
Chapter 5

High-Dimensional Outlier Detection:
The Subspace Method

“In view of all that we have said in the foregoing sections, the many obstacles
we appear to have surmounted, what casts the pall over our victory celebration?
It is the curse of dimensionality, a malediction that has plagued the scientist
from the earliest days.”– Richard Bellman

5.1 Introduction

Many real data sets are very high dimensional. In some scenarios, real data sets may contain
hundreds or thousands of dimensions. With increasing dimensionality, many of the conven-
tional outlier detection methods do not work very effectively. This is an artifact of the
well-known curse of dimensionality. In high-dimensional space, the data becomes sparse,
and the true outliers become masked by the noise effects of multiple irrelevant dimensions,
when analyzed in full dimensionality.

A main cause of the dimensionality curse is the difficulty in defining the relevant local-
ity of a point in the high-dimensional case. For example, proximity-based methods define
locality with the use of distance functions on all the dimensions. On the other hand, all the
dimensions may not be relevant for a specific test point, which also affects the quality of the
underlying distance functions [263]. For example, all pairs of points are almost equidistant
in high-dimensional space. This phenomenon is referred to as data sparsity or distance con-
centration. Since outliers are defined as data points in sparse regions, this results in a poorly
discriminative situation where all data points are situated in almost equally sparse regions
in full dimensionality. The challenges arising from the dimensionality curse are not specific
to outlier detection. It is well known that many problems such as clustering and similarity
search experience qualitative challenges with increasing dimensionality [5, 7, 121, 263]. In
fact, it has been suggested that almost any algorithm that is based on the notion of prox-
imity would degrade qualitatively in higher-dimensional space, and would therefore need to
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Figure 5.1: The outlier behavior is masked by the irrelevant attributes in high dimensions.

be re-defined in a more meaningful way [8]. The impact of the dimensionality curse on the
outlier detection problem was first noted in [4].

In order to further explain the causes of the ineffectiveness of full-dimensional outlier
analysis algorithms, a motivating example will be presented. In Figure 5.1, four different
2-dimensional views of a hypothetical data set have been illustrated. Each of these views
corresponds to a disjoint set of dimensions. It is evident that point ‘A’ is exposed as an
outlier in the first view of the data set, whereas point ‘B’ is exposed as an outlier in the
fourth view of the data set. However, neither of the data points ‘A’ and ‘B’ are exposed as
outliers in the second and third views of the data set. These views are therefore noisy from
the perspective of measuring the outlierness of ‘A’ and ‘B.’ In this case, three of the four
views are quite non-informative and noisy for exposing any particular outlier ‘A’ or ‘B.’ In
such cases, the outliers are lost in the random distributions within these views, when the
distance measurements are performed in full dimensionality. This situation is often naturally
magnified with increasing dimensionality. For data sets of very high dimensionality, it is
possible that only a very small fraction of the views may be informative for the outlier
analysis process.

What does the aforementioned pictorial illustration tell us about the issue of locally
relevant dimensions? The physical interpretation of this situation is quite intuitive in prac-
tical scenarios. An object may have several measured quantities, and significantly abnormal
behavior of this object may be reflected only in a small subset of these quantities. For ex-
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ample, consider an airplane mechanical fault-detection scenario in which the results from
different tests are represented in different dimensions. The results of thousands of different
airframe tests on the same plane may mostly be normal, with some noisy variations, which
are not significant. On the other hand, some deviations in a small subset of tests may be
significant enough to be indicative of anomalous behavior. When the data from the tests
are represented in full dimensionality, the anomalous data points will appear normal in
virtually all views of the data except for a very small fraction of the dimensions. Therefore,
aggregate proximity measures are unlikely to expose the outliers, since the noisy variations
of the vast number of normal tests will mask the outliers. Furthermore, when different ob-
jects (instances of different airframes) are tested, different tests (subsets of dimensions) may
be relevant for identifying the outliers. In other words, the outliers are often embedded in
locally relevant subspaces.

What does this mean for full-dimensional analysis in such scenarios? When full-
dimensional distances are used in order to measure deviations, the dilution effects of the
vast number of “normally noisy” dimensions will make the detection of outliers difficult. In
most cases, this will show up as distance-concentration effects from the noise in the other
dimensions. This may make the computations more erroneous. Furthermore, the additive
effects of the noise present in the large number of different dimensions will interfere with the
detection of actual deviations. Simply speaking, outliers are lost in low-dimensional sub-
spaces, when full-dimensional analysis is used, because of the masking and dilution effects
of the noise in full dimensional computations [4].

Similar effects are also experienced for other distance-based methods such as clustering
and similarity search. For these problems, it has been shown [5, 7, 263] that by examining
the behavior of the data in subspaces, it is possible to design more meaningful clusters that
are specific to the particular subspace in question. This broad observation is generally true
of the outlier detection problem as well. Since the outliers may only be discovered in low-
dimensional subspaces of the data, it makes sense to explore the lower dimensional subspaces
for deviations of interest. Such an approach filters out the additive noise effects of the large
number of dimensions and results in more robust outliers. An interesting observation is that
such lower-dimensional projections can often be identified even in data sets with missing
attribute values. This is quite useful for many real applications, in which feature extraction
is a difficult process and full feature descriptions often do not exist. For example, in the
airframe fault-detection scenario, it is possible that only a subset of tests may have been
applied, and therefore the values in only a subset of the dimensions may be available for
outlier analysis. This model is referred to as projected outlier detection or, alternatively,
subspace outlier detection [4].

The identification of relevant subspaces is an extraordinarily challenging problem. This
is because the number of possible projections of high-dimensional data is exponentially
related to the dimensionality of the data. An effective outlier detection method would
need to search the data points and dimensions in an integrated way, so as to reveal the
most relevant outliers. This is because different subsets of dimensions may be relevant to
different outliers, as is evident from the example in Figure 5.1. This further adds to the
computational complexity.

An important observation is that subspace analysis is generally more difficult in the
context of the outlier detection problem than in the case of problems such as clustering.
This is because problems like clustering are based on aggregate behavior, whereas outliers,
by definition, are rare. Therefore, in the case of outlier analysis, statistical aggregates on
individual dimensions in a given locality often provide very weak hints for the subspace
exploration process as compared to aggregation-based problems like clustering. When such
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weak hints result in the omission of relevant dimensions, the effects can be much more
drastic than the inclusion of irrelevant dimensions, especially in the interesting cases when
the number of locally relevant dimensions is a small fraction of the full data dimensionality.
A common mistake is to assume that the complementarity relationship between clustering
and outlier analysis can be extended to the problem of local subspace selection. In particular,
blind adaptations of dimension selection methods from earlier subspace clustering methods,
which are unaware of the nuances of subspace analysis principles across different problems,
may sometimes miss important outliers. In this context, it is also crucial to recognize the
difficulty in identifying relevant subspaces for outlier analysis. In general, selecting a single
relevant subspace for each data point can cause unpredictable results, and therefore it is
important to combine the results from multiple subspaces. In other words, subspace outlier
detection is inherently posed as an ensemble-centric problem.

