλ(wi − wj).

– Pulls weights closer to one another.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Dropout

Neural Networks and Deep Learning, Springer, 2018

Chapter 4, Section 4.5

Feature Co-Adaptation

• The process of training a neural network often leads to a

high level of dependence among features.

• Different parts of the network train at different rates:

– Causes some parts of the network to adapt to others.

• This is referred to as feature co-adaptation.

• Uninformative dependencies are sensitive to nuances of spe-

cific training data ⇒ Overfitting.

One-Way Adaptation

• Consider a single-hidden layer neural network.

– All edges into and out of half the hidden nodes are fixed
to random values.

– Only the other half are updated during backpropagation.

• Half the features will adapt to the other half (random fea-
tures).

• Feature co-adaptation is natural in neural networks where
rate of training varies across different parts of network over
time.

– Partially a manifestation of training inefficiency (over and
above true synergy).

Why is Feature Co-Adaptation Bad?

• We want features working together only when essential for

prediction.

– We do not want features adjusting to each other because

of inefficiencies in training.

– Does not generalize well to new test data.

• We want many groups of minimally essential features for

robust prediction ⇒ Better redundancies.

• We do not want a few large and inefficiently created groups

of co-adapted features.

Basic Dropout Training Procedure

• For each training instance do:

– Sample each node in the network in each layer (except

output layer) with probability p.

– Keep only edges for which both ends are included in net-

work.

– Perform forward propagation and backpropagation only on

sampled network.

• Note that weights are shared between different sampled net-

works.

Basic Dropout Testing Procedures

• First procedure:

– Perform repeated sampling (like training) and average re-

sults.

– Geometric averaging for probabilistic outputs (averaging

log-likelihood)

• Second procedure with weight scaling inference rule (more

common):

– Multiply weight of each outgoing edge of a sampled node

i with its sampling probability pi.

– Perform single inference on full network with down-scaled

weights.

Why Does Dropout Help?

• By dropping nodes, we are forcing the network to learn with-

out the presence of some inputs (in each layer).

• Will resist co-adaptation, unless the features are truly syner-

gistic.

• Will create many (smaller) groups of self-sufficient predictors.

• Many groups of self-sufficient predictors will have a model-

averaging effect.

The Regularization Perspective

• One can view the dropping of a node as the same process as

adding masking noise.

– Noise is added to both input and hidden layers.

• Adding noise is equivalent to regularization.

• Forces the weights to become more spread out.

– Updates are distributed across weights based on sampling.

Practical Aspects of Dropout

• Typical dropout rate (i.e., probability of exclusion) is some-
where between 20% to 50%.

• Better to use a larger network with Dropout to enable learn-
ing of independent representations.

• Dropout is applied to both input layers and hidden layers.

• Large learning rate with decay and large momentum.

• Impose a max-norm constraint on the size of network
weights.

– Norm of input weights to a node upper bounded by con-
stant c.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Unsupervised Pretraining

Neural Networks and Deep Learning, Springer, 2018

Chapter 4, Section 4.7

Importance of Initialization

• Bad initializations can lead to unstable convergence.

• Typical approach is to initialize to a Gaussian with variance

1/r, where r is the indegree of the neuron.

– Xavier initialization uses both indegree and outdegree.

• Pretraining goes beyond these simple initializations by using

the training data.

Types of Pretraining

• Unsupervised pretraining: Use training data without labels

for initialization.

– Improves convergence behavior.

– Regularization effect.

• Supervised pretraining: Use training data with labels for ini-

tialization.

– Improves convergence but might overfit.

• Focus on unsupervised pretraining.

Types of Base Applications

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

xI
4

xI
3

xI
2

xI
1

xI
5

 OUTPUT OF THIS LAYER PROVIDES
REDUCED REPRESENTATION

x4

x3

x2

x1

x5

INPUT LAYER

HIDDEN LAYER

OUTPUT OF THESE LAYERS PROVIDE
REDUCED REPRESENTATION

(SUPERVISED)

x4

x3

x2

x1

x5

OUTPUT

• Both the two neural architectures use almost the same pre-

training procedure

Layer-Wise Pretraining a Deep Autoencoder

INPUT LAYER

X4

X3

X2

X1

X5

OUTPUT LAYER

XI
4

XI
3

XI
2

XI
1

XI
5

Y1

Y2

Y3

FIRST-LEVEL REDUCTION

HIDDEN LAYER

Y3

Y2

Y1

SECOND-LEVEL
REDUCTION

YI
1

YI
2

YI
3

FIRST-LEVEL
REDUCTION

Z1

Z2

(a) Pretraining first-level reduction (b) Pretraining second-level
and outer weights reduction and inner weights

• Pretraining deep autoencoder helps in convergence issues

Pretraining a Supervised Learner

• For a supervised learner with k hidden layers:

– Remove output layer and create an autoencoder with (2k−
1) hidden layers [Refer two slides back].

– Pretrain autoencoder as discussed in previous slide.

– Keep only weights from encoder portion and cap with

output layer.

– Pretrain only output layer.

– Fine-tune all layers.

Some Observations

• For unsupervised pretraining, other methods may be used.

• Historically, restricted Boltzmann machines were used before

autoencoders.

• One does not need to pretrain layer-by-layer.

– We can group multiple layers together for pretraining

(e.g., VGGNet).

– Trade-off between component-wise learning and global

quality.

Why Does Pretraining Work?

• Pretraining already brings the activations of the neural net-

work to the manifold of the data distribution.

• Features correspond to repeated patterns in the data.

• Fine-tuning learns to combine/modify relevant ones for in-

ference.

– Pretraining initializes the problem closer to the basin of

global optima.

– Hinton: “To recognize shapes, first learn to generate im-

ages.”

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Regularization in Unsupervised Applications

[Denoising, Contractive, Variational

Autoencoders]

Neural Networks and Deep Learning, Springer, 2018

Chapter 4, Section 4.10

Supervised vs Unsupervised Applications

• There is always greater tendency to overfit in supervised ap-

plications.

– In supervised applications, we are trying to learn a single

bit of target data.

– In unsupervised applications, a lot more target data is

available.

• The goal of regularization is often to provide specific prop-

erties to the reduced representation.

• Regularized autoencoders often use a larger number of hid-

den units than inputs (overcomplete).

Sparse Feature Learning

• Use a larger number of hidden units than input units.

• Add L1-penalties to the hidden layer.

– Backpropagation picks up the flow from penalties in hid-

den layer.

• Use only top activations in hidden layer.

– Backpropagate only through top activations.

– Behaves like adaptive ReLU.

Denoising Autoencoder

• Add noise to the input representation.

– Gaussian noise for real-valued data and masking noise for

binary data.

• Output remains unchanged.

• For single-layer autoencoder with linear activations, Gaussian

noise results in L2-regularized SVD.

Illustration of Denoising Autoencoder

TRUE MANIFOLD NOISY POINTS PROJECTED
ON TRUE MANIFOLD

TRUE MANIFOLD NOISY POINTS

DENOISING

DENOISING

BLURRY IMAGE SHARP IMAGE

Gradient-Based Penalization: Contractive Autoencoders

• We do not want the hidden representation to change very

significantly with small random changes in input values.

– Key point: Most random changes in full-dimensional space

are roughly perpendicular to a low-dimensional manifold

containing the training data.

• Use a regularization term which tends to selectively damp

the component of the movement perpendicular to manifold.

– Regularizer damps in all directions, but faces no resistance

in orthogonal direction to manifold.

Loss Function

• The loss function adds up the reconstruction error and uses
penalties on the gradients of the hidden layer.

L =
d∑

i=1

(xi − x̂i)
2 (3)

• Regularizer = Sum of squares of the partial derivatives of all
hidden variables with respect to all input dimensions.

• Problem with k hidden units denoted by h1 . . . hk:

R =
1

2

d∑
i=1

k∑
j=1

(
∂hj

∂xi

)2
(4)

• We want to optimize L+λR ⇒ Using single linear layer leads
to L2-regularized SVD!

Contractive Autoencoder vs Denoising Autoencoder

DENOISING AUTOENCODER LEARNS TO
DISCRIMINATE BETWEEN NOISE
DIRECTIONS AND MANIFOLD DIRECTIONS

HIDDEN REPRESENTATION ON MANIFOLD
DOES NOT CHANGE MUCH BY PERTURBING
POINT A TO POINT B

A

B

TRUE MANIFOLD TRUE MANIFOLD

DENOISING AUTOENCODER CONTRACTIVE AUTOENCODER

• Movements inconsistent with data distribution are damped.

• New data point will be projected to manifold (like denoising
autoencoder)

Variational Autoencoder

• All the autoencoders discussed so far create a deterministic

hidden representation.

• The variational autoencoder creates a stochastic hidden rep-

resentation.

• The output is a sample from the stochastic representation.

• Objective contains (i) reconstruction error of sample, and (ii)

regularization terms pushing the parameters of distribution to

unit Gaussian.

Regularization of Hidden Distribution

• The hidden distribution is pushed towards Gaussian with zero

mean and unit variance in k dimensions over the full training

data.

– However, the conditional distribution on a specific input

point will be a Gaussian with its own mean vector μ(X)

and standard deviation vector σ(X).

– The encoder outputs μ(X) and σ(X) to create samples

for decoder.

• Regularizer computes KL-divergence between N (0, I) and

N (μ(X), σ(X)).

Stochastic Architecture with Deterministic Inputs

ENCODER
NETWORK

DECODER
NETWORK

ST
DD

EV
 V

EC
TO

R

HI
DD

EN
 V

EC
TO

R

M
EA

N
 V

EC
TO

R

SAMPLED

INPUT RECONSTRUCTION

• One of the operations is sampling from hidden layer ⇒ Can-

not backpropagate!

Conversion to Deterministic Architecture with Stochastic
Inputs

ENCODER
NETWORK

ST
D

D
EV

 V
EC

TO
R

M
EA

N
 V

EC
TO

R
DECODER
NETWORK

H
ID

D
EN

 V
EC

TO
R

GAUSSIAN
SAMPLES
N(0, I)

*

+

USER GENERATED INPUT SAMPLES

INPUT RECONSTRUCTION

KL-LOSS w.r.t. N(0, I) RECONSTRUCTION LOSS

+

TOTAL LOSS

• Sampling is accomplished by using pre-generated input sam-
ples ⇒ Can backpropagate!

Objective Function

• Reconstruction loss same as other models:

L =
d∑

i=1

(xi − x̂i)
2 (5)

• Regularizer is KL-divergence between unit Gaussian and con-

ditional Gaussian:

R =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎝
||μ(X)||2︸ ︷︷ ︸
μ(X)i⇒0

+ ||σ(X)||2 − 2
k∑

i=1

ln(σ(X)i)

︸ ︷︷ ︸
σ(X)i⇒1

−k

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

• Overall objective is L+λR ⇒ Backpropagate with determin-

istic architecture!

Connections

• A variational autoencoder will regularize because stochastic

(noisy) hidden representation needs to reconstruct.

– One can interpret the mean as the representation and

the standard deviation as the noise robustness of hidden

representation.

– In a denoising autoencoder, we add noise to the inputs.

• Contractive autoencoder is also resistant to noise in inputs

(by penalizing hidden-to-input derivative).

– Ensures that hidden representation makes muted changes

with small input noise.

Comparisons

• In denoising autoencoder, noise resistance is shared by en-

coder and decoder.

– Often use both in denoising applications.

• In contractive autoencoder, encoder is responsible for noise

resistance.

– Often use only encoder for dimensionality reduction.

• In variational autoencoder, decoder is responsible for noise

resistance.

– Often use only decoder [next slide].

Variational Autoencoder is Useful as Generative Model

DECODER
NETWORK

GAUSSIAN
SAMPLES
N(0, I)

GENERATED IMAGE

• Throw away encoder and feed samples from N (0, I) to de-

coder.

• Why is this possible for variational autoencoders and not

other types of models?

Effect of the Variational Regularization

* *

*
*

**
*

*** *

o o

o

oo

o

o

o
o

o

o

o
o

oo

*

*
*
*

+

+

+

+
+

+
+

++++

+ +

... ..
..+

+

+++

+ + .

2-D LATENT EMBEDDING
(NO REGULARIZATION)

2-D LATENT EMBEDDING
(VAE)

*

*
*

*

*
*

*

*
*

o o

o
o

o

o

o

o

o
o o

o

*

*

* * +

+

+ +

+ +

+

++
+

+
+ +

..
.

.

.

..
.

..

..
o

+

.

• Most autoencoders will create representations with large dis-
continuities in the hidden space.

• Discontinuous regions will not generate meaningful points.

Applications of Variational Autoencoder

• Variational autoencoders have similar applications as Gener-

ative Adversarial Networks (GANs).

– Can also develop conditional variants to fill in missing in-

formation (like cGANs).

– More details in book.

• Quality of generated data is often not as sharp as GANs.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Radial Basis Function Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 5

Radial Basis Function Networks

• Radial basis function (RBF) networks represent a fundamen-

tally different paradigm in neural networks.

– Not deep learners ⇒ Often a single unsupervised hidden

layer is used.

– Deep learners represent an exercise in supervised feature

engineering.

• RBF networks are closely related to SVMs.

– SVMs represent a special case of RBF networks.

– Like SVMs, RBF networks are universal function approxi-

mators.

When to Use RBF Networks

• Deep networks work best when the data has rich structure

(e.g., images).

– Property of hierarchical and supervised feature engineer-

ing.

• RBF networks are best when the data is noisy (but structure

is less intricate).

– Unsupervised feature engineering is robust to noise.

RBF Network

INPUT LAYER

HIDDEN LAYER
(RBF ACTIVATION)

OUTPUT LAYER

y

x3

x2

x1

+1
BIAS NEURON
(HIDDEN LAYER)

• Single (unsupervised) hidden layer with high dimensionality
m � d and linear output layer.

• Each hidden unit contains a prototype vector and activation
depends on similarity of input to prototype (kernel similar-
ity!).

Workings of the RBF Network

• Each of m hidden units has its own prototype vector μi and

bandwidth σi.

