Basic Principles of Reinforcement Learning

[Motivating Deep Learning]

Neural Networks and Deep Learning, Springer, 2018
Chapter 8.1–8.3
The Complexity of Human Intelligence is Quite Simple!

- Herbert Simon’s ant hypothesis:

 “Human beings, viewed as behaving systems, are quite simple. The apparent complexity of our behavior over time is largely a reflection of the complexity of the environment in which we find ourselves.”

 - Humans are simple, because they are reward-driven entities.

 - All of biological intelligence is owed to this simple fact.

- Reinforcement learning attempts to simplify the learning of complex behaviors by using *reward-driven trial and error*.
When to Use Reinforcement Learning?

- Systems that are simple to judge but hard to specify.

- Easy to use trial-and-error to generate data.

 - Video games (e.g., Atari)

 - Board and card games (e.g., chess, Go, Poker)

 - Robot locomotion and visuomotor skills

 - Self-driving cars

- Reinforcement learning is the gateway to general forms of artificial intelligence!
Why Don’t We have General Forms of Artificial Intelligence Yet?

- Reinforcement learning requires large amounts of data (generated by trial and error).
 - Possible to generate lots of data in some game-centric settings, but not other real-life settings.

- Biological reinforcement learning settings include some unsupervised learning.
 - The number of synapses in our brain is larger than the number of seconds we live!
 - There must be some unsupervised learning going on continuously ⇒ We haven’t mastered that art yet.

- Recent results do show promise for the future.
Simplest Reinforcement Learning Setting: Multi-armed Bandits

• Imagine a gambler in a casino faced with 2 slot machines.

• Each trial costs the gambler $1, but pays $100 with some unknown (low) probability.

• The gambler suspects that one slot machine is better than the other.

• What would be the optimal strategy to play the slot machines, assuming that the gambler’s suspicion is correct?

• Stateless Model: Environment at every time-stamp is identical (although knowledge of agent improves).
Observations

• Playing both slot machines alternately helps the gambler learn about their payoff (over time).

 – However, it is wasteful *exploration*!

 – Gambler wants to *exploit* winner as soon as possible.

• Trade-off between exploration and exploitation ⇒ Hallmark of reinforcement learning
Naïve Algorithm

- **Exploration**: Play each slot machine for a fixed number of trials.

- **Exploitation**: Play the winner forever.

 - Might require a large number of trials to robustly estimate the winner.

 - If we use too few trials, we might actually play the poorer slot machine forever.
ϵ-Greedy Strategy

- Probabilistically merge exploration and exploitation.

- Play a random machine with probability ϵ, and play the machine with highest current payoff with probability $1 - \epsilon$.

- Main challenge in picking the proper value of $\epsilon \Rightarrow$ Decides trade-off between exploration and exploitation.

- **Annealing:** Start with large values of ϵ and reduce slowly.
Upper Bounding: The Optimistic Gambler!

- Upper-bounding represents optimism towards unseen machines ⇒ Encourages exploration.

- Empirically estimate mean μ_i and standard deviation σ_i of payoff of the ith machine using its n_i trials.

- Pick the slot machine with largest value of mean plus confidence interval $= \mu_i + K \cdot \sigma_i / \sqrt{n_i}$

 - Note the $\sqrt{n_i}$ in the denominator, because it is sample standard deviation.

 - Rarely played slot machines more likely to be picked because of optimism.

 - Value of K decides trade-off between exploration and exploitation.
Multi-Armed Bandits versus Classical Reinforcement Learning

- Multi-armed bandits is the simplest form of reinforcement learning.

- The model is stateless, because the environment is identical at each time-stamp.