Several classes of methods are commonly used:

• Rarity-based: These methods attempt to discover the subspaces based on rarity
of the underlying distribution. The major challenge here is computational, since the
number of rare subspaces is far larger than the number of dense subspaces in high
dimensionality.

• Unbiased: In these methods, the subspaces are sampled in an unbiased way, and
scores are combined across the sampled subspaces. When subspaces are sampled from
the original set of attributes, the approach is referred to as feature bagging [344]. In
cases in which arbitrarily oriented subspaces are sampled, the approach is referred to
as rotated bagging [32] or rotated subspace sampling. In spite of their extraordinary
simplicity, these methods often work well.

• Aggregation-based: In these methods, aggregate statistics such as cluster statistics,
variance statistics, or non-uniformity statistics of global or local subsets of the data
are used to quantify the relevance of subspaces. Unlike rarity-based statistics, these
methods quantify the statistical properties of global or local reference sets of points
instead of trying to identify rarely populated subspaces directly. Since such methods
only provide weak (and error-prone) hints for identifying relevant subspaces, multiple
subspace sampling is crucial.

This chapter is organized as follows. Axis-parallel methods for subspace outlier detection
are studied in section 5.2. The underlying techniques discuss how multiple subspaces may
be combined to discover outliers. The problem of identifying outliers in generalized sub-
spaces (i.e., arbitrarily oriented subspaces) is discussed in section 5.3. Recent methods for
finding outliers in nonlinear subspaces are also discussed in this section. The limitations of
subspace analysis are discussed in section 5.4. The conclusions and summary are presented
in section 5.5.

5.2 Axis-Parallel Subspaces

The first work on subspace outlier detection [4] proposed a model in which outliers were
defined by axis-parallel subspaces. In these methods, an outlier is defined in a subset of
features from the original data. Clearly, careful quantification is required for comparing
the scores from various subspaces, especially if they are of different dimensionality and
use different scales of reference. Furthermore, methods are required for quantifying the
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effectiveness of various subspaces in exposing outliers. There are two major variations in
the approaches used by axis-parallel methods:

• In one class of methods, points are examined one by one and their relevant outlying
subspaces are identified. This is inherently an instance-based method. This type of
approach is computationally expensive because a significant amount of computational
time may be required for determining the outlier subspaces of each point. However,
the approach provides a more fine-grained analysis, and it is also useful for provid-
ing intensional knowledge. Such intensional knowledge is useful for describing why a
specific data point is an outlier.

• In the second class of methods, outliers are identified by building a subspace model
up front. Each point is scored with respect to the model. In some cases, each model may
correspond to a single subspace. Points are typically scored by using an ensemble score
of the results obtained from different models. Even in cases in which a single (global)
subspace is used in a model for scoring all the points, the combination score often
enhances the local subspace properties of the scores because of the ability of ensemble
methods to reduce representational bias [170] (cf. section 6.4.3 of Chapter 6).

The fine-grained analysis of the first class of methods is often computationally expensive.
Because of the computationally intensive and fine-grained nature of this analysis, it is
often harder to fully explore the use of multiple subspaces for analysis. This can sometimes
have a detrimental effect on the accuracy as well. The second class of methods has clear
computational benefits. This computational efficiency can be leveraged to explore a larger
number of subspaces and provide more robust results. Many of the methods belonging to
the second category, such as feature bagging, rotated bagging, subspace histograms, and
isolation forests, are among the more successful and accurate methods for subspace outlier
detection.

The advantages of ensemble-based analysis are very significant in the context of subspace
analysis [31]. Since the outlier scores from different subspaces may be very different, it is
often difficult to fully trust the score from a single subspace, and the combination of scores is
crucial. This chapter will explore several methods that leverage the advantages of combining
multiple subspaces.

5.2.1 Genetic Algorithms for Outlier Detection

The first approach for subspace outlier detection [4] was a genetic algorithm. Subspace
outliers are identified by finding localized regions of the data in low-dimensional space that
have abnormally low density. A genetic algorithm is employed to discover such local subspace
regions. The outliers are then defined by their membership in such regions.

5.2.1.1 Defining Abnormal Lower-Dimensional Projections

In order to identify abnormal lower-dimensional projections, it is important to provide
a proper statistical definition of an abnormal lower-dimensional projection. An abnormal
lower-dimensional projection is one in which the density of the data is exceptionally lower
than average. In this context, the methods for extreme-value analysis introduced in Chap-
ter 2 are useful.

A grid-based approach is used in order to identify rarely populated local subspace re-
gions. The first step is to create grid regions with data discretization. Each attribute is
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divided into φ ranges. These ranges are created on an equi-depth basis. Thus, each range
contains a fraction f = 1/φ of the records. The reason for using equi-depth ranges as
opposed to equi-width ranges is that different localities of the data may have different den-
sities. Therefore, such an approach partially adjusts for the local variations in data density
during the initial phase. These ranges form the units of locality that are used in order to
define sparse subspace regions.

Consider a k-dimensional cube that is created by selecting grid ranges from k different
dimensions. If the attributes are statistically independent, the expected fraction of the
records in that k-dimensional region is fk. Of course, real-world data is usually far from
statistically independent and therefore the actual distribution of points in a cube would
differ significantly from this expected value. Many of the local regions may contain very few
data points and most of them will be empty with increasing values of k. In cases where these
abnormally sparse regions are non-empty, the data points inside them might be outliers.

It is assumed that the total number of points in the database is denoted by N . Under
the aforementioned independence assumption, the presence or absence of any point in a
k-dimensional cube is a Bernoulli random variable with probability fk. Then, from the
properties of Bernoulli random variables, we know that the expected fraction and standard
deviation of the points in a k-dimensional cube is given by N · fk and

√
N · fk · (1− fk),

respectively. Furthermore, if the number of data points N is large, the central limit theorem
can be used to approximate the number of points in a cube by a normal distribution. Such
an assumption can help in creating meaningful measures of abnormality (sparsity) of the
cube. Let n(D) be the number of points in a k-dimensional cube D. The sparsity coefficient
S(D) of the data set D can be computed as follows:

S(D) =
n(D)−N · fk√
N · fk · (1− fk)

(5.1)

Only sparsity coefficients that are negative are indicative of local projected regions for which
the density is lower than expectation. Since n(D) is assumed to fit a normal distribution,
the normal distribution tables can be used to quantify the probabilistic level of significance
of its deviation. Although the independence assumption is never really true, it provides a
good practical heuristic for estimating the point-specific abnormality.