– Common to set each σi = σ.

• For input vector X, activation hi of ith hidden unit (no

weights!):

hi = Φi(X) = exp

(
−||X − μi||2

2 · σ2i

)
∀i ∈ {1, . . . ,m} (1)

• Output layer is linear classifier/regressor with weights wi.

ŷ =
m∑

i=1

wihi [Real-valued outputs]

How do RBF Networks Classify Nonlinearly Separable

Classes?

• Work on Cover’s principle of separability of patterns.

• Transforming low-dimensional data to high-dimensional

space leads to greater ease in linear separation.

• The prototypes define local influence regions of the space.

– Each feature corresponds to a local region.

• The final layer puts each region on the appropriate side of

the separator.

Illustration of Separation Process

LINEARLY SEPARABLE IN
INPUT SPACE

NOT LINEARLY SEPARABLE IN INPUT SPACE BUT
SEPARABLE IN 4-DIMENSIONAL HIDDEN SPACE

W X = 0

(0, 0, 0, d)

(0, b, 0, 0)

(0, 0, c, 0)

(a, 0, 0, 0)

ONE HIDDEN UNIT FOR EACH CLUSTER

• One prototype from each cluster.

• Each local region is mapped to its own feature with a possible
linear separator as W = [1,−1,1,−1].

Training an RBF Network

• Training works in two phases:

– Learn the prototype vectors μi and bandwidth σ in an

unsupervised manner.

– Learn the weights of the output layer in supervised man-

ner.

∗ Straightforward training of single-layer network with en-

gineered features.

Training the Hidden Layer

• Only need to find the prototype vectors μi and bandwidth σ.

– The prototypes can be sampled from data or can be cen-

troids of clusters.

• Let dmax be maximum distance between pairs of prototypes

and dave be average distance.

– Two heuristic choices of σ are dmax/
√
m and 2 · dave.

– The bandwidth can also also be tuned on validation data.

Kernel Methods are Special Cases of RBF Networks

• Set the prototypes to all data points and:

– Linear output layer (squared loss) for kernel regres-

sion/Fisher discriminant.

– Linear output layer (hinge loss) for SVM

– Logistic output layer (log loss) for kernel logistic regres-

sion

• Proofs in book.

Are Supervised Methods Any Good?

• Supervised training methods for hidden layer discussed in

book.

• Generally, supervision of hidden layer leads to overfitting.

– Supervised feature engineering is generally done by deep

networks.

– RBF networks are too shallow!

– RBF prototype/bandwidth parameters have too compli-

cated a loss surface to be learned in a supervised manner.

• Only mild forms of supervision desirable (e.g., tuning σ or

mildly supervised prototype collection).

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Restricted Boltzmann Machines

Neural Networks and Deep Learning, Springer, 2018

Chapter 6

Restricted Boltzmann Machines

• Most of the neural architectures map inputs to outputs.

– Ideal for supervised models.

– Autoencoders can be used for unsupervised models by

replicating the output.

• Restricted Boltzmann machines are borrowed from proba-

bilistic graphical models.

– Graph of probabilistic dependencies between binary states

that are outcomes of distributions.

– Binary training data provides some examples of states.

– Ideal for unsupervised models.

Key Differences from Conventional Neural Networks

• No input to output mapping

• States are discrete samples of probability distributions with
interdependencies among samples.

• Training points provide examples of some (visible) states.

• Computational graph abstraction: The parameterized
edges define dependencies among states.

– The computational graph abstraction is main commonal-
ity (can be exploited for pre-training)

– Can approximately convert a sampling-based dependency
to real-valued operation for initialization of a related (con-
ventional) neural network

Historical Significance

• Most of the practical applications in neural networks use su-

pervised learning.

• RBMs can still be used for unsupervised pre-training of con-

ventional neural networks and also extended to supervised

learning.

– Replace binary state outcomes with fractional probabilities

– Treat fractional values as the activations of a conventional

neural network

– Pretraining owes its historical origins to RBMs

Defining a Restricted Boltzmann Machine

HIDDEN STATES

v1 v2 v3 v4

h1
h2 h3

VISIBLE STATES

• Bipartite graph of binary hidden states and visible states con-
nected by undirected edges signifying probabilistic dependen-
cies ⇒ Origin of word “restricted” from bipartite model

An Interpretable Boltzmann Machine

PARENTS SEE
HIDDEN STATES
[TRUCKS]

CONES SUNDAE POPSICLE CUP

BEN’S
TRUCK

JERRY’S
TRUCK

TOM’S
TRUCK

CHILD ONLY SEES VISIBLE
STATES [ICECREAMS] FROM
DAILY TRAINING DATA AND
MODELS THE WEIGHTS

PARENTS LIKELY TO
BUY DIFFERENT ITEMS

FROM DIFFERENT TRUCKS
[ENCODED IN WEIGHTS]

• Undirected model ⇒ Probability to buy icecreams and pick
trucks depend on one another (using weights)

What Kind of Model does a Restricted Boltzmann
Machine Build?

• Probability distributions of the binary hidden and visible
states depend on one another.

– Weights on edges control probabilistic dependencies.

– Training data assumed to be samples of visible states.

• We want to learn weights that are “consistent” with training
samples.

• Use energy function to force “consistency” ⇒ Unsupervised
model.

• The model can use learned weights to output samples that
are consistent with training data ⇒ Generative model.

Notations

• We assume that the binary hidden units are h1 . . . hm and the

visible units are v1 . . . vd.

• The bias associated with the visible node vi be denoted by

b
(v)
i .

• The bias associated with hidden node hj is denoted by b
(h)
j .

• The weight of the edge between visible node vi and hidden

node hj is denoted by wij.

• Can be generalized to non-binary data with some work.

Probabilistic Relationships

• Want to learn weights wij so that samples of the training

data are most “consistent” with the following relationships:

P(hj = 1|v) =
1

1+ exp(−b
(h)
j −∑d

i=1 viwij)
(1)

P(vi = 1|h) =
1

1+ exp(−b
(v)
i −∑m

j=1 hjwij)
(2)

• Use energy function to force consistency by minimizing ex-

pected value of E = −∑
i b

(v)
i vi −

∑
j b

(h)
j hj −

∑
i,j:i<j wijvihj

How Data is Generated from a Boltzmann Machine

• Data is generated by using Gibb’s sampling.

• Randomly initialize visible states and then sample hidden

states using Equation 1 (previous slide).

• Alternately sample hidden states and visible states using

Equations 1 and 2 until thermal equilibrium is reached.

• A particular set of visible states at thermal equilibrium pro-

vides a sample of a binary training vector.

• The weights implicitly encode the distribution by defining

probabilistic dependencies.

Intuition for Weights

• Consider weights like affinities ⇒ Large positive values of wij

imply that states will be “on ” together.

• We already have samples showing which visible states are

“on” together.

• Weights will be learned in such a way that hidden states will

be connected to correlated visible states with large weights.

– Biological motivation: In Hebbian learning, a synapse

between two neurons is strengthened when the neurons on

either side of the synapse have highly correlated outputs.

– Contrastive divergence algorithm learns weights.

Overview of Contrastive Divergence

• Positive phase: Draw b instances of hidden states based

on visible states fixed to each of a mini-batch of b training

points ⇒ Yields 〈vi, hj〉pos

• Negative phase: For each of the b instances in positive

phase continue to alternately sample visible states and hidden

states from one another for r iterations ⇒ Yields 〈vi, hj〉neg
wij ⇐ wij + α

(
〈vi, hj〉pos − 〈vi, hj〉neg

)

b
(v)
i ⇐ b

(v)
i + α (〈vi,1〉pos − 〈vi,1〉neg)

b
(h)
j ⇐ b

(h)
j + α

(
〈1, hj〉pos − 〈1, hj〉neg

)

Remarks on Contrastive Divergence

• Strictly speaking, the negative phase needs a very large num-
ber of iterations to reach thermal equilibrium in negative
phase.

• Positive phase requires only one iteration because visible
states are fixed to training points.

• Contrastive divergence says that only a small number of it-
erations of negative phase are sufficient for “good” update
of weight vector (even without thermal equilibrium).

• In the early phases of training, one iteration is enough for
“good” update.

• Can increase number of iterations in later phases.

Utility of Unsupervised Learning

• One can use an RBM to initialize an autoencoder for binary

data (later slides).

• Treat the sigmoid-based sampling as an a sigmoid activation.

• Basic idea can be extended to multilayer neural networks by

using stacked RBMs.

– One of the earliest methods for pretraining.

Equivalence of Directed and Undirected Models

HIDDEN STATES

VISIBLE STATES

HIDDEN STATES

VISIBLE STATES

EQUIVALENCE
W W WT

• Replace undirected edges with directed edges

h ∼ Sigmoid(v, b
(h)

,W)

v ∼ Sigmoid(h, b
(v)

,WT)

• Replace sampling with real-valued operations

Using a Trained RBM to Initialize a Conventional
Autoencoder

HIDDEN STATES

VISIBLE STATES

W WT HIDDEN STATES
(REDUCED FEATURES)

VISIBLE STATES (FIXED)

W

WT

VISIBLE STATES
(RECONSTRUCTED)

FIX VISIBLE STATES
IN A LAYER TO

INPUT DATA POINT

REPLACE DISCRETE
SAMPLING WITH
REAL-VALUED
PROBABILITIES

• Architecture on right uses real-valued sigmoid operations
rather than discrete operations ⇒ Conventional autoen-
coder!.

ĥj =
1

1+ exp(−b
(h)
j −∑d

i=1 viwij)
(3)

v̂i =
1

1+ exp(−b
(v)
i −∑m

j=1 ĥjwij)
(4)

Why Use an RBM to Initialize a Conventional Neural

Network?

• In the early years, conventional neural networks did not train

well (especially with increased depth).

– Vanishing and exploding gradient problems

– RBM trains with contrastive divergence (no vanishing and

exploding gradient)

• Real-valued approximation was used with stacked RBMs to

initialize deep networks

• Approach was generalized to conventional autoencoders later

Stacked RBM

RBM 3

RBM 2

RBM 1

COPY

COPY

STACKED
REPRESENTATION

W1

W2

W3

THE PARAMETER MATRICES W1, W2, and W3
ARE LEARNED BY SUCCESSIVELY TRAINING
RBM1, RBM2, AND RBM3 INDIVIDUALLY

(PRE-TRAINING PHASE)

• Train different layers sequentially

Stacked RBM to Conventional Neural Network

W1

W2

W3

W1
T

W2
T

W3
T

FIX TO INPUT

RECONSTRUCTION (TARGET=INPUT)

CODE

ENCODER

DECODER

FINE-TUNE
(BACKPROP)

W1+E6

W2+E5

W3+E4

W1
T +E1

W2
T+E2

W3
T+E3

FIX TO INPUT

RECONSTRUCTION (TARGET=INPUT)

CODE

ENCODER

DECODER

Applications

• Pretraining can be used for supervised and unsupervised ap-

plications

– Collaborative filtering: Was a component of Netflix prize

contest

∗ Gives different results from an autoencoder-like archi-

tecture in an earlier lecture

– Topic models

– Classification

Collaborative Filtering

0 10 10 11 10
E.T. (RATING=4)

0 10 10 10 11
SHREK (RATING=5)

HI
DD

EN
 U

N
IT

S

h1

h2

0 11 10 10 10
E.T. (RATING=2)

0 10 10 10 11
NIXON (RATING=5)

0 10 10 11 10
GANDHI (RATING=4)

0 10 11 10 10
NERO (RATING=3)

h1

h2

HI
DD

EN
 U

N
IT

S

• Changes for softmax activations and shared weights across

RBMs

Topic Models

BINARY HIDDEN
STATES
BINARY HIDDEN
STATES

MULTINOMIAL
VISIBLE STATES

LEXICON
SIZE d IS
TYPICALLY
LARGER
THAN
DOCUMENT
SIZE

NUMBER OF SOFTMAX UNITS EQUALS
DOCUMENT SIZE FOR EACH RBM

h4h3h2h1

VISIBLE UNITS SHARE SAME
SET OF PARAMETERS BUT
NOT HIDDEN UNITS

Classification

• Can be used for unsupervised pretraining for classification

– Goal of RBM is only to learn features in unsupervised way

– Class label does not get a state in RBM

• Can also be used to train by treating a class label as a state.

– Hidden features are connected to both class variables and

feature variables.

– Generative approach of RBMs does not fully optimize for

classification accuracy ⇒ Need discriminative Boltzmann

Machines (Larochelle et al).

Classification Architecture

MULTINOMIAL VISIBLE STATES
(CLASSES)

BINARY HIDDEN STATES

BINARY VISIBLE STATES
(FEATURES)

W U

Comments

• RBMs represent a special case of probabilistic graphical mod-

els.

• Provides an alternative to the autoencoder.

• Can be extended to non-binary data.

• These models are not quite as popular anymore.

• Significant historical significance in starting the idea of pre-

training for deep models.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Recurrent Neural Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 7.1–7.2

The Challenges of Processing Sequences

• Conventional neural networks have a fixed number of (pos-

sibly independent) input dimensions and outputs.

• Sequences often have variable length in which the different

items (dimensions) of the sequence are related to one an-

other:

– Words in a sentence.

– Values in a time-series

– Biological sequences

• Recurrent neural networks address such domains.

Problems with Conventional Architecture [Sentiment
Analysis]

ONE-HOT ENCODED INPUTS

HIDDEN LAYER

OUTPUT LAYER
y

x4

x3

x2

x1

x5

ANALYTICS

IS

HARDLY

FUN

ANY

• The architecture above cannot handle sequences of length
larger than 5.

• The sequential relationship among input elements is not en-
coded well.

– Distinguish “cat chased mouse” and “mouse chased cat”

Problems with Conventional Architecture

ONE-HOT ENCODED INPUTS

HIDDEN LAYER

OUTPUT LAYER
y

x4

x3

x2

x1

x5

ANALYTICS

MUST

BE

????

FUN

MISSING

• Small changes in word ordering change sentiment.

• Missing inputs if sequence is too small.