- Same action is optimal for each time-stamp.
 - Not true for classical reinforcement learning like Go, chess, robot locomotion, or video games.
 - *State* of the environment matters!
Markov Decision Process (MDP): Examples from Four Settings

- **Agent**: Mouse, chess player, gambler, robot

- **Environment**: maze, chess rules, slot machines, virtual test bed for robot

- **State**: Position in maze, chess board position, unchanged, robot joints

- **Actions**: Turn in maze, move in chess, pulling a slot machine, robot making step

- **Rewards**: cheese for mouse, winning chess game, payoff of slot machine, virtual robot reward
The Basic Framework of Reinforcement Learning

1. AGENT (MOUSE) TAKES AN ACTION a_t (LEFT TURN IN MAZE) FROM STATE (POSITION) s_t
2. ENVIRONMENT GIVES MOUSE REWARD r_t (CHEESE/NO CHEESE)
3. THE STATE OF AGENT IS CHANGED TO s_{t+1}
4. MOUSE’S NEURONS UPDATE SYNAPTIC WEIGHTS BASED ON WHETHER ACTION EARNED CHEESE

OVERALL: AGENT LEARNS OVER TIME TO TAKE STATE-SENSITIVE ACTIONS THAT EARN REWARDS

- The biological and AI frameworks are similar.

- MDP represented as $s_0a_0r_0s_1a_1r_1 \ldots s_na_nr_n$
Examples of Markov Decision Process

- *Game of tic-tac-toe, chess, or Go:* The state is the position of the board at any point, and the actions correspond to the moves made by the agent. The reward is $+1$, 0, or -1 (depending on win, draw, or loss), *which is received at the end of the game*.

- *Robot locomotion:* The state corresponds to the current configuration of robot joints and its position. The actions correspond to the torques applied to robot joints. The reward at each time stamp is a function of whether the robot stays upright and the amount of forward movement.

- *Self-driving car:* The states correspond to the sensor inputs from the car, and the actions correspond to the steering, acceleration, and braking choices. The reward is a function of car progress and safety.
Role of Traditional Reinforcement Learning

- **Traditional reinforcement learning**: Learn through trial-and-error the *long-term* value of each state.

- Long-term values are not the same as rewards.
 - Rewards not realized immediately because of stochasticity (e.g., slot machine) or delay (board game).
Reinforcement Learning for Tic-Tac-Toe

• Main difference from multi-armed bandits is that we need to learn the long-term rewards for each action in each state.

• An eventual victory earns a reward from $\{+1, 0, -1\}$ with delay.

• A move occurring r moves earlier than the game termination earns discounted rewards of $\{\gamma^{r-1}, 0, -\gamma^{r-1}\}$.

 – Future rewards would be less certain in a replay.

• Assume that a fixed pool of humans is available as opponents to train the system (self-play possible).
Generalizing \(\epsilon \)-Greedy to Tic-Tac-Toe

- Maintain table of values of state-action pairs (initialize to small random values).
 - In multi-armed bandits, we only had values on actions.
 - Table contains unnormalized total reward for each state-action pair \(\Rightarrow \) Normalize to average reward.
- Use \(\epsilon \)-greedy algorithm with normalized table values to simulate moves and create a game.
- **After game:** Increment at most 9 entries in the unnormalized table with values from \(\{\gamma^{r-1}, 0, -\gamma^{r-1}\} \) for \(r \) moves to termination and win/loss.
- Repeat the steps above.
At the End of Training

- Typical examples of normalized values of moves

- ϵ-greedy will learn the strategic values of moves.

- Rather than state-action-value triplets, we can equivalently learn state-value pairs.
Where Does Deep Learning Fit In?

- The tic-tac-toe approach is a glorified “learning by rote” algorithm.

- Works only for toy settings with few states.
 - Number of board positions in chess is huge.
 - Need to be able to generalize to unseen states.

- **Function Approximator**: Rather than a table of state-value pairs, we can have a neural network that maps states to values.

- The parameters in the neural network substitute for the table.
Strawman ϵ-Greedy Algorithm with Deep Learning for Chess [Primitive: Don’t Try It!]

- Convolutional neural network takes board position as input and produces position value as output.

- Use ϵ-greedy algorithm on output values to simulate a full game.

- **After game of X moves:** Create X training points with board position as input feature map and targets from $\{\gamma^{r-1}, 0, -\gamma^{r-1}\}$ depending on move number and win/loss.

- Update neural network with these X training points.

- Repeat the steps above.
Reinforcement Learning in Chess and Go

- The reinforcement learning systems, *AlphaGo* and *AlphaZero*, have been designed for chess, Go, and shogi.

- Combines various advanced deep learning methods and Monte Carlo tree search.

- Plays positionally and sometimes makes sacrifices (much like a human).
 - Neural network encodes evaluation function learned from trial and error.
 - More complex and subtle than hand-crafted evaluation functions by conventional chess software.
Examples of Two Positions from Alpha Zero Games vs Stockfish

- Generalize to unseen states in training.