5.2.1.2 Defining Genetic Operators for Subspace Search

An exhaustive search of all the subspaces is impractical because of exponential computa-
tional complexity. Therefore, a selective search method, which prunes most of the subspaces,
is required. The nature of this problem is such that there are no upward- or downward-closed
properties1 on the grid-based subspaces satisfying the sparsity condition. Such properties
are often leveraged in other problems like frequent pattern mining [36]. However, unlike
frequent pattern mining, in which one is looking for patterns with high frequency, the prob-
lem of finding sparsely-populated subsets of dimensions has the flavor of finding a needle
in haystack. Furthermore, even though particular regions may be well populated on cer-
tain subsets of dimensions, it is possible for them to be very sparsely populated when such
dimensions are combined. For example, in a given data set, there may be a large num-
ber of individuals clustered at the age of 20, and a modest number of individuals with
high levels of severity of Alzheimer’s disease. However, very rare individuals would satisfy

1An upward-closed pattern is one in which all supersets of the pattern are also valid patterns. A
downward-closed set of patterns is one in which all subsets of the pattern are also members of the set.
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both criteria, because the disease does not affect young individuals. From the perspective
of outlier detection, a 20-year old with early-onset Alzheimer is a very interesting record.
However, the interestingness of the pattern is not even hinted at by its lower-dimensional
projections. Therefore, the best projections are often created by an unknown combination
of dimensions, whose lower-dimensional projections may contain very few hints for guid-
ing subspace exploration. One solution is to change the measure in order to force better
closure or pruning properties; however, forcing the choice of the measure to be driven by
algorithmic considerations is often a recipe for poor results. In general, it is not possible to
predict the effect of combining two sets of dimensions on the outlier scores. Therefore, a
natural option is to develop search methods that can identify such hidden combinations of
dimensions. An important observation is that one can view the problem of finding sparse
subspaces as an optimization problem of minimizing the count of the number of points in
the identified subspaces. However, since the number of subspaces increases exponentially
with data dimensionality, the work in [4] uses genetic algorithms, which are also referred
to as evolutionary search methods. Such optimization methods are particularly useful in
unstructured settings where there are few hard rules to guide the search process.

Genetic algorithms, also known as evolutionary algorithms [273], are methods that imi-
tate the process of organic evolution in order to solve poorly structured optimization prob-
lems. In evolutionary methods, every solution to an optimization problem can be represented
as an individual in an evolutionary system. The measure of fitness of this “individual” is
equal to the objective function value of the corresponding solution. As in biological evolu-
tion, an individual has to compete with other individuals that are alternative solutions to
the optimization problem. Therefore, one always works with a multitude (i.e., population)
of solutions at any given time, rather than a single solution. Furthermore, new solutions
can be created by recombination of the properties of older solutions, which is the analog
of the process of biological reproduction. Therefore, appropriate operations are defined in
order to imitate the recombination and mutation processes in order to complete the simu-
lation. A mutation can be viewed as a way of exploring closely related solutions for possible
improvement, much as one would do in a hill-climbing approach.

Clearly, in order to simulate this biological process, we need some type of concise rep-
resentation of the solutions to the optimization problem. This representation enables a
concrete algorithm for simulating the algorithmic processes of recombination and mutation.
Each feasible solution is represented as a string, which can be viewed as the chromosome
representation of the solution. The process of conversion of feasible solutions into strings is
referred to as its encoding. The effectiveness of the evolutionary algorithm often depends
crucially on the choice of encoding because it implicitly defines all the operations used
for search-space exploration. The measure of fitness of a string is evaluated by the fitness
function. This is equivalent to an evaluation of the objective function of the optimization
problem. Therefore, a solution with a better objective function value can be viewed as the
analog of a fitter individual in the biological setting. When evolutionary algorithms simu-
late the process of biological evolution, it generally leads to an improvement in the average
objective function of all the solutions (population) at hand much as the biological evolution
process improves fitness over time. Furthermore, because of the perpetual (selection) bias
towards fitter individuals, diversity in the population of solutions is lost. This loss of diver-
sity resembles the way in which convergence works in other types of iterative optimization
algorithms. De Jong [163] defined convergence of a particular position in the string as the
stage at which 95% of the population had the same value for that position. The population
is said to have converged when all positions in the string representation have converged.

The evolutionary algorithm views subspace projections as possible solutions to the op-
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timization problem. Such projections can be easily represented as strings. Since the data
is discretized into a grid structure, we can assume that the identifiers of the various grid
intervals in any dimension range from 1 to φ. Consider a d-dimensional data point for which
the grid intervals for the d different dimensions are denoted by (m1, . . .md). The value of
each mi can take on any of the value from 1 through φ, or it can take on the value ∗, which
indicates a “don’t care” value. Thus, there are a total of φ+1 possible values ofmi. Consider
a 4-dimensional data set with φ = 10. Then, one possible example of a solution to the prob-
lem is given by the string *3*9. In this case, the ranges for the second and fourth dimension
are identified, whereas the first and third are left as “don’t cares.” The evolutionary algo-
rithm uses the dimensionality of the projection k as an input parameter. Therefore, for a
d-dimensional data set, the string of length d will contain k specified positions and (d− k)
“don’t care” positions. This represents the string encoding of the k-dimensional subspace.
The fitness for the corresponding solution may be computed using the sparsity coefficient
discussed earlier. The evolutionary search technique starts with a population of p random
solutions and iteratively uses the processes of selection, crossover, and mutation in order
to perform a combination of hill climbing, solution recombination and random search over
the space of possible projections. The process is continued until the population converges
to a global optimum according to the De Jong convergence criterion [163]. At each stage
of the algorithm, the m best projection solutions (most negative sparsity coefficients) are
tracked in running fashion. At the end of the algorithm, these solutions are reported as the
best projections in the data. The following operators are defined for selection, crossover,
and mutation:

• Selection: The copies of a solution are replicated by ordering them by rank and
biasing them in the population in the favor of higher ranked solutions. This is referred
to as rank selection.