• How do you create an architecture with variable number of
inputs but fixed number of parameters?

– Machine translation has variable number of outputs!

Desiderata for Architecture Processing Sequences

• The ith element of the sequence should be fed into the neural
network after the network has had a chance to see what has
come before it.

– Can be enforced by feeding ith element of sequence into
layer i.

– Each layer associated with a time-stamp (variable number
of layers).

• Markov Property: Any element of the sequence can be
predicted from its preceding elements using a fixed model.

– Can be (approximately) enforced by using shared weights
across layers.

– Number of weight parameters independent of number of
layers!

A Time-Layered Recurrent Network [Predicting Next
Word]

Whh

x1

h1

y1

Wxh

Why

x2

h2

y2

Wxh

Why

x3

h3

y3

Wxh

Why

x4

h4

y4

Wxh

WhyWhh Whh

the cat chased the

cat chased the mouseTARGET
WORDS

INPUT
WORDS

xt

ht

yt

Wxh

Whh

Why

ONE-HOT
ENCODED

WORD

PREDICTED
WORD

LIKELIHOODS

HIDDEN
REPRESENTATION

• Note that the weight matrices Wxh, Whh, and Why are shared
across layers (vector architecture).

• An input xt directly encounters the hidden state constructed
from all inputs before it.

Variations

NO MISSING
INPUTS OR
OUTPUTS

[EXAMPLE:
FORECASTING,

LANGUAGE
MODELING]

MISSING INPUTS
[EXAMPLE: IMAGE CAPTIONING]

MISSING OUTPUTS
]EXAMPLE: SENTIMENT

ANALYSIS] MISSING OUTPUTS

MISSING INPUTS
[EXAMPLE:

TRANSLATION]

• One does not need to have inputs and outputs at each time
stamp!

Recurrent Network: Basic Computations

Whh

x1

h1

y1

Wxh

Why

x2

h2

y2

Wxh

Why

x3

h3

y3

Wxh

Why

x4

h4

y4

Wxh

WhyWhh Whh

the cat chased the

cat chased the mouseTARGET
WORDS

INPUT
WORDS

xt

ht

yt

Wxh

Whh

Why

ONE-HOT
ENCODED

WORD

PREDICTED
WORD

LIKELIHOODS

HIDDEN
REPRESENTATION

• ht = f(ht−1, xt) = tanh(Wxhxt + Whhht−1) [Typical hidden-

to-hidden]

• yt = Whyht [Real-valued hidden-to-output ⇒ Optional and

depends on output layer]

Flexibility for Variable-Length Inputs

• We define the function for ht in terms of t inputs.

• We have h1 = f(h0, x1) and h2 = f(f(h0, x1), x2).

– The vector h1 is a function of only x1, whereas h2 is a

function of both x1 and x2.

• The vector ht is a function of x1 . . . xt.

– Can provide an output based on entire history.

Language Modeling Example: Predicting the Next Word

Whh

Wxh

Why

Wxh

Why

Wxh

Why

Wxh

Why
Whh Whh

the cat chased the

cat chased the mouse

1
0
0
0

0
1
0
0

0
0
1
0

1
0
0
0

-1.2
1.3

-0.8
1.7

SCORE OF ‘CAT’
SCORE OF ‘CHASED’

SCORE OF ‘THE’

SCORE OF ‘MOUSE’

-0.4
-1.7
1.9

-1.6

1.7
0.4

-1.9
1.1

-1.8
0.8

-1.3
1.8

0.8
0.7

0.6
0.8

0.6
-0.9

-0.8
0.4

• Predicting the next word for the sentence “The cat chased

the mouse.”

• Lexicon of size four.

Multilayer Recurrent Networks

y1 y2 y3 y4

x1 x2 x3 x4

the cat chased the

cat chased the mouse

INPUT
WORDS

TARGET
WORDS

h
(k)
t = tanh W (k)

⎡
⎣ h

(k−1)
t

h
(k)
t−1

⎤
⎦

Training a Recurrent Network

• Main difference from traditional backpropagation is the issue

of shared parameters:

– Pretend that the weights are not shared and apply normal

backpropagation to compute the gradients with respect

to each copy of the weights.

– Add up the gradients over the various copies of each

weight.

– Perform the gradient-descent update.

• Algorithm is referred to as “backpropagation through time.”

Truncated Backpropagation through Time

• The number of layers in a recurrent network depends on the

the length of the sequence.

• Causes problems in memory, speed, and convergence.

– Process chunk by chunk (around 100 sequence ele-

ments/layers).

– Compute forward states exactly using the final state of

previous chunk.

– Compute loss backpropagation only over current chunk

and update parameters ⇒ Analogous to stochastic gradi-

ent descent.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Applications of Recurrent Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 7.7

Recurrent Neural Network Applications are Architecture

Sensitive!

NO MISSING
INPUTS OR
OUTPUTS

[EXAMPLE:
FORECASTING,

LANGUAGE
MODELING]

MISSING INPUTS
[EXAMPLE: IMAGE CAPTIONING]

MISSING OUTPUTS
]EXAMPLE: SENTIMENT

ANALYSIS] MISSING OUTPUTS

MISSING INPUTS
[EXAMPLE:

TRANSLATION]

Missing Inputs

• Missing inputs represent a bigger challenge than missing out-
puts.

– Missing inputs often occur at inference when output is
sequence

– Language modeling/Image captioning/machine transla-
tion

– How to generate the second word in caption without
knowing the first?

• Simply setting missing inputs to random values will result in
bias

• Missing inputs are sequentially sampled from outputs at in-
ference time [discussed a few slides later]

Observations

• Most of the applications use advanced variants like LSTMs

and bidirectional recurrent networks.

– Advanced variants covered in later lectures.

• Describe general principles using a simple recurrent network.

• Principles generalize easily to any type of architecture.

Language Modeling: Predicting the Next Word

Whh

Wxh

Why

Wxh

Why

Wxh

Why

Wxh

Why
Whh Whh

the cat chased the

cat chased the mouse

1
0
0
0

0
1
0
0

0
0
1
0

1
0
0
0

-1.2
1.3

-0.8
1.7

SCORE OF ‘CAT’
SCORE OF ‘CHASED’

SCORE OF ‘THE’

SCORE OF ‘MOUSE’

-0.4
-1.7
1.9

-1.6

1.7
0.4

-1.9
1.1

-1.8
0.8

-1.3
1.8

0.8
0.7

0.6
0.8

0.6
-0.9

-0.8
0.4

• Predicting the next word for the sentence “The cat chased
the mouse.”

• Can be used for time-series prediction.

Generating a Language Sample

• Predicting next word is straightforward (all inputs available).

• Predicting a language sample runs into the problem of miss-

ing inputs.

– Sample a token generated at each time-stamp, and input

to next time-stamp.

– To improve accuracy, use beam search to expand on the

most likely possibilities by always keeping track of the b

best sequence prefixes of any particular length.

– One can generate an arbitrary sequence of text that re-

flects the training data set.

Tiny Shakespeare Character-Level RNN: Karpathy,

Johnson, Fei-Fei

• Executed code from https://github.com/karpathy/char-rnn

• After 5 iterations:

KING RICHARD II:

Do cantant,-’for neight here be with hand her,-

Eptar the home that Valy is thee.

NORONCES:

Most ma-wrow, let himself my hispeasures;

An exmorbackion, gault, do we to do you comforr,

Laughter’s leave: mire sucintracce shall have theref-Helt.

Tiny Shakespeare Character-Level RNN: Karpathy,

Johnson, Fei-Fei

• After 50 iterations:

KING RICHARD II:

Though they good extremit if you damed;

Made it all their fripts and look of love;

Prince of forces to uncertained in conserve

To thou his power kindless. A brives my knees

In penitence and till away with redoom.

GLOUCESTER:

Between I must abide.

What Good is Language Modeling?

• Generating a language sample might seem like an exercise in

futility.

– Samples are syntactically correct but not semantically

meaningful.

• Samples are often useful when conditioned on some other

data:

– Conditioning on an image: Image captioning

– Conditioning on a sequence: Machine translation and

sequence-to-sequence learning

Image Captioning

Whh

x1

h1

y1

Wxh

Why

x2

h2

y2

Wxh

Why

x3

h3

y3

Wxh

Why

x4

h4

y4

Wxh

WhyWhh Whh

<START> cosmic winter wonderland

cosmic winter wonderland <END>

CONVOLUTIONAL
NEURAL

NETWORK
V

• Language sample conditioned on an image ⇒ Provides mean-

ingful descriptions of images

• Need START and END tokens

Machine Translation and Sequence-to-Sequence Learning

I don’t understand Spanish

y1 y2 y3 y4

<EOS> No entiendo español

No <EOS>entiendo español
RNN1 RNN2

RNN1 LEARNS REPRESENTATION
OF ENGLISH SENTENCE FOR
MACHINE TRANSLATION

(CONDITIONED SPANISH LANGUAGE MODELING)

Wes

• Can be used for any sequence-to-sequence application includ-

ing self-copies (recurrent autoencoders)

Sentence-Level Classification

Whh

x1

h1

Wxh

x2

h2

Wxh

x3

h3

Wxh

Whh Whh

I love this

x4

h4

Wxh

ipod

x5

h5

y

Wxh

Why

<EOS>

Whh

CLASS
LABEL

Positive Sentiment

• Single target at the very end of the sentence.

Token-Level Classification

Whh

x1

h1

Wxh

x2

h2

Wfh

x3

h3

Wfh

x4

h4

Wxh

Whh Whh

William Jefferson Clinton lives

Whh

x5

h5

Wfh

x6

h6

Wfh

x7

h7

Wfh

WhhWhh

y5

Why

y6

Why

y7

Why

OTHER LOCATION

y1

Why

y2

Why

y3

Why

y4

Why

PERSON OTHERPERSON PERSON

f1

Wfh

f2

Wxh

f3

Wxh

f4

Wfh

f5

Wxh Wxh

f6

Wxh

f7

in New York

LOCATION

ONE-HOT
ENCODED

WORD

LINGUISTIC
FEATURES

• Label output for each token.

Temporal Recommender Systems

FEEDFORWARD
NETWORK

(STATIC ITEM
EMBEDDING)

FEEDFORWARD
NETWORK

(STATIC USER
EMBEDDING)

RECURRENT
NETWORK

(DYNAMIC USER
EMBEDDING AT t)

FUSED USER
EMBEDDING AT t

STATIC ITEM FEATURES
(e.g., item description)

STATIC USER FEATURES
(e.g., user profile/all accessed items)

DYNAMIC USER FEATURES at t
(e.g., short window of accesses)

RATING VALUE AT TIME STAMP t

• Label output for each token.

Protein Structure Prediction

• The elements of the sequence are the symbols representing

one of the 20 amino acids.

• The 20 possible amino acids are akin to the vocabulary used

in the text setting.

• Each position is associated with a class label: alpha-helix,

beta-sheet, or coil.

– The problem can be reduced to token-level classification.

Speech and Handwriting Recognition

• Speech and handwriting recognition are sequential applica-

tions.

– Frame representation of audios is transcribed into charac-

ter sequence.

– Convert sequence of strokes into character sequence.

– Details and references in book.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

LSTMs and GRUs

Neural Networks and Deep Learning, Springer, 2018

Chapters 7.5 and 7.6

Vanishing and Exploding Gradient Problems

w1 ∑ ∑w2 wm-1w3 ∑
h1 h2 hm-1

wm ∑

• Neural network with one node per layer.

• Backpropagated partial derivative get multiplied by weights

and activation function derivatives.

• Unless the values are exactly one, the partial derivatives will

either continuously increase (explode) or decrease (vanish).

Generalization to Multi-Node Layers

• Vectorwise back-propagation is done by using the Jacobian

J.

gt = JTgt+1 (1)

• The (i, j)th entry of J is the (i, j)th entry of the square

hidden-to-hidden matrix Whh multiplied with the derivative

of the tanh function at the current value in node j.

• Gradients cause successive multiplication with transposed Ja-

cobian JT = PΔP−1.

• Multiplying m times leads to (JT)m = PΔmP−1 ⇒ Largest

eigenvalue decides everything!

Other Issues with Recurrent Networks

• Hard to retain the information in a hidden state with succes-

sive matrix multiplications.

– Hidden states of recurrent networks are inherently short-

term.

– No mechanism for fine-grained control of what informa-

tion to retain from hidden states.

• The LSTM uses analog gates to control the flow of informa-

tion.

Recap: Multilayer Recurrent Networks

y1 y2 y3 y4

x1 x2 x3 x4

the cat chased the

cat chased the mouse

INPUT
WORDS

TARGET
WORDS

h
(k)
t = tanh W (k)

⎡
⎣ h

(k−1)
t

h
(k)
t−1

⎤
⎦

Long-Term vs Short Term Memory

• A recurrent neural network only carries forward a hidden state

h
(k)
t across time layers.

• An LSTM carries forward both a hidden state h
(k)
t and a cell

state c
(k)
t .

– The hidden state is like short-term memory (updated ag-

gressively).

– The cell state is like long-term memory (updated gently).

– Gates used to control updates from layer to layer.

– Leaking between short-term and long-term memory al-

lowed.

Setting Up Intermediate Variables and Gates

• Assume that hidden state and cell state are p-dimensional
vectors.

• The matrix W (k) is of size 4p× 2p [4p× (p+ d) for k = 1].

• The intermediate variables are p-dimensional vector variables
i, f , o, and c that can be stacked to create a 4p-dimensional
vector:

Input Gate:
Forget Gate:
Output Gate:
Cell Increment:

⎡
⎢⎢⎢⎣

i
f
o
c

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎝

sigm
sigm
sigm
tanh

⎞
⎟⎟⎟⎠ W (k)

⎡
⎣ h

(k−1)
t

h
(k)
t−1

⎤
⎦ (2)

• Right-hand side of update equation looks similar to that of
a multilayer recurrent network, except that we are setting up
4 intermediate variable vectors.

Updating Cell States and Hidden States

• Selectively forget and/or add to long-term memory

c
(k)
t = f � c

(k)
t−1︸ ︷︷ ︸

Reset?