- Deep learner can recognize subtle positional factors because of trial-and-error experience with feature engineering.
Other Challenges

- Chess and tic-tac-toe are *episodic*, with a maximum length to the game (9 for tic-tac-toe and ≈ 6000 for chess).

- The ϵ-greedy algorithm updates episode by episode.

- What about infinite Markov decision processes like robots or long episodes?
 - Rewards received continuously.
 - Not optimal to update episode-by-episode.

- Value function and Q-function learning can update after each step with *Bellman’s equations*.
Charu C. Aggarwal
IBM T J Watson Research Center
Yorktown Heights, NY

Value Function Learning and Q-Learning

Neural Networks and Deep Learning, Springer, 2018
Chapter 8.4
Challenges with Long and Infinite Markov Decision Processes

- Previous lecture discusses how value functions can be learned for shorter episodes.
 - Update state-action-value table for each episode with Monte Carlo simulation.

- Effective for games like tic-tac-toe with small episodes.

- What to do with continuous Markov decision processes?
An Infinite Markov Decision Process

- Sequence below is of infinite length (continuous process)

\[s_0a_0r_0s_1a_1r_1 \ldots s_ta_tr_t \ldots \]

- The cumulative reward \(R_t \) at time \(t \) is given by the discounted sum of the immediate rewards for \(\gamma \in (0, 1) \):

\[
R_t = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \gamma^3 \cdot r_{t+3} \ldots = \sum_{i=0}^{\infty} \gamma^i r_{t+i} \quad (1)
\]

- Future rewards worth less than immediate rewards (\(\gamma < 1 \)).

- Choosing \(\gamma < 1 \) is not essential for episodic processes but critical for long MDPs.
Recap of Episodic ϵ-Greedy for Tic-Tac-Toe

- Maintain table of average values of state-action pairs (initialize to small random values).

- Use ϵ-greedy algorithm with table values to simulate moves and create a game.

- **After game:** Update at most 9 entries in the table with new averages, based on the outcomes from $\{\gamma^{r-1}, 0, -\gamma^{r-1}\}$ depending on move number and win/loss.

- Repeat the steps above.
The Bootstrapping Intuition

- Consider a Markov decision process in which we are predicting values (e.g., long-term rewards) at each time-stamp.
 - A partial simulation of the future can improve the prediction at the current time-stamp.
 - This improved prediction can be used as the ground-truth at the current time stamp.

- **Tic-tac-toe**: Parameterized evaluation function for board.
 - After our opponent plays the next move, and board evaluation changes unexpectedly, we go back and correct parameters.

- **Temporal difference learning**: Use difference in prediction caused by partial lookaheads (treated as error for updates).
Example of Chess

- Why is the minimax evaluation of a chess program at 10-ply stronger than that using the 1-ply board evaluation?

 – Because evaluation functions are imperfect (can be strengthened by “cheating” with data from future)!

 – If chess were solved (like checkers today), the evaluation function at any ply would be the same.

 – The minimax evaluation at 10 ply can be used as a “ground truth” for updating a parameterized evaluation function at current position!

- Samuel’s checkers program was the pioneer (called TD-Leaf today)

- Variant of idea used by TD-Gammon, Alpha Zero.
Q-Learning

- Instead of minimax over a tree, we can use one-step looka-head

- Let $Q(s_t, a_t)$ be a table containing optimal values of state-action pairs (best value of action a_t in state s_t).

- Assume we play tic-tac-toe with ϵ-greedy and $Q(s_t, a_t)$ initialized to random values.

- Instead of Monte Carlo, make following update:
 \[
 Q(s_t, a_t) = r_t + \gamma \max_a Q(s_{t+1}, a) \tag{2}
 \]

- Update: $Q(s_t, a_t) = Q(s_t, a_t)(1 - \alpha) + \alpha (r_t + \gamma \max_a Q(s_{t+1}, a))$
Why Does this Work?

- Most of the updates we initially make are not meaningful in tic-tac-toe.
 - We started off with random values.

- However, the update of the value of a next-to-terminal state is informative.

- The next time the next-to-terminal state occurs on RHS of Bellman, the update of the next-to-penultimate state will be informative.