• Crossover: The crossover technique is key to the success of the algorithm, since it
implicitly defines the subspace exploration process. One solution is to use a uniform
two-point crossover in order to create the recombinant children strings. The two-
point crossover mechanism works by determining a point in the string at random
called the crossover point, and exchanging the segments to the right of this point.
However, such a blind recombination process may create poor solutions too often.
Therefore, an optimized crossover mechanism is defined. In this case, it is guaranteed
that both children solutions correspond to a k-dimensional projection as the parents,
and the children typically have high fitness values. This is achieved by examining a
subset of the different possibilities for recombination and selecting the best among
them. The basic idea is to select k dimensions greedily from the space of (at most)
2 · k distinct dimensions included in the two parents. A detailed description of this
optimized crossover process is provided in [4].

• Mutation: In this case, random positions in the string are flipped with a predefined
mutation probability. Care must be taken to ensure that the dimensionality of the
projection does not change after the flipping process.

At termination, the algorithm is followed by a postprocessing phase. In the postprocessing
phase, all data points containing the abnormal projections are reported by the algorithm as
the outliers. The approach also provides the relevant projections which provide the causal-
ity for the outlier behavior of a data point. Thus, this approach has a high degree of
interpretability.



5.2. AXIS-PARALLEL SUBSPACES 157

5.2.2 Finding Distance-Based Outlying Subspaces

After the initial proposal of the basic subspace outlier detection framework [4], one of the
earliest methods along this line was the HOS-Miner approach. Several different aspects
of the broader ideas associated with HOS-Miner are discussed in [605, 606, 607]. A first
discussion of the HOS-Miner approach was presented in [605]. According to this work, the
definition of the outlying subspace for a given data point X is as follows:

Definition 5.2.1 For a given data point X, determine the set of subspaces such that the
sum of its k-nearest neighbor distances in that subspace is at least δ.

This approach does not normalize the distances with the number of dimensions. Therefore, a
subspace becomes more likely to be outlying with increasing dimensionality. This definition
also exhibits closure properties in which any subspace of a non-outlying subspace is also
not outlying. Similarly, every superset of an outlying subspace is also outlying. Clearly, only
minimal subspaces that are outliers are interesting. The method in [605] uses these closure
properties to prune irrelevant or uninteresting subspaces. Although the aforementioned
definition has desirable closure properties, the use of a fixed threshold δ across subspaces of
different dimensionalities seems unreasonable. Selecting a definition based on algorithmic
convenience can often cause poor results. As illustrated by the earlier example of the young
Alzheimer patient, true outliers are often hidden in subspaces of the data, which cannot be
inferred from their lower- or higher-dimensional projections.

An X-Tree is used in order to perform the indexing for performing the k-nearest neigh-
bor queries in different subspaces efficiently. In order to further improve the efficiency of the
learning process, the work in [605] uses a random sample of the data in order to learn about
the subspaces before starting the subspace exploration process. This is achieved by esti-
mating a quantity called the Total Savings Factor (TSF) of the outlying subspaces. These
are used to regulate the search process for specific query points and prune the different
subspaces in an ordered way. Furthermore, the TSF values of different subspaces are dy-
namically updated as the search proceeds. It has been shown in [605] that such an approach
can be used in order to determine the outlying subspaces of specific data points efficiently.
Numerous methods for using different kinds of pruning properties and genetic algorithms
for finding outlying subspaces are presented in [606, 607].

5.2.3 Feature Bagging: A Subspace Sampling Perspective

The simplest method for combining outliers from multiple subspaces is the use of feature
bagging [344], which is an ensemble method. Each base component of the ensemble uses the
following steps:

• Randomly select an integer r from �d/2� to (d− 1).

• Randomly select r features (without replacement) from the underlying data set in
iteration t in order to create an r-dimensional data set Dt in the tth iteration.

• Apply the outlier detection algorithm Ot on the data set Dt in order to compute the
score of each data point.

In principle, one could use a different outlier detection algorithm in each iteration, provided
that the scores are normalized to Z-values after the process. The normalization is also
necessary to account for the fact that different subspace samples contain a different number
of features. However, the work in [344] uses the LOF algorithm for all the iterations. Since the
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LOF algorithm returns inherently normalized scores, such a normalization is not necessary.
At the end of the process, the outlier scores from the different algorithms are combined in
one of two possible ways:

• Breadth-first approach: In this approach, the ranking of the algorithms is used for
combination purposes. The top-ranked outliers over all the different executions are
ranked first, followed by the second-ranked outliers (with repetitions removed), and
so on. Minor variations could exist because of tie-breaking between the outliers within
a particular rank.

• Cumulative-sum approach: The outlier scores over the different algorithm executions
are summed up. The top ranked outliers are reported on this basis. One can also
view this process as equivalent to the averaging combination function in an ensemble
method (cf. Chapter 6).

It was experimentally shown in [344] that such methods are able to ameliorate the effects
of irrelevant attributes. In such cases, full-dimensional algorithms are unable to distinguish
the true outliers from the normal data, because of the additional noise.

At first sight, it would seem that random subspace sampling [344] does not attempt to
optimize the discovery of relevant subspaces at all. Nevertheless, it does have the paradox-
ical merit that it is relatively efficient to sample subspaces, and therefore a large number
of subspaces can be sampled in order to improve robustness. Even though each detector
selects a global subspace, the ensemble-based combined score of a given point is able to im-
plicitly benefit from the locally-optimized subspaces. This is because different points may
obtain favorable scores in different subspace samples, and the ensemble combination is of-
ten able to identify all the points that are favored in a sufficient number of the subspaces.
This phenomenon can also be formally explained in terms of the notion of how ensem-
ble methods reduce representational bias [170] (cf. section 6.4.3.1 of Chapter 6). In other
words, ensemble methods provide an implicit route for converting global subspace explo-
ration into local subspace selection and are therefore inherently more powerful than their
individual components. An ensemble-centric perspective on feature bagging is provided in
section 6.4.3.1.

The robustness resulting from multiple subspace sampling is clearly a very desirable
quality, as long as the combination function at the end recognizes the differential behavior
of different subspace samples for a given data point. In a sense, this approach implicitly
recognizes the difficulty of detecting relevant and rare subspaces, and therefore samples
as many subspaces as possible in order to reveal the rare behavior. From a conceptual
perspective, this approach is similar to that of harnessing the power of many weak learners
to create a single strong learner in classification problems. The approach has been shown
to show consistent performance improvement over full-dimensional methods for many real
data sets in [344]. This approach may also be referred to as the feature bagging method or
random subspace ensemble method. Even though the original work [344] uses LOF as the
base detector, the average k-nearest neighbor detector has also been shown to work [32].