+ i� c︸ ︷︷ ︸
Increment?

(3)

– Long-term memory can be thought of as iterative feature

engineering rather than hierarchical feature engineering ⇒
Principle used in ResNet

• Selectively leak long-term memory to hidden state

h
(k)
t = o� tanh(c(k)t) (4)

– In some variations, the tanh function is not used in Equa-

tion 4, and the raw cell state is used.

Intuition for LSTM

• Examine the LSTM with single dimension:

ct = ct−1 ∗ f + i ∗ c (5)

• Partial derivative of ct with respect to ct−1 is f ⇒ multiply

gradient flow with f !

• Element wise multiplication ensures that the result is also

true for p-dimensional states.

• Each time-stamp has a different values of f ⇒ less likely to

cause vanishing gradients

• Gradient flow for ct inherited by ht because ht = o ∗ tanh(ct)

Gated Recurrent Unit

• Simplification of LSTM but not a special case.

– Does not use explicit cell states.

– Controls updates carefully.

GRU Updates

• Use two matrices W (k) and V (k) of sizes 2p× 2p and p× 2p,

respectively.

– In the first layer, the matrices are of sizes 2p× (p+d) and

p× (p+ d).

• intermediate, p-dimensional vector variables zt and rt, respec-

tively ⇒ Update and reset gates

Update Gate:
Reset Gate:

[
z
r

]
=

(
sigm
sigm

)
W (k)

⎡
⎣ h

(k−1)
t

h
(k)
t−1

⎤
⎦ (6)

h
(k)
t = z � h

(k)
t−1 + (1− z)� tanh V (k)

⎡
⎣ h

(k−1)
t

r � h
(k)
t−1

⎤
⎦ (7)

Explanation of Updates

• The reset gate r decides how much of the hidden state to

carry over from the previous time-stamp for a matrix-based

transformation.

• The update gate z decides the relative strength of the matrix-

based update and a more direct copy from previous time

stamp.

• The direct copy from the previous time stamp stabilizes the

gradient flows.

Intuition for GRU

• Consider a 1-dimensional and single-layer GRU update:

ht = z · ht−1 + (1− z) · tanh[v1 · xt + v2 · r · ht−1] (8)

• One can compute the derivative as follows:

∂ht

∂ht−1
= z + (Additive Terms) (9)

• The extra term z ∈ (0,1) helps in passing unimpeded gradient
flow and makes computations more stable.

– Additive terms heavily depend on (1− z).

– Gradient factors are different for each time stamp.

• These networks are sometimes referred to as highway net-
works.

Comparisons of LSTM and GRU

• K. Greff et al. LSTM: A search space odyssey. IEEE TNNLS,
2016.

– Many variants of LSTM equations.

• J. Chung et al. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv:1412.3555, 2014.

• R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical
exploration of recurrent network architectures. International
Conference on Machine Learning, pp. 2342–2350, 2015.

• Main advantage of GRU is simplicity.

• None of the LSTM variants could perform better than it in
a reliable way.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Convolutional Neural Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 8.1–8.2

Convolutional Neural Networks

• Like recurrent neural networks, convolutional neural networks

are domain-aware neural networks.

– The structure of the neural network encodes domain-

specific information.

– Specifically designed for images.

• Images have length, width, and a depth corresponding to the

number of color channels (typically 3: RGB).

• All layers are spatially structured with length, width, and

depth.

History

• Motivated by Hubel and Wiesel’s understanding of the cat’s

visual cortex.

– Particular shapes in the visual field excite neurons ⇒
Sparse connectivity with shared weights.

– Hierarchical arrangement of neurons into simple and com-

plex cells.

– Neocognitron was first variant ⇒ Motivated LeNet-5

• Success in ImageNet (ILSVRC) competitions brought atten-

tion to deep learning.

Basic Structure of a Convolutional Neural Network

• Most layers have length, width, and depth.

– The length and width are almost always the same.

– The depth is 3 for color images, 1 for grayscale, and an

arbitrary value for hidden layers.

• Three operations are convolution, max-pooling, and ReLU.

– Maxpooling substituted with strided convolution in recent

years.

– The convolution operation is analogous to the matrix mul-

tiplication in a conventional network.

Filter for Convolution Operation

• Let the input volume of layer q have dimensions Lq×Bq× dq.

• The operation uses a filter of size Fq × Fq × dq.

– The filter’s spatial dimensions must be no larger than

layer’s spatial dimensions.

– The filter depth must match input volume.

– Typically, the filter spatial size Fq is a small odd number

like 3 or 5.

Convolution Operation

• Spatially align the top-left corner of filter with each of (Lq −
Fq +1)× (Bq − Fq +1) spatial positions.

– Corresponds to number of positions for top left corner in

input volume, so that filter fully fits inside layer volume.

• Perform elementwise multiplication between input/filter over

all Fq × Fq × dq aligned elements and add.

• Creates a single spatial map in the output of size (Lq − Fq +

1)× (Bq − Fq +1).

• Multiple filters create depth in output volume.

Convolution Operation: Pictorial Illustration of

Dimensions

DEPTH DEFINED BY NUMBER
OF DIFFERENT FILTERS (5)

5

3

3

32

32

28

28

5

5

INPUT

FILTER

OUTPUT

DEPTH OF INPUT AND
FILTER MUST MATCH

IMAGE

1

0

1 1

0 0

-1 -1 -1

HORIZONTAL EDGE
DETECTING FILTER

ZERO ACTIVATION

HIGH ACTIVATION

(a) Input and output dimensions (b) Sliding the filter

Convolution Operation: Numerical Example with Depth 1

CONVOLVE

1

0

1 0

1 0

0 0 2

6 3 4

4 7 4

7 0 2

5

8

8

0

6 4

1

3 7 0 3

5

2 5 4

1

0 6

43 0

0

4 5

0

0 4 0

3 4

5

5

1

0

0

2

7

2

4

3

16 16

26

FILTER

INPUT

18

OUTPUT

25

14

15

16

20

7

14

15

16

21

16

21

21

7

14

3

16

2

16

16

26

13

15

23

• Add up over multiple activations maps from the depth

Understanding Convolution

• Sparse connectivity because we are creating a feature from

a region in the input volume of the size of the filter.

– Trying to explore smaller regions of the image to find

shapes.

• Shared weights because we use the same filter across entire

spatial volume.

– Interpret a shape in various parts of the image in the same

way.

Effects of Convolution

• Each feature in a hidden layer captures some properties of a

region of input image.

• A convolution in the qth layer increases the receptive field of

a feature from the qth layer to the (q +1)th layer.

• Consider using a 3× 3 filter successively in three layers:

– The activations in the first, second, and third hidden lay-

ers capture pixel regions of size 3 × 3, 5 × 5, and 7 × 7,

respectively, in the original input image.

Need for Padding

• The convolution operation reduces the size of the (q +1)th

layer in comparison with the size of the qth layer.

– This type of reduction in size is not desirable in general,

because it tends to lose some information along the bor-

ders of the image (or of the feature map, in the case of

hidden layers).

• This problem can be resolved by using padding.

• By adding (Fq − 1)/2 “pixels” all around the borders of the

feature map, one can maintain the size of the spatial image.

Application of Padding with 2 Zeros

6 3 4

4 7 4

7 0 2

5

8

8

0

6 4

1

3 7 0 3

5

2 5 4

1

0 6

43 0

0

4 5

0

0 4 0

3 4

5

5

1

0

0

2

7

2

4

3 6 3 4

4 7 4

7 0 2

5

8

8

0

6 4

1

3 7 0 3

5

2 5 4

1

0 6

43 0

0

4 5

0

0 4 0

3 4

5

5

1

0

0

2

7

2

4

3

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

PAD

Types of Padding

• No padding: When no padding is used around the borders of

the image ⇒ Reduces the size of spatial footprint by (Fq−1).

• Half padding: Pad with (Fq − 1)/2 “pixels” ⇒ Maintain size

of spatial footprint.

• Full padding: Pad with (Fq − 1) “pixels” ⇒ Increase size of

spatial footprint with (Fq − 1).

2 ∗Amount Padded + Size Reduction = (Fq − 1) (1)

• Note that amount padded is on both sides ⇒ Explains factor

of 2

Strided Convolution

• When a stride of Sq is used in the qth layer, the convolution

is performed at the locations 1, Sq + 1, 2Sq + 1, and so on

along both spatial dimensions of the layer.

• The spatial size of the output on performing this convolution

has height of (Lq−Fq)/Sq+1 and a width of (Bq−Fq)/Sq+1.

– Exact divisibility is required.

• Strided convolutions are sometimes used in lieu of max-

pooling.

Max Pooling

• The pooling operation works on small grid regions of size
Pq × Pq in each layer, and produces another layer with the
same depth.

• For each square region of size Pq × Pq in each of the dq
activation maps, the maximum of these values is returned.

• It is common to use a stride Sq > 1 in pooling (often we have
Pq = Sq).

• Length of the new layer will be (Lq − Pq)/Sq + 1 and the
breadth will be (Bq − Pq)/Sq +1.

• Pooling drastically reduces the spatial dimensions of each
activation map.

Pooling Example

6 3 4

4 7 4

7 0 2

5

8

8

0

6 4

1

3 7 0 3

5

2 5 4

1

0 6

43 0

0

4 5

0

0 4 0

3 4

5

5

1

0

0

2

7

2

4

3

8 8

7

INPUT

7

OUTPUT

7

8

8

8

7

7

8

8

8

5

5

5

6

6

5

5

5

6

6

5

7

7

7

6

5

7

7 5

8 5

8 6 6

3X3 POOLING
STRIDE=1

3X3 POOLING
STRIDE=1

3X3 POOLING
STRIDE=1

OUTPUT

ReLU

• Use of ReLU is a straightforward one-to-one operation.

• The number of feature maps and spatial footprint size is

retained.

• Often stuck at the end of a convolution operation and not

shown in architectural diagrams.

Fully Connected Layers: Stuck at the End

• Each feature in the final spatial layer is connected to each
hidden state in the first fully connected layer.

• This layer functions in exactly the same way as a traditional
feed-forward network.

• In most cases, one might use more than one fully connected
layer to increase the power of the computations towards the
end.

• The connections among these layers are exactly structured
like a traditional feed-forward network.

• The vast majority of parameters lie in the fully connected
layers.

Interleaving Between Layers

• The convolution, pooling, and ReLU layers are typically in-

terleaved in order to increase expressive power.

• The ReLU layers often follow the convolutional layers, just

as a nonlinear activation function typically follows the linear

dot product in traditional neural networks.

• After two or three sets of convolutional-ReLU combinations,

one might have a max-pooling layer.

• Examples:

CRCRP

CRCRCRP

Example: LeNet-5: Full Notation

INPUT: GRAYSCALE
FEATURE MAP
OF PIXELS

32

32

5

5

28

28

2

6

2

6

14

14

5

5
10

2
2

16

10

16

5

5

C1

S2 C3 S4

120
84 10

C5 F6
O

SUBSAMPLING OPERATIONS

CONVOLUTION OPERATIONS

• The earliest convolutional network

Example: LeNet-5: Shorthand Notation

INPUT: GRAYSCALE
FEATURE MAP

OF PIXELS

32

32

5

5

28

28

5

6

5

C1

10

16

10

C3

120
84 10

C5 F6
O

SS

SS

SUBSAMPLING/MAX-POOLING SHOWN IMPLICITLY AS “SS” OR “MP”

• Subsampling layers are not explicitly shown

Feature Engineering

IMAGE

HORIZONTAL
EDGES DETECTED1

0

1 1

0 0

-1 -1 -1

FILTER

-1

-1

1 0

1 0

1 0 -1

FILTER
VERTICAL EDGES

DETECTED

NEXT LAYER FILTER
(VISUALIZATION

UNINTERPRETABLE)
RECTANGLE

DETECTED

• The early layers detect primitive features and later layers
complex ones.

• During training the filters will be learned to identify relevant
shapes.

Hierarchical Feature Engineering

• Successive layers put together primitive features to create

more complex features.

• Complex features represent regularities in the data, that are

valuable for features.

• Mid-level features might be honey-combs.

• Higher-level features might be a part of a face.

• The network is a master of extracting repeating shapes in

data-driven manner.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Backpropagation in Convolutional Neural

Networks and Its Visualization Applications

Neural Networks and Deep Learning, Springer, 2018

Chapter 8.3, 8.5

Backpropagation in Convolutional Neural Networks

• Three operations of convolutions, max-pooling, and ReLU.

• The ReLU backpropagation is the same as any other network.

– Passes gradient to a previous layer only if the original input

value was positive.

• The max-pooling passes the gradient flow through the largest

cell in the input volume.

• Main complexity is in backpropagation through convolutions.

Backpropagating through Convolutions

• Traditional backpropagation is transposed matrix multiplica-
tion.

• Backpropagation through convolutions is transposed convo-
lution (i.e., with an inverted filter).

• Derivative of loss with respect to each cell is backpropagated.

– Elementwise approach of computing which cell in input
contributes to which cell in output.

– Multiplying with an inverted filter.

• Convert layer-wise derivative to weight-wise derivative and
add over shared weights.

Backpropagation with an Inverted Filter [Single Channel]

c

f

a b

d e

g h i

FILTER DURING
CONVOLUTION

g

d

i h

f e

c b a

FILTER DURING
BACKPROPAGATION

• Multichannel case: We have 20 filters for 3 input channels

(RGB) ⇒ We have 20× 3 = 60 spatial slices.

• Each of these 60 spatial slices will be inverted and grouped

into 3 sets of filters with depth 20 (one each for RGB).

• Backpropagate with newly grouped filters.

Convolution as a Matrix Multiplication

• Convolution can be presented as a matrix multiplication.

– Useful during forward and backward propagation.