- Over time, we will converge to the proper values of all state-action pairs.
SARSA: \(\epsilon \)-greedy Evaluation

- Let \(Q(s_t, a_t) \) be the value of action \(a_t \) in state \(s_t \) when following the \(\epsilon \)-greedy policy.

- An improved estimate of \(Q(s_t, a_t) \) via bootstrapping is \(r_t + \gamma Q(s_{t+1}, a_{t+1}) \)

- Follows from \(R_t = \sum_{i=0}^{\infty} \gamma^i r_{t+i} = r_t + \gamma R_{t+1} \)

- SARSA: Instead of episodic update, we can update the table containing \(Q(s_t, a_t) \) after performing \(a_t \) by \(\epsilon \)-greedy, observing \(s_{t+1} \) and then computing \(a_{t+1} \) again using \(\epsilon \)-greedy:

\[
Q(s_t, a_t) \leftarrow r_t + \gamma Q(s_{t+1}, a_{t+1}) \tag{3}
\]

- Gentler and stable variation: \(Q(s_t, a_t) \leftarrow Q(s_t, a_t)(1 - \alpha) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1})) \)
On-Policy vs Off-Policy Learning

- **SARSA**: On-policy learning is useful when learning and inference cannot be separated.

 - A robot who continuously learns from the environment.

 - The robot must be cognizant that exploratory actions have a cost (e.g., walking at edge of cliff).

- **Q-learning**: Off-policy learning is useful when we don’t need to perform exploratory component during inference time (have non-zero ϵ during training but set to 0 during inference).

 - Tic-tac-toe can be learned once using Q-learning, and then the model is fixed.
Using Deep Learning

- When the number of states is large, the values $Q(s_t, a_t)$ are predicted from state s_t representation \overline{X}_t rather than tabulated.

\[F(\overline{X}_t, \overline{W}, a) = \hat{Q}(s_t, a) \] (4)

- \overline{X}_t: Previous four screens of pixels in Atari
Specific Details of Convolutional Network

- Same architecture with minor variations was used for all Atari games.
Neural Network Updates for Q-Learning

- The neural network outputs $F(X_t, W, a_t)$.

- We must wait to observe state X_{t+1} and then set up a "ground-truth" value for the output using Bellman's equations:

 $\text{Bootstrapped Ground-Truth} = r_t + \gamma \max_a F(X_{t+1}, W, a)$ \hspace{1cm} (5)

- Loss: $L_t = \begin{cases}
 \left[r_t + \gamma \max_a F(X_{t+1}, W, a) \right] - F(X_t, W, a_t)
 & \text{Treat as constant ground-truth} \\
 \left[r_t + \gamma \max_a F(X_{t+1}, W, a) - F(X_t, W, a_t) \right] \frac{\partial F(X_t, W, a_t)}{\partial W}
 & \text{Constant ground-truth}
\end{cases}$

 $\overline{W} \leftarrow \overline{W} + \alpha \begin{cases}
 \left[r_t + \gamma \max_a F(X_{t+1}, W, a) \right] - F(X_t, W, a_t)
 & \text{Treat as constant ground-truth} \\
 \left[r_t + \gamma \max_a F(X_{t+1}, W, a) - F(X_t, W, a_t) \right] \frac{\partial F(X_t, W, a_t)}{\partial W}
 & \text{Constant ground-truth}
\end{cases}$ \hspace{1cm} (6)
Neural Network Updates for SARSA

- The neural network outputs $F(X_t, W, a_t)$.

- We must wait to observe state X_{t+1}, simulate a_{t+1} with ϵ-greedy and then set up a “ground-truth” value:

 $$\text{Bootstrapped Ground-Truth} = r_t + \gamma F(X_{t+1}, W, a_{t+1}) \quad (7)$$

- Loss: $L_t = \left\{ \begin{array}{c} [r_t + \gamma F(X_{t+1}, W, a_{t+1})] - F(X_t, W, a_t) \\ \text{Treat as constant ground-truth} \end{array} \right\}^2$

 $$W \leftarrow W + \alpha \left\{ \begin{array}{c} [r_t + \gamma F(X_{t+1}, W, a_{t+1})] - F(X_t, W, a_t) \\ \text{Constant ground-truth} \end{array} \right\} \frac{\partial F(X_t, W, a_t)}{\partial W} \quad (8)$$
Value Function Learning

• Instead of outputting values of state-action pairs we can output just values.