5.2.4 Projected Clustering Ensembles

Projected clustering methods define clusters as sets of points together with sets of dimen-
sions in which these points cluster well. As discussed in Chapter 4, clustering and outlier
detection are complementary problems. Therefore, it is natural to investigate whether pro-
jected or subspace clustering methods can also be used for outlier detection. Although the
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relevant subspaces for clusters are not always relevant for outlier detection, there is still
a weak relationship between the two. By using ensembles, it is possible to strengthen the
types of outliers discovered using this approach.

As shown in the OutRank work [406], one can use ensembles of projected clustering
algorithms [5] for subspace outlier detection. In this light, it has been emphasized in [406]
that the use of multiple projected clusterings is essential because the use of a single projected
clustering algorithm provides very poor results. The basic idea in OutRank is to use the
following procedure repeatedly:

• Use a randomized projected clustering method like PROCLUS [5] on the data set to
create a set of projected clusters.

• Quantify the outlier score of each point based on its similarity to the cluster to which
it belongs. Examples of relevant scores include the size, dimensionality, (projected)
distance to cluster centroid, or a combination of these factors. The proper choice of
measure is sensitive to the specific clustering algorithm that is used.

This process is applied repeatedly, and the scores are averaged in order to yield the final
result. The use of a sufficiently randomized clustering method in the first step is crucial for
obtaining good results with this ensemble-centric approach.

There are several variations one might use for the scoring step. For a distance-based
algorithm like PROCLUS, it makes sense to use the same distance measure to quantify the
outlier score as was used for clustering. For example, one can use the Manhattan segmental
distance of a data point from its nearest cluster centroid in the case of PROCLUS. The
Manhattan segmental distance is estimated by first computing the Manhattan distance
of the point to the centroid of the cluster in its relevant subspace and then dividing by
the number of dimensions in that subspace. However, this measure ignores the number of
points and dimensionality of the clusters; furthermore, it is not applicable for pattern-based
methods with overlapping clusters. A natural approach is the individual weighting measure.
For a point, the fraction of the number of points in its cluster to maximum cluster size
is computed, and the fraction of the number of dimensions in its cluster subspace to the
maximum cluster-subspace dimensionality is also computed. A simple outlier score is to
add these two fractions over all clusters in which the point occurs and then divide by the
total number of clusters in the data. A point that is included in many large and high-
dimensional subspace clusters is unlikely to be an outlier. Therefore, points with smaller
scores are deemed as outliers. A similar method for binary and categorical data is discussed
in section 8.5.1 of Chapter 8. Two other measures, referred to as cluster coverage and
subspace similarity, are proposed in [406]. The work in [406] experimented with a number of
different clustering algorithms and found that using multiple randomized runs of PROCLUS
yields the best results. This variation is referred to as Multiple-Proclus. The cluster coverage
and subspace similarity measures were used to achieve these results, although reasonable
results were also achieved with the individual weighting measure.

The key point to understand about such clustering-based methods is that the type of
outlier discovered is sensitive to the underlying clustering, although an ensemble-centric
approach is essential for success. Therefore, a locality-sensitive clustering ensemble will
make the outliers locality-sensitive; a subspace-sensitive clustering ensemble will make the
outliers subspace-sensitive, and a correlation-sensitive clustering ensemble will make the
outliers correlation-sensitive.
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5.2.5 Subspace Histograms in Linear Time

A linear-time implementation of subspace histograms with hashing is provided in [476] and
is referred to as RS-Hash. The basic idea is to repeatedly construct grid-based histograms
on data samples of size s and combine the scores in an ensemble-centric approach. Each
histogram is constructed on a randomly chosen subspace of the data. The dimensionality
of the subspace and size of the grid region is specific to its ensemble component. In the
testing phase of the ensemble component, all N points in the data are scored based on
the logarithm of the number of points (from the training sample) in its grid region. The
approach is repeated with multiple samples of size s. The point-specific scores are averaged
over different ensemble components to create a final result, which is highly robust. The
variation in the dimensionality and size of the grid regions is controlled with am integer
dimensionality parameter r and a fractional grid-size parameter f ∈ (0, 1), which vary
randomly over different ensemble components. We will describe the process of random
selection of these parameters later. For now, we assume (for simplicity) that the values of
these parameters are fixed.

The sample S of size s � N may be viewed as the training data of a single ensemble
component, and each of the N points is scored in this component by constructing a subspace
histogram on this training sample. First, a set V of r dimensions is randomly sampled from
the d dimensions, and all the scoring is done on histograms built in this r-dimensional
subspace. The minimum value minj and the maximum value maxj of the jth dimension
are determined from this sample. Let xij denote the jth dimension of the ith point. All s · r
values xij in the training sample, such that j ∈ V , are normalized as follows:

x′ij ⇐
xij −minj

maxj −minj
(5.2)

One can even use x′ij ⇐ xij/(maxj − minj) for implementation simplicity. At the time
of normalization, we also create the following r-dimensional discretized representation of
the training points, where for each of the r dimensions in V , we use a grid-size of width
f ∈ (0, 1). Furthermore, to induce diversity across ensemble components, the placement
of the grid partitioning points is varied across ensemble components. In a given ensemble
component, a grid partitioning point is not placed at 0, but at a value of −αj for dimension
j. This can be achieved by setting the discretized identifier of point i and dimension j
to �(x′ij + αj)/f�. The value of αj is fixed within an ensemble component up front at a
value randomly chosen from (0, f). This r-dimensional discretized representation provides
the identity of the r-dimensional bounding box of that point. A hash table maintains a
count of each of the bounding boxes encountered in the training sample. For each of the s
training points, the count of its bounding box is incremented by hashing this r-dimensional
discrete representation, which requires constant time. In the testing phase, the discretized
representation of each of theN points is again constructed using the aforementioned process,
and its count is retrieved from the hash table constructed on the training sample. Let ni ≤ s
denote this count of the ith point. For points included in the training sample S, the outlier
score of the ith point is log2(ni), whereas for points not included in the training sample
S, the score is log2(ni + 1). This process is repeated over multiple ensemble components
(typically 100), and the average score of each point is returned. Low scores represent outliers.

It is noteworthy that the values of minj and maxj used in the testing phase of an
ensemble component are the same as those estimated from the training sample. Thus, the
training phase requires only O(s) time, and the value of s is typically a small constant such
as 1000. The testing phase of each ensemble component requires O(N) time, and the overall
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algorithm requires O(N + s) time. The constant factors also tend to be very small and the
approach is extremely fast.