– Backward propagation can be presented as transposed

matrix multiplication

Convolution as a Matrix Multiplication

FLATTEN TO
9-DIMENSIONAL

VECTOR
4

7

1 3

9 6

5 0 2

FILTER

INPUT

a

c d

b

CONVERT TO 4X9
SPARSE MATRIX C

a b 0 c d 0 0 0 0
0 a b 0 c d 0 0 0
0 0 0 a b 0 c d 0
0 0 0 0 a b 0 c d

[a+3b+9c+6d, 3a+4b+6c+7d, 9a+6b+5c, 6a+7b+2d]T

RESHAPE TO
SPATIAL OUTPUT

a+3b+9c+6d 3a+4b+6c+7d
9a+6b+5c 6a+7b+2d

OUTPUT

f= [1, 3, 4, 9, 6, 7, 5, 0, 2]T

MULTIPLY
C * f

Gradient-Based Visualization

• Can backpropagate all the way back to the input layer.

• Imagine the output o is the probability of a class label like

“dog”

• Compute ∂o
∂xi

for each pixel xi of each color.

– Compute maximum absolute magnitude of gradient over

RGB colors and create grayscale image.

Gradient-Based Visualization

• Examples of portions of specific images activated by particu-

lar class labels. (c©2014 Simonyan, Vedaldi, and Zisserman)

Getting Cleaner Visualizations

• The idea of “deconvnet” is sometimes used for cleaner visu-

alizations.

• Main difference is in terms of how ReLU’s are treated.

– Normal backpropagation passes on gradient through ReLU

when input is positive.

– “Deconvnet” passes on gradient through ReLU when

backpropagated gradient is positive.

Guided Backpropagation

• A variation of backpropagation, referred to as guided back-

propagation is more useful for visualization.

– Guided backpropagation is a combination of gradient-

based visualization and “deconvnet.”

– Set an entry to zero, if either of these rules sets an entry

to zero.

Illustration of “Deconvnet” and Guided Backpropagation

2

4

1 -1

-2 3

-2 1 3

TRADITIONAL
BACKPROPAGATION

FORWARD
PASS

ReLU

2

4

1 0

0 3

0 1 3

-1

2

-3 2

-1 2

1 2 -4

BACKWARD
PASS

ACTIVATION
(LAYER i)

ACTIVATION
(LAYER i+1)

-1

2

-3 0

0 2

0 2 -4

0

2

0 2

0 2

1 2 0

0

2

0 0

0 2

0 2 0

“GRADIENTS”
(LAYER i+1)

“GRADIENTS”
(LAYER i)

“DECONVNET”
(APPLY ReLU)

GUIDED
BACKPROPAGATION

Derivatives of Features with Respect to Input Pixels

deconv guided backpropagation corresponding image crops

deconv guided backpropagation corresponding image crops

• c©2015 Springenberg, Dosovitskiy, Brox, Riedmiller

Creating a fantasy image that matches a label

• The value of o might be the unnormalized score for “banana.”

• We would like to learn the input image x that maximizes the

output o, while applying regularization to x:

Maximizex J(x) = (o− λ||x||2)

• Here, λ is the regularization parameter.

• Update x while keeping weights fixed!

Examples

cup dalmatian goose

Generalization to Autoencoders

• Ideas have been generalized to convolutional autoencoders.

• Deconvolution operation similar to backpropagation.

• One can combine pretraining with backpropagation.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Case Studies of Convolutional Neural

Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 8.4

AlexNet

• Winner of the 2012 ILSVRC contest

– Brought attention to the area of deep learning

• First use of ReLU

• Use Dropout with probability 0.5

• Use of 3× 3 pools at stride 2

• Heavy data augmentation

AlexNet Architecture

224

224

3

11

11

55

55

5

5

96

256

27

27

3

3
13

3
3

384

13
3
3

384

13

13

256

13

13

4096 4096
1000

INPUT

C1

C2 C3 C4 C5

FC6 FC7
FC8

MP

MP
MP

Other Comments on AlexNet

• Popularized the notion of FC7 features

• The features in the penultimate layer are often extracted and

used for various applications

• Pretrained versions of AlexNet are available in most deep

learning frameworks.

• Single network had top-5 error rate of 18.2%

• Ensemble of seven CNN had top-5 error rate of 15.4%

ZfNet

AlexNet ZFNet

Volume: 224× 224× 3 224× 224× 3
Operations: Conv 11× 11 (stride 4) Conv 7× 7 (stride 2), MP
Volume: 55× 55× 96 55× 55× 96
Operations: Conv 5× 5, MP Conv 5× 5 (stride 2), MP
Volume: 27× 27× 256 13× 13× 256
Operations: Conv 3× 3, MP Conv 3× 3
Volume: 13× 13× 384 13× 13× 512
Operations: Conv 3× 3 Conv 3× 3
Volume: 13× 13× 384 13× 13× 1024
Operations: Conv 3× 3 Conv 3× 3
Volume: 13× 13× 256 13× 13× 512
Operations: MP, Fully connect MP, Fully connect
FC6: 4096 4096
Operations: Fully connect Fully connect
FC7: 4096 4096
Operations: Fully connect Fully connect
FC8: 1000 1000
Operations: Softmax Softmax

• AlexNet Variation ⇒ (Clarifai) won 2013 (14.8%/11.1%)

VGG

• One of the top entries in 2014 (but not winner).

• Notable for its design principle of reduced filter size and in-

creased depth

• All filters had spatial footprint of 3× 3 and padding of 1

• Maxpooling was done using 2× 2 regions at stride 2

• Experimented with a variety of configurations between 11

and 19 layers

Principle of Reduced Filter Size

• A single 7×7 filter will have 49 parameters over one channel.

• Three 3×3 filters will have a receptive field of size 7×7, but

will have only 27 parameters.

• Regularization advantage: A single filter will capture only

primitive features but three successive filters will capture

more complex features.

VGG Configurations

Name: A A-LRN B C D E
Layers 11 11 13 16 16 19

C3D64 C3D64 C3D64 C3D64 C3D64 C3D64
LRN C3D64 C3D64 C3D64 C3D64

M M M M M M
C3D128 C3D128 C3D128 C3D128 C3D128 C3D128

C3D128 C3D128 C3D128 C3D128
M M M M M M

C3D256 C3D256 C3D256 C3D256 C3D256 C3D256
C3D256 C3D256 C3D256 C3D256 C3D256 C3D256

C1D256 C3D256 C3D256
C3D256

M M M M M M
C3D512 C3D512 C3D512 C3D512 C3D512 C3D512
C3D512 C3D512 C3D512 C3D512 C3D512 C3D512

C1D512 C3D512 C3D512
C3D512

M M M M M M
C3D512 C3D512 C3D512 C3D512 C3D512 C3D512
C3D512 C3D512 C3D512 C3D512 C3D512 C3D512

C1D512 C3D512 C3D512
C3D512

M M M M M M
FC4096 FC4096 FC4096 FC4096 FC4096 FC4096
FC4096 FC4096 FC4096 FC4096 FC4096 FC4096
FC1000 FC1000 FC1000 FC1000 FC1000 FC1000

S S S S S S

VGG Design Choices and Performance

• Max-pooling had the responsibility of reducing spatial foot-

print.

• Number of filters often increased by 2 after each max-pooling

– Volume remained roughly constant.

• VGG had top-5 error rate of 7.3%

• Column D was the best architecture [previous slide]

GoogLeNet

• Introduced the principle of inception architecture.

• The initial part of the architecture is much like a traditional

convolutional network, and is referred to as the stem.

• The key part of the network is an intermediate layer, referred

to as an inception module.

• Allows us to capture images at varying levels of detail in

different portions of the network.

Inception Module: Motivation

• Key information in the images is available at different levels

of detail.

– Large filter can capture can information in a bigger area

containing limited variation.

– Small filter can capture detailed information in a smaller

area.

• Piping together many small filters is wasteful ⇒ Why not let

the neural network decide?

Basic Inception Module

FILTER
CONCATENATION

1 X 1
CONVOLUTIONS

PREVIOUS
LAYER

3 X 3
CONVOLUTIONS

5 X 5
CONVOLUTIONS

3 X 3
MAX-POOLING

• Main problem is computational efficiency ⇒ First reduce

depth

Computationally Efficient Inception Module

3 X 3
CONVOLUTIONS

FILTER
CONCATENATION

5 X 5
CONVOLUTIONS

1 X 1
CONVOLUTIONS

3 X 3
MAX-POOLING

1 X 1
CONVOLUTIONS

1 X 1
CONVOLUTIONS

1 X 1
CONVOLUTIONS

PREVIOUS
LAYER

• Note the 1× 1 filters

Design Principles of Output Layer

• It is common to use fully connected layers near the output.

• GoogLeNet uses average pooling across the whole spatial

area of the final set of activation maps to create a single

value.

• The number of features created in the final layer will be

exactly equal to the number of filters.

– Helps in reducing parameter footprint

• Detailed connectivity is not required for applications in which

only a class label needs to be predicted.

GoogLeNet Architecture

Other Details on GoogLeNet

• Winner of ILSVRC 2014

• Reached top-5 error rate of 6.7%

• Contained 22 layers

• Several advanced variants with improved accuracy.

• Some have been combined with ResNet

ResNet Motivation

• Increasing depth has advantages but also makes the network

harder to train.

• Even the error on the training data is high!

– Poor convergence

• Selecting an architecture with unimpeded gradient flows is

helpful!

ResNet

• ResNet brought the depth of neural networks into the hun-

dreds.

• Based on the principle of iterative feature engineering rather

than hierarchical feature engineering.

• Principle of partially copying features across layers.

– Where have we heard this before?

• Human-level performance with top-5 error rate of 3.6%.

Skip Connections in ResNet

WEIGHT LAYER

WEIGHT LAYER

ReLU

+

F(x)

x

ReLU

F(x)+x

IDENTITY
x

7X7 CONV, 64, /2

3X3 CONV, 64

POOL, /2

3X3 CONV, 64

3X3 CONV, 64

3X3 CONV, 64

3X3 CONV, 64

3X3 CONV, 64

3X3 CONV, 128, 1/2

3X3 CONV, 128

3X3 CONV, 128

3X3 CONV, 128

(a) Residual module (b) Partial architecture

Details of ResNet

• A 3 × 3 filter is used at a stride/padding of 1 ⇒ Adopted

from VGG and maintains dimensionality.

• Some layers use strided convolutions to reduce each spatial

dimension by a factor of 2.

– A linear projection matrix reduces the dimensionality.

– The projection matrix defines a set of 1 × 1 convolution

operations with stride of 2.

Importance of Depth

Name Year Number of Layers Top-5 Error

- Before 2012 ≤ 5 > 25%
AlexNet 2012 8 15.4%
ZfNet/Clarifai 2013 8/> 8 14.8% / 11.1%
VGG 2014 19 7.3%
GoogLeNet 2014 22 6.7%
ResNet 2015 152 3.6%

Pretrained Models

• Many of the models discussed in previous slides are available

as pre-trained models with ImageNet data.

• One can use the features from fully connected layers for

nearest neighbor search.

– A nearest neighbor classifier on raw pixels vs features from

fully connected layers will show huge differences.

• One can train output layer for other applications like regres-

sion while retaining weights in other layers.

Object Localization

• Need to classify image together with bounding box (four
numbers)

Object Localization

CONVOLUTION LAYERS
(WEIGHTS FIXED FOR
BOTH CLASSIFICATION
AND REGRESSION)

SO
FT

M
AX

FULLY
CONNECTED

CLASSIFICATION HEAD

CLASS
PROBABILITIES

LI
N

EA
R

LA
YE

R

FULLY
CONNECTED

REGRESSION HEAD

BOUNDING
BOX (FOUR
NUMBERS)

TRAIN FOR REGRESSION

TRAIN FOR CLASSIFICATION

FULLY
CONNECTED

FULLY
CONNECTED

• Fully connected layers for classification and regression heads
trained separately.

Other Applications

• Object detection: Multiple objects

• Text and sequence processing applications

– 1-dimensional convolutions

• Video and spatiotemporal data

– 3-dimensional convolutions

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Basic Principles of Reinforcement Learning

[Motivating Deep Learning]

Neural Networks and Deep Learning, Springer, 2018

Chapter 8.1–8.3

The Complexity of Human Intelligence is Quite Simple!

• Herbert Simon’s ant hypothesis:

“Human beings, viewed as behaving systems, are quite

simple. The apparent complexity of our behavior over

time is largely a reflection of the complexity of the

environment in which we find ourselves.”

– Humans are simple, because they are reward-driven enti-

ties.

– All of biological intelligence is owed to this simple fact.

• Reinforcement learning attempts to simplify the learning of

complex behaviors by using reward-driven trial and error.

When to Use Reinforcement Learning?

• Systems that are simple to judge but hard to specify.

• Easy to use trial-and-error to generate data.

– Video games (e.g., Atari)

– Board and card games (e.g., chess, Go, Poker)

– Robot locomotion and visuomotor skills

– Self-driving cars

• Reinforcement learning is the gateway to general forms of

artificial intelligence!

Why Don’t We have General Forms of Artificial
Intelligence Yet?

• Reinforcement learning requires large amounts of data (gen-
erated by trial and error).

– Possible to generate lots of data in some game-centric
settings, but not other real-life settings.

• Biological reinforcement learning settings include some un-
supervised learning.

– The number of synapses in our brain is larger than the
number of seconds we live!

– There must be some unsupervised learning going on con-
tinuously ⇒ We haven’t mastered that art yet.

• Recent results do show promise for the future.

Simplest Reinforcement Learning Setting: Multi-armed

Bandits

• Imagine a gambler in a casino faced with 2 slot machines.

• Each trial costs the gambler $1, but pays $100 with some
unknown (low) probability.

• The gambler suspects that one slot machine is better than
the other.

• What would be the optimal strategy to play the slot ma-
chines, assuming that the gambler’s suspicion is correct?

• Stateless Model: Environment at every time-stamp is iden-
tical (although knowledge of agent improves).

Observations

• Playing both slot machines alternately helps the gambler

learn about their payoff (over time).

– However, it is wasteful exploration!

– Gambler wants to exploit winner as soon as possible.

• Trade-off between exploration and exploitation ⇒ Hallmark

of reinforcement learning

Näıve Algorithm

• Exploration: Play each slot machine for a fixed number of

trials.