• Q-Learning and SARSA can be implemented with this architecture as well.

 – General class of temporal difference learning ⇒ Multi-step bootstrapping

 – Can explore a forward-looking tree for arbitrary bootstrapping.
Temporal Difference Learning $TD(0)$

- Value network produces $G(X_t, W)$ and bootstrapped ground truth = $r_t + \gamma G(X_{t+1}, W)$

- Same as SARSA: Observe next state by executing a_t according to current policy

- Loss: $L_t = \left\{ r_t + \gamma G(X_{t+1}, W) - G(X_t, W) \right\}^2$

 $\bar{W} = \bar{W} + \alpha \left\{ \frac{\partial G(X_t, W)}{\partial W} \right\} \frac{\partial G(X_t, W)}{\partial \bar{W}}$

 (9)

- Short notation: $\bar{W} \leftarrow \bar{W} + \alpha \delta_t (\nabla G(X_t, W))$
Bootstrapping over Multiple Steps

- Temporal difference bootstraps only over one time-step.
 - A strategically wrong move will not show up immediately.
 - Can look at n-steps instead of one.

- On-policy looks at single sequence greedily (too weak)

- Off-policy (like Bellman) picks optimal over entire minimax tree (Samuel’s checkers program).

- Any optimization heuristic for lookahead-based inference can be exploited.
 - Monte Carlo tree search explores *multiple branches* with upper-bounding strategy \Rightarrow Statistically robust target.
Fixed Window vs Smooth Decay: Temporal Difference Learning $TD(\lambda)$

- Refer to one-step temporal difference learning as $TD(0)$

- Fixed Window n:
 \[\overline{W} \leftarrow \overline{W} + \alpha \delta_t \sum_{k=t-n+1}^{t} \gamma^{t-k} (\nabla G(X_k, \overline{W})) \]

- $TD(\lambda)$ corrects past mistakes with discount factor λ when new information is received.

 \[\overline{W} \leftarrow \overline{W} + \alpha \delta_t \sum_{k=0}^{t} (\lambda \gamma)^{t-k} (\nabla G(X_k, \overline{W})) \]

- Setting $\lambda = 1$ or $n = \infty$ is equivalent to Monte Carlo methods.

 - Details in book.
Monte Carlo vs Temporal Differences

- Not true that greater lookahead always helps!
 - The value of λ in $TD(\lambda)$ regulates the trade-off between bias and variance.
 - Using small values of λ is particularly advisable if data is limited.

- A temporal difference method places a different value on each position in a single chess game (that depends on the merits of the position).
 - Monte Carlo places a value that depends only on time discounting and final outcome.
Monte Carlo vs Temporal Differences: Chess Example

• Imagine a Monte Carlo rollout of chess game between two agents Alice and Bob.
 – Alice and Bob each made two mistakes but Alice won.
 – Monte Carlo training data does not differentiate between mistakes and good moves.
 – Using temporal differences might see an error after each mistake because an additional ply has *differential* insight about the effect of the move (bootstrapping).

• More data is needed in Monte Carlo rollouts to remove the effect of noise.

• On the other hand, TD(0) might favor learning of end games over openings.
Implications for Other Methods

- Policy gradients often use Monte Carlo rollouts.
 - Deciding the *advantage* of an action is often difficult in games without continuous rewards.

- Value networks are often used in combination with *policy-gradients* in order to design *actor-critic* methods.
 - Temporal differences are used to evaluate the advantage of an action.
Policy Gradients

Neural Networks and Deep Learning, Springer, 2018
Chapter 8.5
Difference from Value-Based Methods

- Value-based methods like Q-learning attempt to predict the value of an action with a *parameterized value function*.
 - Often coupled with a generic policy (like ϵ-greedy).

- Policy gradient methods estimate the *probability* of each action at each step with the goal of maximizing the overall reward.

- Policy is itself parameterized.
Policy Network vs Q-Network for Atari Game

- Output is *probability* of each action in policy network rather than *value* of each action.
Overview of Approach

• We want to update network to maximize expected future rewards ⇒ We need to collect samples of long-term rewards for each simulated action.