We now describe the process of randomly selecting f , r, and αj up front in each en-
semble component. The value of f is selected uniformly at random from (1/

√
s, 1− 1/

√
s).

Subsequently, the value of r is set uniformly at random to an integer between 1 + 0.5 ·
[logmax{2,1/f}(s)] and logmax{2,1/f}(s). The value of each αj is selected uniformly at ran-
dom from (0, f). This variation of grid size (with f), dimensionality (with r), and placement
of grid regions (with αj) provides additional diversity, which is helpful to the overall en-
semble result. The work in [476] has also shown how the approach may be extended to data
streams. This variant is referred to as RS-Stream. The streaming variant requires greater
sophistication in the hash-table design and maintenance, although the overall approach is
quite similar.

5.2.6 Isolation Forests

The work in [367] proposes a model called isolation forests, which shares some intuitive
similarity with another ensemble technique known as random forests. Random forests are
among the most successful models used in classification and are known to outperform the
majority of classifiers in a variety of problem domains [195]. However, the unsupervised way
in which an isolation forest is constructed is quite different, especially in terms of how a
data point is scored. As discussed in section 5.2.6.3, the isolation forest is also a special case
of the extremely randomized clustering forest (ERC-Forest) for clustering [401].

An isolation forest is an ensemble combination of a set of isolation trees. In an isolation
tree, the data is recursively partitioned with axis-parallel cuts at randomly chosen partition
points in randomly selected attributes, so as to isolate the instances into nodes with fewer
and fewer instances until the points are isolated into singleton nodes containing one instance.
In such cases, the tree branches containing outliers are noticeably less deep, because these
data points are located in sparse regions. Therefore, the distance of the leaf to the root is
used as the outlier score. The final combination step is performed by averaging the path
lengths of the data points in the different trees of the isolation forest.

Isolation forests are intimately related to subspace outlier detection. The different
branches correspond to different local subspace regions of the data, depending on how
the attributes are selected for splitting purposes. The smaller paths correspond to lower
dimensionality2 of the subspaces in which the outliers have been isolated. The less the di-
mensionality that is required to isolate a point, the stronger the outlier that point is likely
to be. In other words, isolation forests work under the implicit assumption that it is more
likely to be able to isolate outliers in subspaces of lower dimensionality created by random
splits. For instance, in our earlier example on Alzheimer’s patients, a short sequence of
splits such as Age ≤ 30, Alzheimer = 1 is likely to isolate a rare individual with early-onset
Alzheimer’s disease.

The training phase of an isolation forest constructs multiple isolation trees, which are
unsupervised equivalents of decision trees. Each tree is binary, and has at most N leaf nodes
for a data set containing N points. This is because each leaf node contains exactly one data
point by default, but early termination is possible by parameterizing the approach with

2Although it is possible to repeatedly cut along the same dimension, this becomes less likely in higher-
dimensional data sets. In general, the path length is highly correlated with the dimensionality of the subspace
used for isolation. For a data set containing 28 = 256 points (which is the recommended subsample size),
the average depth of the tree will be 8, but an outlier might often be isolated in less than three or four
splits (dimensions).
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a height parameter. In order to construct the isolation tree from a data set containing N
points, the approach creates a root node containing all the points. This is the initial state
of the isolation tree T . A candidate list C (for further splitting) of nodes is initialized as a
singleton list containing the root node. Then, the following steps are repeated to create the
isolation tree T until the candidate list C is empty:

1. Select a node R from C randomly and remove from C.

2. Select a random attribute i and split the data in R into two sets R1 and R2 at a
random value a chosen along that attribute. Therefore, all data points in R1 satisfy
xi ≤ a and all data points in R2 satisfy xi > a. The random value a is chosen uniformly
at random between the minimum and maximum values of the ith attribute among
data points in node R. The nodes R1 and R2 are children of R in T .

3. (Step performed for each i ∈ {1, 2}): If Ri contains more than one point then add
it to C. Otherwise, designate the node as an isolation-tree leaf.

This process will result in the creation of a binary tree that is typically not balanced.
Outlier nodes will tend to be isolated more quickly than non-outlier nodes. For example,
a point that is located very far away from the remaining data along all dimensions would
likely be separated as an isolated leaf in the very first iteration. Therefore, the length of
the path from the root to the leaf is used as the outlier score. Note that the path from
the root to the leaf defines a subspace of varying dimensionality. Outliers can typically be
isolated in much lower-dimensional subspaces than normal points. Therefore, the number
of edges from the root to a node is equal to its outlier score. Smaller scores correspond
to outliers. This inherently randomized approach is repeated multiple times and the scores
are averaged to create the final result. The ensemble-like approach is particularly effective
and it often provides results of high quality. The basic version of the isolation tree, when
grown to full height, is parameter-free. This characteristic is always a significant advantage
in unsupervised problems like outlier detection. The average-case computational complexity
of the approach is θ(N log(N)), and the space complexity is O(N) for each isolation tree.

One can always improve computational efficiency and often improve accuracy with sub-
sampling. The subsampling approach induces further diversity, and gains some of the advan-
tages inherent in outlier ensembles [31]. In this case, the isolation tree is constructed using
a subsample in the training phase, although all points are scored against the subsample
in the testing phase. The training phase returns the tree structure together with the split
conditions (such as xi ≤ a and xi > a) at each node. Out-of-sample points are scored in the
testing phase by using the split conditions computed during the training phase. Much like
the testing phase of a decision tree, the appropriate leaf node for an out-of-sample point is
identified by traversing the appropriate path from the root to the leaf with the use of the
split conditions, which are simple univariate inequalities.

The use of a subsample results in better computational efficiency and better diversity.
It is stated in [367] that a subsample size of 256 works well in practice, although this
value might vary somewhat with the data set at hand. Note that this results in constant
computational and memory requirements for building the tree, irrespective of data set size.
The testing phase requires average-case complexity of θ(log(N)) for each data point if the
entire data set is used. On the other hand, the testing phase requires constant time for each
point, if subsamples of size 256 are used. Therefore, if subsampling is used with a constant
number of samples and a constant number of trials, the running time is constant for the
training phase, O(N) for the testing phase, and the space complexity is constant as well.
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The isolation forest is an efficient method, which is noteworthy considering the fact that
most subspace methods are computationally intensive.

The final combination step is performed by averaging the path lengths of a data point
in the different trees of the isolation forest. A detailed discussion of this approach from an
ensemble-centric point of view is provided in section 6.4.5 of Chapter 6. Practical implemen-
tations of this approach are available on the Python library scikit-learn [630] and R library
SourceForge [631].