• Exploitation: Play the winner forever.

– Might require a large number of trials to robustly estimate

the winner.

– If we use too few trials, we might actually play the poorer

slot machine forever.

ε-Greedy Strategy

• Probabilistically merge exploration and exploitation.

• Play a random machine with probability ε, and play the ma-

chine with highest current payoff with probability 1− ε.

• Main challenge in picking the proper value of ε ⇒ Decides

trade-off between exploration and exploitation.

• Annealing: Start with large values of ε and reduce slowly.

Upper Bounding: The Optimistic Gambler!

• Upper-bounding represents optimism towards unseen ma-
chines ⇒ Encourages exploration.

• Empirically estimate mean μi and standard deviation σi of
payoff of the ith machine using its ni trials.

• Pick the slot machine with largest value of mean plus confi-
dence interval = μi +K · σi/√ni

– Note the
√
ni in the denominator, because it is sample

standard deviation.

– Rarely played slot machines more likely to be picked be-
cause of optimism.

– Value of K decides trade-off between exploration and ex-
ploitation.

Multi-Armed Bandits versus Classical Reinforcement

Learning

• Multi-armed bandits is the simplest form of reinforcement

learning.

• The model is stateless, because the environment is identical

at each time-stamp.

• Same action is optimal for each time-stamp.

– Not true for classical reinforcement learning like Go, chess,

robot locomotion, or video games.

– State of the environment matters!

Markov Decision Process (MDP): Examples from Four

Settings

• Agent: Mouse, chess player, gambler, robot

• Environment: maze, chess rules, slot machines, virtual test
bed for robot

• State: Position in maze, chess board position, unchanged,
robot joints

• Actions: Turn in maze, move in chess, pulling a slot machine,
robot making step

• Rewards: cheese for mouse, winning chess game, payoff of
slot machine, virtual robot reward

The Basic Framework of Reinforcement Learning

AGENT ENVIRONMENT

REWARD, STATE TRANSITION

ACTION

at

rt st to st+1

1. AGENT (MOUSE) TAKES AN ACTION at (LEFT TURN IN MAZE) FROM STATE (POSITION) st
2. ENVIRONMENT GIVES MOUSE REWARD rt (CHEESE/NO CHEESE)
3. THE STATE OF AGENT IS CHANGED TO st+1
4. MOUSE’S NEURONS UPDATE SYNAPTIC WEIGHTS BASED ON WHETHER ACTION EARNED CHEESE

OVERALL: AGENT LEARNS OVER TIME TO TAKE STATE-SENSITIVE ACTIONS THAT EARN REWARDS

• The biological and AI frameworks are similar.

• MDP represented as s0a0r0s1a1r1 . . . snanrn

Examples of Markov Decision Process

• Game of tic-tac-toe, chess, or Go: The state is the position
of the board at any point, and the actions correspond to
the moves made by the agent. The reward is +1, 0, or −1
(depending on win, draw, or loss), which is received at the
end of the game.

• Robot locomotion: The state corresponds to the current
configuration of robot joints and its position. The actions
correspond to the torques applied to robot joints. The reward
at each time stamp is a function of whether the robot stays
upright and the amount of forward movement.

• Self-driving car: The states correspond to the sensor inputs
from the car, and the actions correspond to the steering,
acceleration, and braking choices. The reward is a function
of car progress and safety.

Role of Traditional Reinforcement Learning

XO

O

X

PLAYING X
HERE ASSURES
VICTORY WITH
OPTIMAL PLAY

X

O

PLAYING X
HERE ASSURES
VICTORY WITH
OPTIMAL PLAY

• Traditional reinforcement learning: Learn through trial-

and-error the long-term value of each state.

• Long-term values are not the same as rewards.

– Rewards not realized immediately because of stochasticity

(e.g., slot machine) or delay (board game).

Reinforcement Learning for Tic-Tac-Toe

• Main difference from multi-armed bandits is that we need to

learn the long-term rewards for each action in each state.

• An eventual victory earns a reward from {+1,0,−1} with

delay.

• A move occurring r moves earlier than the game termination

earns discounted rewards of {γr−1,0,−γr−1}.

– Future rewards would be less certain in a replay.

• Assume that a fixed pool of humans is available as opponents

to train the system (self-play possible).

Generalizing ε-Greedy to Tic-Tac-Toe

• Maintain table of values of state-action pairs (initialize to
small random values).

– In multi-armed bandits, we only had values on actions.

– Table contains unnormalized total reward for each state-
action pair ⇒ Normalize to average reward.

• Use ε-greedy algorithm with normalized table values to sim-
ulate moves and create a game.

• After game: Increment at most 9 entries in the unnormal-
ized table with values from {γr−1,0,−γr−1} for r moves to
termination and win/loss.

• Repeat the steps above.

At the End of Training

XO

O

X
PLAY X

X

O PLAY X

XO

O

X

PLAY X

X

O

PLAY X
VALUE= +0.9 VALUE= +0.8 VALUE= +0.1 VALUE= -0.1

• Typical examples of normalized values of moves

• ε-greedy will learn the strategic values of moves.

• Rather than state-action-value triplets, we can equivalently

learn state-value pairs.

Where Does Deep Learning Fit In?

• The tic-tac-toe approach is a glorified “learning by rote”

algorithm.

• Works only for toy settings with few states.

– Number of board positions in chess is huge.

– Need to be able to generalize to unseen states.

– Function Approximator: Rather than a table of state-

value pairs, we can have a neural network that maps states

to values.

– The parameters in the neural network substitute for the

table.

Strawman ε-Greedy Algorithm with Deep Learning for

Chess [Primitive: Don’t Try It!]

• Convolutional neural network takes board position as input
and produces position value as output.

• Use ε-greedy algorithm on output values to simulate a full
game.

• After game of X moves: Create X training points with
board position as input feature map and targets from
{γr−1,0,−γr−1} depending on move number and win/loss.

• Update neural network with these X training points.

• Repeat the steps above.

Reinforcement Learning in Chess and Go

• The reinforcement learning systems, AlphaGo and Alpha

Zero, have been designed for chess, Go, and shogi.

• Combines various advanced deep learning methods and

Monte Carlo tree search.

• Plays positionally and sometimes makes sacrifices (much like

a human).

– Neural network encodes evaluation function learned from

trial and error.

– More complex and subtle than hand-crafted evaluation

functions by conventional chess software.

Examples of Two Positions from Alpha Zero Games vs
Stockfish

• Generalize to unseen states in training.

• Deep learner can recognize subtle positional factors because
of trial-and-error experience with feature engineering.

Other Challenges

• Chess and tic-tac-toe are episodic, with a maximum length

to the game (9 for tic-tac-toe and ≈6000 for chess).

• The ε-greedy algorithm updates episode by episode.

• What about infinite Markov decision processes like robots or

long episodes?

– Rewards received continuously.

– Not optimal to update episode-by-episode.

• Value function and Q-function learning can update after each

step with Bellman’s equations.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Value Function Learning and Q-Learning

Neural Networks and Deep Learning, Springer, 2018

Chapter 8.4

Challenges with Long and Infinite Markov Decision

Processes

• Previous lecture discusses how value functions can be learned

for shorter episodes.

– Update state-action-value table for each episode with

Monte Carlo simulation.

• Effective for games like tic-tac-toe with small episodes.

• What to do with continuous Markov decision processes?

An Infinite Markov Decision Process

• Sequence below is of infinite length (continuous process)

s0a0r0s1a1r1 . . . statrt . . .

• The cumulative reward Rt at time t is given by the discounted

sum of the immediate rewards for γ ∈ (0,1):

Rt = rt + γ · rt+1 + γ2 · rt+2 + γ3 · rt+3 . . . =
∞∑
i=0

γirt+i (1)

• Future rewards worth less than immediate rewards (γ < 1).

• Choosing γ < 1 is not essential for episodic processes but

critical for long MDPs.

Recap of Episodic ε-Greedy for Tic-Tac-Toe

• Maintain table of average values of state-action pairs (ini-

tialize to small random values).

• Use ε-greedy algorithm with table values to simulate moves

and create a game.

• After game: Update at most 9 entries in the table with

new averages, based on the outcomes from {γr−1,0,−γr−1}
depending on move number and win/loss.

• Repeat the steps above.

The Bootstrapping Intuition

• Consider a Markov decision process in which we are predicting
values (e.g., long-term rewards) at each time-stamp.

– A partial simulation of the future can improve the predic-
tion at the current time-stamp.

– This improved prediction can be used as the ground-truth
at the current time stamp.

• Tic-tac-toe: Parameterized evaluation function for board.

– After our opponent plays the next move, and board eval-
uation changes unexpectedly, we go back and correct pa-
rameters.

• Temporal difference learning: Use difference in prediction
caused by partial lookaheads (treated as error for updates).

Example of Chess

• Why is the minimax evaluation of a chess program at 10-ply
stronger than that using the 1-ply board evaluation?

– Because evaluation functions are imperfect (can be
strengthened by “cheating” with data from future)!

– If chess were solved (like checkers today), the evaluation
function at any ply would be the same.

– The minimax evaluation at 10 ply can be used as a
“ground truth” for updating a parameterized evaluation
function at current position!

• Samuel’s checkers program was the pioneer (called TD-Leaf
today)

• Variant of idea used by TD-Gammon, Alpha Zero.

Q-Learning

• Instead of minimax over a tree, we can use one-step looka-

head

• Let Q(st, at) be a table containing optimal values of state-

action pairs (best value of action at in state st).

• Assume we play tic-tac-toe with ε-greedy and Q(st, at) ini-

tialized to random values.

• Instead of Monte Carlo, make following update:

Q(st, at) = rt + γmaxaQ(st+1, a) (2)

• Update: Q(st, at) = Q(st, at)(1−α)+α(rt+γmaxaQ(st+1, a))

Why Does this Work?

• Most of the updates we initially make are not meaningful in

tic-tac-toe.

– We started off with random values.

• However, the update of the value of a next-to-terminal state

is informative.

• The next time the next-to-terminal state occurs on RHS of

Bellman, the update of the next-to-penultimate state will be

informative.

• Over time, we will converge to the proper values of all state-

action pairs.

SARSA: ε-greedy Evaluation

• Let Q(st, at) be the value of action at in state st when fol-
lowing the ε-greedy policy.

• An improved estimate of Q(st, at) via bootstrapping is rt+
γQ(st+1, at+1)

• Follows from Rt =
∑∞

i=0 γ
irt+i = rt + γRt+1

• SARSA: Instead of episodic update, we can update the table
containing Q(st, at) after performing at by ε-greedy, observing
st+1 and then computing at+1 again using ε-greedy:

Q(st, at) ⇐ rt + γQ(st+1, at+1) (3)

• Gentler and stable variation: Q(st, at) ⇐ Q(st, at)(1 − α) +
α(rt + γQ(st+1, at+1))

On-Policy vs Off-Policy Learning

• SARSA: On-policy learning is useful when learning and infer-

ence cannot be separated.

– A robot who continuously learns from the environment.

– The robot must be cognizant that exploratory actions

have a cost (e.g., walking at edge of cliff).

• Q-learning: Off-policy learning is useful when we don’t need

to perform exploratory component during inference time

(have non-zero ε during training but set to 0 during infer-

ence).

– Tic-tac-toe can be learned once using Q-learning, and

then the model is fixed.

Using Deep Learning

CONVOLUTIONAL
NEURAL

NETWORK

Q(st , a) for a= “UP”
OBSERVED STATE
(PREVIOUS FOUR
SCREENS OF PIXELS)

Q(st , a) for a= “DOWN”
Q(st , a) for a= “LEFT”

Q(st , a) for a= “RIGHT”

• When the number of states is large, the values Q(st, at) are

predicted from state st representation Xt rather than tabu-

lated.

F(Xt,W, a) = Q̂(st, a) (4)

• Xt: Previous four screens of pixels in Atari

Specific Details of Convolutional Network

84

84

4

8

8

INPUT

32

22

22

4

4
12

3
3

64

12

64

12

12
C1 C2 C3

512
4 TO 18
(GAME
SPECIFIC)

FC
O

• Same architecture with minor variations was used for all Atari

games.

Neural Network Updates for Q-Learning

• The neural network outputs F(Xt,W, at).

• We must wait to observe state Xt+1 and then set up a
“ground-truth” value for the output using Bellman’s equa-
tions:

Bootstrapped Ground-Truth = rt + γmaxaF(Xt+1,W , a)
(5)

• Loss: Lt =

⎧⎪⎪⎨
⎪⎪⎩

[rt + γmaxaF(Xt+1,W , a)]︸ ︷︷ ︸
Treat as constant ground-truth

−F(Xt,W, at)

⎫⎪⎪⎬
⎪⎪⎭

2

W ⇐ W+α

⎧⎪⎪⎨
⎪⎪⎩
[rt + γmaxaF(Xt+1,W , a)]︸ ︷︷ ︸
Constant ground-truth

−F(Xt,W, at)

⎫⎪⎪⎬
⎪⎪⎭

∂F(Xt,W, at)

∂W

(6)

Neural Network Updates for SARSA

• The neural network outputs F(Xt,W, at).

• We must wait to observe state Xt+1, simulate at+1 with

ε-greedy and then set up a “ground-truth” value:

Bootstrapped Ground-Truth = rt + γF(Xt+1,W , at+1) (7)

• Loss: Lt =

⎧⎪⎪⎨
⎪⎪⎩

[rt + γF(Xt+1,W , at+1)]︸ ︷︷ ︸
Treat as constant ground-truth

−F(Xt,W, at)

⎫⎪⎪⎬
⎪⎪⎭

2

W ⇐ W+α

⎧⎪⎪⎨
⎪⎪⎩
[rt + γF(Xt+1,W , at+1)]︸ ︷︷ ︸
Constant ground-truth

−F(Xt,W, at)

⎫⎪⎪⎬
⎪⎪⎭

∂F(Xt,W, at)

∂W

(8)

Value Function Learning

CONVOLUTIONAL
NEURAL

NETWORK

OBSERVED STATE
(PREVIOUS FOUR
SCREENS OF PIXELS)

V(st)

• Instead of outputting values of state-action pairs we can out-

put just values.