 – **Method 1**: Use Monte Carlo policy rollouts to estimate the *simulated* long-term reward after each action.

 – **Method 2**: Use another value network to *model* long-term reward after each action (actor-critic methods).

• Main problem is in setting up a loss function that uses the simulated or modeled rewards to update the parameterized probabilities.
Example: Generating Training Data

- Training chess agent Alice (using pool of human opponents) with reward in \{+1, 0, −1\}.

- Consider a Monte Carlo simulation with win for agent Alice.

- Create training points for each board position faced by Alice and each action output \(a\) with long-term reward of 1.

 - If discount factor of \(\gamma\) then long-term reward is \(\gamma^{r-1}\).

- **Backpropagated stochastic gradient ascent:** Somehow need to update neural network from samples of rewards to maximize expected rewards (non-obvious).
Nature of Training Data

- We have board positions together with output action samples and long-term rewards of each sampled action.
 - We do not have ground-truth probabilities.

- So we want to maximize expected long-term rewards from samples of the probabilistic output.

- How does one compute the gradient of an expectation from samples?
Log Probability Trick

- Let $Q^p(s_t, a)$ be the long-term reward of action a and policy p.

- The log probability trick of REINFORCE relates gradient of expectation to expectation of gradient:

 $$\nabla E[Q^p(s_t, a)] = E[Q^p(s_t, a) \nabla \log(p(a))]$$ \hspace{1cm} (11)

- $Q^p(s_t, a)$ is estimated by Monte-Carlo roll-out and $\nabla \log(p(a))$ is the log-likelihood gradient from backpropagation in the policy network for sampled action a.

 $$\overline{W} \leftarrow \overline{W} + \alpha Q^p(s_t, a) \nabla \log(p(a))$$ \hspace{1cm} (12)
Baseline Adjustments

- Baseline adjustments change the reward into an "advantage" with the use of state-specific adjustments.
 - Subtract some quantity b from each $Q(s_t, a)$
 - Reduces variance of result without affecting bias.

- **State-independent**: One can choose b to be some long-term average of $Q^p(s_t, a)$.

- **State-specific**: One can choose b to be the value $V^p(s_t)$ of state $s_t \Rightarrow$ Advantage is same as temporal difference!
Why Does a State-Specific Baseline Adjustment Make Sense?

- Imagine a self-play chess game in which both sides make mistakes but one side wins.
 - Without baseline adjustments all training points from the game will have long-term rewards that depend only on final results.
 - Temporal difference will capture the *differential* impact of the error made in each action.
 - Gives more refined idea of the specific effect of that move ⇒ Its advantage!
Problems with Monte Carlo Policy Gradients

• Full Monte Carlo simulation is best for episodic processes.

• Actor-critic methods allow online updating by combining ideas in policy gradients and value networks:

 – **Value-based**: The policy (e.g., ϵ-greedy) of the actor is subservient to the critic.

 – **Policy-based**: No notion of critic for value estimation (typical approach is Monte Carlo)

• **Solution**: Create separate neural network for estimating value/advantage.
Actor-Critic Method

- Two separate neural networks:
 - **Actor**: Policy network with parameters Θ that decides actions.
 - **Critic**: Value network or Q-network with parameter W that estimates long-term reward/advantage \Rightarrow Advantage is temporal difference.

- The networks are trained simultaneously within an iterative loop.
Actor and Critic

(a) Actor (Decides actions as a probabilistic policy)

(b) Critic (Evaluates advantage in terms of temporal differences)
Steps in Actor-Critic Methods

- Sample the action a_{t+1} at state s_{t+1} using the policy network.

- Use Q-network to compute temporal difference error δ_t at s_t using bootstrapped target derived from value of s_{t+1}.

- **[Update policy network parameters]**: Update policy network using the Q-value of action a_t as its advantage (use temporal difference error for variance reduction).

- **[Update Q-Network parameters]**: Update the Q-network parameters using the squared temporal difference δ_t^2 as the error.

- Repeat the above updates.
Advantages and Disadvantages of Policy Gradients

• Advantages:

 – Work in continuous action spaces.

 – Can be used with stochastic policies.

 – Stable convergence behavior

• Main disadvantage is that they can reach local optima.