5.2.6.1 Further Enhancements for Subspace Selection

The approach is enhanced by additional pre-selection of feature with a Kurtosis measure.
The Kurtosis of a set of feature values x1 . . . xN is computed by first standardizing them to
z1 . . . zN with zero mean and unit standard deviation:

zi =
xi − μ

σ
(5.3)

Here, μ is the mean and σ is the standard deviation of x1 . . . xN . Then, the Kurtosis is
computed as follows:

K(z1 . . . zN) =

∑N
i=1 z

4
i

N
(5.4)

Features that are very non-uniform will show a high level of Kurtosis. Therefore, the Kur-
tosis computation can be viewed as a feature selection measure for anomaly detection. The
work in [367] preselects a subset of attributes based on the ranking of their univariate Kur-
tosis values and then constructs the random forest after (globally) throwing away those
features. Note that this results in global subspace selection; nevertheless the random split
approach is still able to explore different local subspaces, albeit randomly (like feature bag-
ging). A generalization of the Kurtosis measure, referred to as multidimensional Kurtosis,
is discussed in section 1.3.1 of Chapter 1. This measure evaluates subsets of features jointly
using Equation 5.4 on the Mahalanobis distances of points in that subspace rather than
ranking features with univariate Kurtosis values. This measure is generally considered to
be more effective than univariate Kurtosis but it is computationally expensive because it
needs to be coupled with feature subset exploration in a structured way. Although the gen-
eralized Kurtosis measure has not been used in the isolation forest framework, it has the
potential for application within settings in which computational complexity is not as much
of a concern.

5.2.6.2 Early Termination

A further enhancement is that the tree is not grown to full height. The growth of a node
is stopped as soon as a node contains either duplicate instances or it exceeds a certain
threshold height. This threshold height is set to 10 in the experiments of [367]. In order to
estimate the path length of points in such nodes, an additional credit needs to be assigned to
account for the fact that the points in these nodes have not been materialized to full height.
For a node containing r instances, its additional credit c(r) is defined as the expected path
length in a binary search tree with r points [442]:

c(r) = ln(r − 1)− 2(r − 1)

r
+ 0.5772 (5.5)
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Note that this credit is added to the path length of that node from the root to compute
the final outlier score. Early termination is an efficiency-centric enhancement, and one can
choose to grow the trees to full length if needed.

5.2.6.3 Relationship to Clustering Ensembles and Histograms

The isolation forest can be viewed as a type of clustering ensemble as discussed in sec-
tion 5.2.4. The isolation tree creates hierarchical projected clusters from the data, in which
clusters are defined by their bounding boxes. A bounding box of a cluster (node) is defined
by the sequence of axis-parallel splits from the root to that node. However, compared to
most projected clustering methods, the isolation tree is extremely randomized because of
its focus on ensemble-centric performance. The isolation forest is a decision-tree-based ap-
proach to clustering. Interestingly, the basic isolation forest can be shown to be a variation
of an earlier clustering ensemble method, referred to as extremely randomized clustering
forests (ERC-Forests) [401]. The main difference is that the ERC-Forest uses multiple tri-
als at each node to enable a small amount of supervision with class labels; however, by
setting the number of trials to 1 and growing the tree to full length, one can obtain an
unsupervised isolation tree as a special case. Because of the space-partitioning (rather than
point-partitioning) methodology used in ERC-Forests and isolation forests, these methods
also share some intuitive similarities with histogram- and density-based methods. An isola-
tion tree creates hierarchical and randomized grid regions, whose expected volume reduces
by a factor of 2 with each split. The path length in an isolation tree is therefore a rough
surrogate for the negative logarithm of the (fractional) volume of a maximal grid region
containing a single data point. This is similar to the notion of log-likelihood density used in
traditional histograms. Unlike traditional histograms, isolation forests are not parameter-
ized by grid-width and are therefore more flexible in handling data distributions of varying
density. Furthermore, the flexible shapes of the histograms in the latter naturally define
local subspace regions.

The measures for scoring the outliers with projected clustering methods [406] also share
some intuitive similarities with isolation forests. One of the measures in [406] uses the sum
of the subspace dimensionality of the cluster and the number of points in the cluster as an
outlier score. Note that the subspace dimensionality of a cluster is a rough proxy for the
path length in the isolation tree. Similarly, some variations of the isolation tree, referred to
as half-space trees [532], use fixed-height trees. In these cases, the number of points in the
relevant node for a point is used to define its outlier score. This is similar to clustering-based
outlier detection methods in which the number of points in the nearest cluster is often used
as an important component of the outlier score.

5.2.7 Selecting High-Contrast Subspaces

The feature bagging method [344] discussed in section 5.2.3 randomly samples subspaces. If
many dimensions are irrelevant, at least a few of them are likely to be included in each sub-
space sample. At the same time, information is lost because many dimensions are dropped.
These effects are detrimental to the accuracy of the approach. Therefore, it is natural to ask
whether it is possible to perform a pre-processing in which a smaller number of high-contrast
subspaces are selected. This method is also referred to as HiCS, as it selects high-contrast
subspaces.

In the work proposed in [308], the outliers are found only in these high-contrast sub-
spaces, and the corresponding scores are combined. Thus, this approach decouples the sub-
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space search as a generalized pre-processing approach from the outlier ranking of the indi-
vidual data points. The approach discussed in [308] is quite interesting because of its pre-
processing approach to finding relevant subspaces in order to reduce the irrelevant subspace
exploration. Although the high-contrast subspaces are obtained using aggregation-based
statistics, these statistics are only used as hints in order to identify multiple subspaces for
greater robustness. The assumption here is that rare patterns are statistically more likely to
occur in subspaces where there is significant non-uniformity and contrast. The final outlier
score combines the results over different subspaces to ensure that at least a few relevant
subspaces will be selected. The insight in the work of [308] is to combine discriminative
subspace selection with the score aggregation of feature bagging in order to determine the
relevant outlier scores. Therefore, the only difference from feature bagging is in how the
subspaces are selected; the algorithms are otherwise identical. It has been shown in [308]
that this approach performs better than the feature bagging method. Therefore, an overview
of the HiCS method is as follows:

1. The first step is to select discriminative subspaces using an Apriori-like [37] explo-
ration, which is described at the end of this section. These are high-contrast subspaces.
Furthermore, the subspaces are also pruned to account for redundancy among them.