• Q-Learning and SARSA can be implemented with this archi-

tecture as well.

– General class of temporal difference learning ⇒ Multi-step

bootstrapping

– Can explore a forward-looking tree for arbitrary bootstrap-

ping.

Temporal Difference Learning TD(0)

• Value network produces G(Xt,W) and bootstrapped ground
truth = rt + γG(Xt+1,W)

• Same as SARSA: Observe next state by executing at accord-
ing to current policy

• Loss: Lt =

⎧⎪⎨
⎪⎩rt + γG(Xt+1,W)︸ ︷︷ ︸
“Observed” value

−G(Xt,W)

⎫⎪⎬
⎪⎭

2

W = W + α

⎧⎪⎨
⎪⎩[rt + γG(Xt+1,W)]︸ ︷︷ ︸

“Observed” value

−G(Xt,W)

⎫⎪⎬
⎪⎭

∂G(Xt,W)

∂W

(9)

• Short notation: W ⇐ W + αδt(∇G(Xt,W))

Bootstrapping over Multiple Steps

• Temporal difference bootstraps only over one time-step.

– A strategically wrong move will not show up immediately.

– Can look at n-steps instead of one.

• On-policy looks at single sequence greedily (too weak)

• Off-policy (like Bellman) picks optimal over entire minimax
tree (Samuel’s checkers program).

• Any optimization heuristic for lookahead-based inference can
be exploited.

– Monte Carlo tree search explores multiple branches with
upper-bounding strategy ⇒ Statistically robust target.

Fixed Window vs Smooth Decay: Temporal Difference

Learning TD(λ)

• Refer to one-step temporal difference learning as TD(0)

• Fixed Window n: W ⇐ W + αδt
∑t

k=t−n+1 γ
t−k(∇G(Xk,W))

• TD(λ) corrects past mistakes with discount factor λ when

new information is received.

W ⇐ W + αδt

t∑
k=0

(λγ)t−k(∇G(Xk,W)) (10)

• Setting λ = 1 or n = ∞ is equivalent to Monte Carlo meth-

ods.

– Details in book.

Monte Carlo vs Temporal Differences

• Not true that greater lookahead always helps!

– The value of λ in TD(λ) regulates the trade-off between

bias and variance.

– Using small values of λ is particularly advisable if data is

limited.

• A temporal difference method places a different value on

each position in a single chess game (that depends on the

merits of the position).

– Monte Carlo places a value that depends only on time

discounting and final outcome.

Monte Carlo vs Temporal Differences: Chess Example

• Imagine a Monte Carlo rollout of chess game between two
agents Alice and Bob.

– Alice and Bob each made two mistakes but Alice won.

– Monte Carlo training data does not differentiate between
mistakes and good moves.

– Using temporal differences might see an error after each
mistake because an additional ply has differential insight
about the effect of the move (bootstrapping).

• More data is needed in Monte Carlo rollouts to remove the
effect of noise.

• On the other hand, TD(0) might favor learning of end games
over openings.

Implications for Other Methods

• Policy gradients often use Monte Carlo rollouts.

– Deciding the advantage of an action is often difficult in

games without continuous rewards.

• Value networks are often used in combination with policy-

gradients in order to design actor-critic methods.

– Temporal differences are used to evaluate the advantage

of an action.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Policy Gradients

Neural Networks and Deep Learning, Springer, 2018

Chapter 8.5

Difference from Value-Based Methods

• Value-based methods like Q-learning attempt to predict the

value of an action with a parameterized value function.

– Often coupled with a generic policy (like ε-greedy).

• Policy gradient methods estimate the probability of each ac-

tion at each step with the goal of maximizing the overall

reward.

• Policy is itself parameterized.

Policy Network vs Q-Network for Atari Game

CONVOLUTIONAL
NEURAL

NETWORK

Q(st , a) for a= “UP”
OBSERVED STATE
(PREVIOUS FOUR
SCREENS OF PIXELS)

Q(st , a) for a= “DOWN”
Q(st , a) for a= “LEFT”

Q(st , a) for a= “RIGHT”

CONVOLUTIONAL
NEURAL

NETWORK

OBSERVED STATE
(PREVIOUS FOUR
SCREENS OF PIXELS)

PROBABILITY OF “UP”

SO
FT

M
AX PROBABILITY OF “DOWN”

PROBABILITY OF “LEFT”
PROBABILITY OF “RIGHT”

• Output is probability of each action in policy network rather

than value of each action.

Overview of Approach

• We want to update network to maximize expected future

rewards ⇒ We need to collect samples of long-term rewards

for each simulated action.

– Method 1: Use Monte Carlo policy rollouts to estimate

the simulated long-term reward after each action.

– Method 2: Use another value network to model long-

term reward after each action (actor-critic methods).

• Main problem is in setting up a loss function that uses the

simulated or modeled rewards to update the parameterized

probabilities.

Example: Generating Training Data

• Training chess agent Alice (using pool of human opponents)

with reward in {+1,0,−1}.

• Consider a Monte Carlo simulation with win for agent Alice.

• Create training points for each board position faced by Alice

and each action output a with long-term reward of 1.

– If discount factor of γ then long-term reward is γr−1.

• Backpropagated stochastic gradient ascent: Somehow

need to update neural network from samples of rewards to

maximize expected rewards (non-obvious).

Nature of Training Data

• We have board positions together with output action samples

and long-term rewards of each sampled action.

– We do not have ground-truth probabilities.

• So we want to maximize expected long-term rewards from

samples of the probabilistic output.

• How does one compute the gradient of an expectation from

samples?

Log Probability Trick

• Let Qp(st, a) be the long-term reward of action a and policy

p.

• The log probability trick of REINFORCE relates gradient of

expectation to expectation of gradient:

∇E[Qp(st, a)] = E[Qp(st, a)∇log(p(a))] (11)

• Qp(st, a) is estimated by Monte-Carlo roll-out and ∇log(p(a))

is the log-likelihood gradient from backpropagation in the

policy network for sampled action a.

W ⇐ W + αQp(st, a)∇log(p(a)) (12)

Baseline Adjustments

• Baseline adjustments change the reward into an “advantage”

with the use of state-specific adjustments.

– Subtract some quantity b from each Q(st, a)

– Reduces variance of result without affecting bias.

• State-independent: One can choose b to be some long-

term average of Qp(st, a).

• State-specific: One can choose b to be the value V p(st) of

state st ⇒ Advantage is same as temporal difference!

Why Does a State-Specific Baseline Adjustment Make

Sense?

• Imagine a self-play chess game in which both sides make

mistakes but one side wins.

– Without baseline adjustments all training points from the

game will have long-term rewards that depend only on

final results.

– Temporal difference will capture the differential impact of

the error made in each action.

– Gives more refined idea of the specific effect of that move

⇒ Its advantage!

Problems with Monte Carlo Policy Gradients

• Full Monte Carlo simulation is best for episodic processes.

• Actor-critic methods allow online updating by combining

ideas in policy gradients and value networks:

– Value-based: The policy (e.g., ε-greedy) of the actor is

subservient to the critic.

– Policy-based: No notion of critic for value estimation

(typical approach is Monte Carlo)

• Solution: Create separate neural network for estimating

value/advantage.

Actor-Critic Method

• Two separate neural networks:

– Actor: Policy network with parameters Θ that decides

actions.

– Critic: Value network or Q-network with parameter W

that estimates long-term reward/advantage ⇒ Advantage

is temporal difference.

• The networks are trained simultaneously within an iterative

loop.

Actor and Critic

CONVOLUTIONAL
NEURAL

NETWORK

OBSERVED STATE
(PREVIOUS FOUR
SCREENS OF PIXELS)

PROBABILITY OF “UP”

SO
FT

M
AX PROBABILITY OF “DOWN”

PROBABILITY OF “LEFT”
PROBABILITY OF “RIGHT”

(a) Actor (Decides actions as a probabilistic policy)

CONVOLUTIONAL
NEURAL

NETWORK

Q(st , a) for a= “UP”
OBSERVED STATE
(PREVIOUS FOUR
SCREENS OF PIXELS)

Q(st , a) for a= “DOWN”
Q(st , a) for a= “LEFT”

Q(st , a) for a= “RIGHT”

(b) Critic (Evaluates advantage in terms of temporal differences)

Steps in Actor-Critic Methods

• Sample the action at+1 at state st+1 using the policy net-
work.

• Use Q-network to compute temporal difference error δt at st
using bootstrapped target derived from value of st+1.

• [Update policy network parameters]: Update policy net-
work using the Q-value of action at as its advantage (use
temporal difference error for variance reduction).

• [Update Q-Network parameters]: Update the Q-network
parameters using the squared temporal difference δ2t as the
error.

• Repeat the above updates.

Advantages and Disadvantages of Policy Gradients

• Advantages:

– Work in continuous action spaces.

– Can be used with stochastic policies.

– Stable convergence behavior

• Main disadvantage is that they can reach local optima.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Attention Mechanisms

Neural Networks and Deep Learning, Springer, 2018

Chapter 10.2

The Biological Motivation

• Human beings rarely use all the available sensory inputs in

order to accomplish specific tasks.

– Problem of finding an address defined by a specific house

number on a street.

• An important component of the task is to identify the number

written either on the door or the mailbox of a house.

• The retina often has an image of a broader scene, although

one rarely focuses on the full image.

• One pays greater attention to the relevant parts of the image.

The Notion of Attention in the Retina

FOVEA

MACULA

RETINA (NOT DRAWN TO SCALE)

MAXIMUM DENSITY OF RECEPTORS

LEAST DENSITY OF RECEPTORS

• Only a small portion of the image in the retina is carried in
high resolution.

How Does the Process Work?

• Need to systematically focus on small parts of the image to
find what one is looking for.

• Biological organisms draw quick visual cues from whatever
they are focusing on in order to identify where to next look
to get what they want.

– If we first focus on the door knob by chance, then we
know from experience (i.e., our trained neurons tell us) to
look to its upper left or right to find the street number.

• Neurons were trained by past trial-and-error ⇒ Use reinforce-
ment learning methods.

• Some attention-based methods are paired with reinforcement
learning.

Recurrent Models of Visual Attention

• Use a simple neural network in which only the resolution

of specific portions of the image centered at a particular

location is high.

• This location can change with time, as the model learns more

about the relevant portions of the image.

– Selecting a particular location in a given time-stamp is

referred to as a glimpse.

• A recurrent neural network is used as the controller to identify

the precise location in each time-stamp.

– This choice is based on the feedback from the glimpse in

the previous time-stamp.

Components of Neural Architecture

• Glimpse Sensor: Creates a retina-like representation
ρ(Xt, lt−1) of the image Xt based on location lt−1.

• Glimpse Network: The glimpse network contains the glimpse
sensor and encodes both the glimpse location lt−1 and the
glimpse representation ρ(Xt, lt−1) into hidden spaces.

– Key image-processing component that is much simpler
than a convolutional neural network.

• Recurrent Neural Network: The recurrent neural network
outputs locations lt for the next time stamp.

• Important result: The relatively simple glimpse network is
able to outperform a convolutional neural network because
of the attention mechanism.

Neural Architecture

GLIMPSE
SENSOR

GLIMPSE NETWORK

lt-1

lt-1

gt

ρ(Xt, lt-1)

ρ(Xt, lt-1)
ht-1

lt-1

ltat

gt

ht

GLIMPSE
NETWORK

HIDDEN
LAYER

OUTPUT
LAYER

OUTPUT
LAYER

lt

lt+1at+1

gt+1

ht+1

GLIMPSE
NETWORK

HIDDEN
LAYER

OUTPUT
LAYER

OUTPUT
LAYER

Reinforcement Learning

• Action corresponds to choosing the class label at each time-
stamp.

• The reward at time-stamp t is 1 if the classification is correct
after t time-stamps.

– Sum up discounted rewards over all time stamps.

– Common to subtract baseline to reduce variance.

• Trained using the REINFORCE framework (policy gradi-
ents).

• Outperforms a convolutional neural network in spite of rela-
tively simple architecture within the glimpse network and T

between 6 and 8.

Image Captioning (Xu et al.)

• Modified version of classification framework.

• Instead of using glimpse sensor outputting location lt, we use

L preprocessed variants centered at different positions.

• Reinforcement learning selects one of these L actions (dis-

crete output).

• The output at the next time stamp is the subsequent word

in the image caption.

• Reward based on caption prediction accuracy.

Image Captioning Architecture

• K. Xu et al. Show, attend, and tell: Neural image caption

generation with visual attention. International Conference

on Machine Learning, 2015.

Hard Attention versus Soft Attention

• Hard attention selects specific locations.

– Uses reinforcement learning because of hard selection of

locations.

• Soft attention gives soft weights to various locations.

– More conventional models (later slides).

Examples of Attention Locations

• K. Xu et al. Show, attend, and tell: Neural image caption

generation with visual attention. International Conference

on Machine Learning, 2015.

Application to Machine Translation

• A basic machine translation model hooks up two recurrent

neural networks.

– Typically, an advanced variant like LSTM is used.

– Show basic version for simplicity.

• An attention model focuses on small portions of the sentence

while translating a word.

• Use soft attention model in which the individual words are

weighted.

The Basic Machine Translation Model

I don’t understand Spanish

y1 y2 y3 y4

<EOS> No entiendo español

No <EOS>entiendo español
RNN1 RNN2

RNN1 LEARNS REPRESENTATION
OF ENGLISH SENTENCE FOR
MACHINE TRANSLATION

(CONDITIONED SPANISH LANGUAGE MODELING)

Wes

• Details discussed in lecture on applications of RNNs.

What Does Attention Do?

• The hidden states h
(2)
t are transformed to enhanced states

H
(2)
t with some additional processing from an attention layer.

– Attention layer incorporates context from the source hid-

den states into the target hidden states.

• Find a source representation that is close to the current tar-

get hidden state h
(2)
t being processed.

• Use similarity-weighted average of the source vectors to cre-

ate a context vector ct.

Context Vector and Attention Layer

• Context vector is defined as follows:

ct =

∑Ts
j=1 exp(h

(1)
j · h(2)t)h

(1)
j

∑Ts
j=1 exp(h

(1)
j · h(2)t)

=
Ts∑

j=1

a(t, j)h
(1)
j (1)

• Attention Layer: Create a new target hidden state H
(2)
t

that combines the information in the context and the original

target hidden state as follows:

H
(2)
t = tanh

(
Wc

[
ct

h
2
t

])
(2)

The Attention-Centric Machine Translation Model

I don’t understand Spanish <EOS> No entiendo español

(૚)ࢎ࢞ࢃ (૚)ࢎ࢞ࢃ(૛)ࢎ࢞ࢃ(૛)ࢎ࢞ࢃ
(૚)ࢎࢎࢃ (૚)ࢎ࢞ࢃ

(૚)ࢎࢎࢃ (૚)ࢎ࢞ࢃ
(૚)ࢎࢎࢃ (૛)ࢎࢎࢃ(૛)ࢎࢎࢃ (૛)ࢎࢎࢃ

(૛)࢟ࢎࢃ
y1 y2 y3 y4

No <EOS>entiendo español

(૛)࢟ࢎࢃ (૛)࢟ࢎࢃ (૛)࢟ࢎࢃ

(૛)ࢎ࢞ࢃ (૛)ࢎ࢞ࢃ
૚(૚)ࢎ ૛(૚)ࢎ ૜(૚)ࢎ ૝(૚)ࢎ ૚(૛)ࢎ ૛(૛)ࢎ ૜(૛)ࢎ૝(૛)ࢎ
࢞૚(૚) ࢞૚(૛) ࢞૛(૛) ࢞૜(૛) ࢞૝(૛)

Wes

c2

a2

૛(૛)ࡴ ૜(૛)ࡴ ૚(૛)ࡴ૝(૛)ࡴ
ATTENTION LAYER

࢞૛(૚) ࢞૜(૚) ࢞૝(૚)

• Enhanced hidden states used for prediction in lieu of original
hidden states.

What Have We Done?

• The hidden states will be more weighted towards specific

words in the source sentence.

• The context vector helps focus the prediction towards the

portion of the source sentence that is more relevant to the

target word.

• The value of the attention score a(t, j) while predicting a

target word will be higher for relevant portions of the source

sentence.

Refinements

• The previous model uses simple dot products for similarity.

• Can also use parameterized variants:

Score(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h
(1)
s · h(2)t Dot product

(h
(2)
t)TWah

(1)
s Parameters Wa

vTa tanh

⎛
⎝Wa

⎡
⎣ h

(1)
s

h
2
t

⎤
⎦
⎞
⎠ Concat: Parameters Wa, va

(3)

• The first of these options is identical to that in previous

slides.

a(t, s) =
exp(Score(t, s))∑Ts

j=1 exp(Score(t, j))
(4)

Observations

• The refined variants do not necessarily help too much for

soft attention models.

• More details of hard attention models are available in:

– M. Luong, H. Pham, and C. Manning. Effective ap-

proaches to attention-based neural machine translation.

arXiv preprint arXiv:1508.04025, 2015.

• Attention ideas have been generalized to neural Turing ma-

chines.

– Discussed in book.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Generative Adversarial Networks

Neural Networks and Deep Learning, Springer, 2018

Chapter 10.4

Generative Adversarial Network

• Generative adversarial network creates an unsupervised gen-

erative model of the data.

– Alternative to variational autoencoder

• Unlike the variational autoencoder, the generative portion

does not directly see the training data.

– Indirectly receives feedback from a discriminator as to

whether or not its generated samples are realistic.

Adversarial Training

• We have a generator and a discriminator.

• The discriminator has access to training samples and is a
classifier designed to distinguish between real and fake sam-
ples.

• The generator tries to create samples whose main goal is to
fool the discriminator.

• Simultaneous training of generators and discriminators with
opposite objectives.

• Helpful to think of generator as counterfeiter and discrimi-
nator as police.

Generator and Discriminator

• Rm: Set of m randomly sampled examples from the real data

set.

• Sm: Set of m synthetically generated samples.

• Synthetic samples are generated by first creating a set Nm

of p-dimensional Gaussian noise samples {Zm . . . Zm}.

– Apply the generator to these noise samples as the input

to create the data samples Sm = {G(Z1) . . . G(Zm)}.

Neural Architecture for GAN

SAMPLE NOISE FROM PRIOR DISTRIBUTION (e.g., GAUSSIAN) TO CREATE m SAMPLES

SY
N

TH
ET

IC
 S

AM
PL

ES

CO
DE DECODER AS

GENERATOR

NEURAL NETWORK
WITH SINGLE

PROBABILISTIC
OUTPUT

(e.g., SIGMOID)

NOISE
SYNTHETIC

SAMPLE
PROBABILITY THAT

SAMPLE IS REAL

DISCRIMINATORGENERATOR

LOSS FUNCTION PUSHES
COUNTERFEIT TO BE
PREDICTED AS REAL

(COUNTERFEIT)

BACKPROPAGATE ALL THE WAY FROM OUTPUT TO GENERATOR TO COMPUTE GRADIENTS (BUT UPDATE ONLY GENERATOR)

Discriminator Objective Function

• D(X): Discriminator output probability that sample X is real.

• The maximization objective function JD for the discriminator

is as follows:

MaximizeD JD =
∑

X∈Rm

log
[
D(X)

]

︸ ︷︷ ︸
m real examples

+
∑

X∈Sm

log
[
1−D(X)

]

︸ ︷︷ ︸
m synthetic examples

• The objective function will be maximized when real exam-

ples are correctly classified to 1 and synthetic examples are

correctly classified to 0.

Generator Objective Function

• The generator creates m synthetic samples, Sm, and the goal

is to fool discriminator.

• The objective function is to minimize the likelihood that

these samples are flagged as synthetic.

• The objective function, JG, for the generator can be written

as follows:

MinimizeGJG =
∑

X∈Sm

log
[
1−D(X)

]

︸ ︷︷ ︸
m synthetic examples

=
∑

Z∈Nm

log
[
1−D(G(Z))

]

Minimax Formulation

• Note that J(D) = J(G)+Term indpendent of generator parameters

• So minimizing JG with respect to generator parameters is the

same as minimizing JD with respect to generator parameters.

• So we want to maximize JD with respect to discriminator

parameters and minimize it with respect to generator pa-

rameters.

• Standard minimax formulation: minGmaxDJD

How to Solve?

• Alternately perform updates with respect to generator and

discriminator parameters.

– Updates for generator parameters are gradient descent

updates.

– Updates for discriminator parameters are gradient ascent

updates.

• Common to use k steps of the discriminator for each step of

the generator (backprop).

• Increasingly common to train neural networks simultaneously

in many applications.

Adjustments During Early Optimization Iterations

• Maximize log
[
D(X)

]
for each X ∈ Sm instead of minimizing

log
[
1−D(X)

]
.

• This alternative objective function sometimes works better

during the early iterations of optimization.

– Faster learning.

Example for Image Generation [Radford, Metz, Chintala]

Generated Bedrooms [Radford, Metz, Chintala]

Changing the Synthetic Noise Sample [Radford, Metz,

Chintala]

Vector Arithmetic on Synthetic Noise Samples [Radford,

Metz, Chintala]

Conditional Generative Adversarial Networks (CGAN)

SY
N

TH
ET

IC
 S

AM
PL

ES

FU
SI

O
N DECODER AS

GENERATOR

NEURAL NETWORK
WITH SINGLE

PROBABILISTIC
OUTPUT

(e.g., SIGMOID)

NOISE
PROBABILITY THAT

SAMPLE IS REAL

DISCRIMINATORGENERATOR

FU
SI

O
N

CONDITIONAL
INPUT

CONDITIONAL
INPUT

EN
CO

DE

EN
CO

DE

ARTIST SKETCH

GENERATOR EXTRAPOLATION FROM
SKETCH (SYNTHETIC SAMPLE)

Image-to-Image Translation with CGAN [Isola, Zhu,

Zhou, Efros]

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Text-to-Image Translation with CGAN: Scott Reed et al.

Text-to-Image Translation with CGAN: Scott Reed et al.

Figure 1. Examples of generated images from text descriptions.

Comments on CGAN

• Capabilities are similar to conditional variational autoencoder

– Special case is captioning (conditioning on image and tar-

get is caption)

– Special case is classification (conditioning on object and

target is class)

• Simpler special cases can be handled by supervised learning

• Makes a lot more sense to use when target is more complex

than the conditioning ⇒ Generative creativity required

Comparison with Variational Autoencoder

• Only a decoder (i.e., generator) is learned, and an encoder

is not learned in the training process of the generative ad-

versarial network.

• A generative adversarial network is not designed to recon-

struct specific input samples like a variational autoencoder.

• The generative adversarial network produces samples of bet-

ter quality than a variational autoencoder.

– The adversarial approach is specifically designed to pro-

duce realistic images.

– The regularization of the variational autoencoder actually

hurts the quality of the generated objects.

Charu C. Aggarwal

IBM T J Watson Research Center

Yorktown Heights, NY

Kohonen Self-Organizing Maps

Neural Networks and Deep Learning, Springer, 2018

Chapter 10.5

Introduction and Motivation

• The Kohonen self-organizing map belongs to the class of

competitive learning algorithms.

– Competitive learning algorithms are a broader class than

the Kohonen self-organizing map.

– Used for clustering, compression, and visualization.

– Kohonen self-organizing map is a special case that is de-

signed for visualization.

• First discuss competitive learning and then the Kohonen

map.

Competitive Learning

• The neurons compete for the right to respond to a subset of
the input data.

• The activation of an output neuron increases with greater
similarity between the weight vector of the neuron and the
input.

– Weight vector and input have same dimensionality.

• A common approach is to use the Euclidian distance between
the input and the weight vector in order to compute the
activation.

• The output unit that has the highest activation (smallest
distance) to a given input is declared the winner and moved
closer to the input.

Notations

• Let X be an input vector in d dimensions.

• Let Wi be the weight vector associated with the ith neuron

in the same number of dimensions.

• Number of neurons m is typically much less than the size of

the data set n.

– Intuitively, consider the neurons like k-means centroids.

• Moving a neuron closer to the input is similar to how pro-

totypes are always moved closer to their relevant clusters in

algorithms like k-means.

Iterative Steps for Each Input Point

• The Euclidean distance ||Wi − X|| is computed for each i

(activation value is higher for smaller distance).

• If the pth neuron has the smallest value of the Euclidean

distance, then it is declared as the winner.

• The pth neuron is updated using the following rule and learn-

ing rate α ∈ (0,1):

Wp ⇐ Wp + α(X −Wp) (5)

Comparison with Prototype-Based Clustering

• The basic idea in competitive learning is to view the weight
vectors as prototypes (like the centroids in k-means cluster-
ing).

• The value of α regulates the fraction of the distance between
the point and the weight vector, by which the movement of
Wp occurs.

• The k-means clustering also achieves similar goals.

– When a point is assigned to the winning centroid, it moves
that centroid by a small distance towards the training in-
stance at the end of the iteration.

• Competitive learning is a natural variation of this framework.

Physically Arranging the Clusters

• Pure competitive learning does not impose any relationships

among clusters.

– Clusters often have related content.

– Can we construct and place the clusters in 2-dimensions,

so that physically adjacent clusters have related points?

– Important to keep need for physical placement in mind

during cluster construction.

• Kohonen’s self organizing map gives the same shape to each

cluster (e.g., rectangle, hexagon) and places then in a 2-

dimensional hexagon or grid-like structure.

Illustrative Example of Visualization

MUSIC

ARTSLITERATURE

DRAMA

ARTS MUSIC

DRAMA

LITERATURE

(a) Rectangular lattice (b) Hexagonal lattice

• All clusters are either rectangles or hexagons

Kohonen Self-Organizing Map

• The Kohonen self-organizing map is a variation on the com-

petitive learning paradigm in which a 2-dimensional lattice-

like structure is imposed on the neurons (cluster prototypes).

– Vanilla competitive learning does not force clusters to

have relationships with one another.

– Imposing 2-dimensional adjacency on (similar) clusters is

useful for visualization.

– All points assigned to a neuron can be assigned to a 2-d

cell of a particular shape.

• The values of Wi in lattice-adjacent neurons are encouraged

to be similar (type of regularization).

Different Types of Lattices

Wk

Wi Wj

k

i j

Wk
k

i j
WjWi

(a) Rectangular (b) Hexagonal

• Rectangular lattice will lead to rectangular regions and

hexagonal lattice will lead to hexagonal regions.

Modifications to Basic Competitive Learning

• The weights in the winner neuron are updated in a manner

similar to the vanilla competitive learning algorithm in the

Kohonen map.

– The main difference is that a damped version of this up-

date is also applied to the lattice-neighbors of the winner

neuron.

• Has the effect of moving similar points to lattice-adjacent

clusters ⇒ Useful for visualization.

– Provides a 2-dimensional organization of clusters.

The Kohonen SOM Algorithm

• LDist(i, j) represents the lattice distance between neurons i

and j.

Damp(i, j) = exp

(
−LDist(i, j)2

2σ2

)
(6)

• Here, σ is the bandwidth of the Gaussian kernel.

Wi ⇐ Wi + α ·Damp(i, p) · (X −Wi) ∀i (7)

• Using extremely small values of σ reverts to pure winner-

take-all learning,

Illustrative Example of Visualization

MUSIC

ARTSLITERATURE

DRAMA

ARTS MUSIC

DRAMA

LITERATURE

(a) Rectangular lattice (b) Hexagonal lattice

• Color each region with majority class ⇒ Similar documents

are mapped to same/adjacent regions.

	Chap1slides.pdf
	Chap2slides
	Chap3slides
	Chap4slides
	Chap5slides
	Chap6slides
	Chap7slides
	Chap8slides
	Chap9slides
	Chap10slides