• An important part of this exploration is to be able to evaluate the quality of
the candidate subspaces during exploration. This is achieved by quantifying the
contrast of a subspace.

2. Once the subspaces have been identified, an exactly similar approach to the feature
bagging method is used. The LOF algorithm is executed after projecting the data into
these subspaces and the scores are combined as discussed in section 5.2.3.

Our description below will therefore focus only on the first step of Apriori-like exploration
and the corresponding quantification of the contrast. We will deviate from the natural order
of presentation and first describe the contrast computation because it is germane to a proper
understanding of the Apriori-like subspace exploration process.

Consider a subspace of dimensionality p, in which the dimensions are indexed as {1 . . . p}
(without loss of generality). The conditional probability P (x1|x2 . . . xp) for an attribute
value x1 is the same as its unconditional probability P (x1) for the case of uncorrelated data.
High-contrast subspaces are likely to violate this assumption because of non-uniformity
in data distribution. In our earlier example of the young Alzheimer patients, this corre-
sponds to the unexpected rarity of the combination of youth and the disease. In other words
P (Alzheimer = 1) is likely to be very different from P (Alzheimer = 1|Age ≤ 30). The idea
is that subspaces with such unexpected non-uniformity are more likely to contain outliers,
although it is treated only as a weak hint for pre-selection of one of multiple subspaces. The
approach in [308] generates candidate subspaces using an Apriori-like approach [37] de-
scribed later in this section. For each candidate subspace of dimensionality p (which might
vary during the Apriori-like exploration), it repeatedly draws pairs of “samples” from the
data in order to estimate P (xi) and P (xi|x1 . . . xi−1, xi+1 . . . xp) and test whether they are
different. A “sample” is defined by (i) the selection of a particular attribute i from {1 . . . p}
for testing, and (ii) the construction of a random rectangular region in p-dimensional space
for testing. Because of the construction of a rectangular region for testing, each xi refers
to a 1-dimensional range of values (e.g., Age ∈ (10, 20)) in the ith dimension. The values
of P (xi) and P (xi|x1 . . . xi−1, xi+1 . . . xp) are computed in this random rectangular region.
After M pairs of samples of P (xi) and P (xi|x1 . . . xi−1, xi+1 . . . xp) have been drawn, it is
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determined whether the independence assumption is violated with hypothesis testing. A
variety of tests based on the Student’s t-distribution can be used to measure the deviation
of a subspace from the basic hypothesis of independence. This provides a measure of the
non-uniformity of the subspace and therefore provides a way to measure the quality of the
subspaces in terms of their propensity to contain outliers.

A bottom-up Apriori-like [37] approach is used to identify the relevant projections. In
this bottom-up approach, the subspaces are continuously extended to higher dimensions
for non-uniformity testing. Like Apriori, only subspaces that have sufficient contrast are
extended for non-uniformity testing as potential candidates. The non-uniformity testing is
performed as follows. For each candidate subspace of dimensionality p, a random rectangular
region is generated in p dimensions. The width of the random range along each dimension is
selected so that the 1-dimensional range contains N ·α(1/p) points, where α < 1. Therefore,
the entire p-dimensional region is expected to contain N · α points. The ith dimension is
used for hypothesis testing, where the value of i is chosen at random from {1 . . . p}. One
can view the index i as the test dimension. Let the set of points in the intersection of the
ranges along the remaining (p − 1) dimensions be denoted by Si. The fraction of points
in Si that lies within the upper and lower bounds of the range of dimension i provides
an estimate of P (xi|x1 . . . xi−1, xi+1 . . . xd). The statistically normalized deviation of this
value from the unconditional value of P (xi) is computed using hypothesis testing and it
provides a deviation estimate for that subspace. The process is repeated multiple times over
different random slices and test dimensions; then, the deviation values over different tests
are averaged. Subspaces with large deviations are identified as high-contrast subspaces. At
the end of the Apriori-like phase, an additional pruning step is applied to remove redundant
subspaces. A subspace of dimensionality p is removed, if another subspace of dimensionality
(p+ 1) exists (among the reported subspaces) with higher contrast.

The approach decouples subspace identification from outlier detection and therefore all
the relevant subspaces are identified up front as a preprocessing step. After the subspaces
have been identified, the points are scored using the LOF algorithm in each such subspace.
Note that this step is very similar to feature bagging, except that we are restricting ourselves
to more carefully chosen subspaces. Then, the scores of each point across various subspaces
are computed and averaged to provide a unified score of each data point. In principle, other
combination functions like maximization can be used. Therefore, one can adapt any of the
combination methods used in feature bagging. More details of the algorithm for selecting
relevant subspaces are available in [308].

The HiCS technique is notable for the intuitive idea that statistical selection of rel-
evant subspaces is more effective than choosing random subspaces. The main challenge
is in discovering the high-contrast subspaces, because it is computationally intensive to
use an Apriori-like algorithm in combination with sample-based hypothesis testing. Many
straightforward alternatives exist for finding high-contrast subspaces, which might be worth
exploring. For example, one can use the multidimensional Kurtosis measure discussed in sec-
tion 1.3.1 of Chapter 1 in order to test the relevance of a subspace for high-dimensional
outlier detection. This measure is simple to compute and also takes the interactions between
the dimensions into account because of its use of the Mahalanobis distance.

5.2.8 Local Selection of Subspace Projections

The work in [402] uses local statistical selection of relevant subspace projections in order
to identify outliers. In other words, the selection of the subspace projections is optimized
to specific data points, and therefore the locality of a given data point matters in the
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selection process. For each data pointX, a set of subspaces is identified, which are considered
high-contrast subspaces from the perspective of outlier detection. However, this exploration
process uses the high-contrast behavior as statistical hints in order to explore multiple
subspaces for robustness, since a single subspace may be unable to completely capture the
outlierness of the data point.

The OUTRES method [402] examines the density of lower-dimensional subspaces in
order to identify relevant projections. The basic hypothesis is that for a given data point
X, it is desirable to determine subspaces in which the data is sufficiently non-uniformly
distributed in its locality. In order to characterize the distribution of the locality of a data
point, the work in [402] computes the local density of data point X in subspace S as follows:

den(S,X) = |N (X,S)| = |{Y : distS(X,Y ) ≤ ε}| (5.6)

Here, distS(X,Y ) represents the Euclidean distance between data point X and Y in sub-
space S. This is the simplest possible definition of the density, although other more so-
phisticated methods such as kernel density estimation [496] are used in OUTRES in order
to obtain more refined results. Kernel density estimation is also discussed in Chapter 4.
A major challenge here is in comparing the subspaces of varying dimensionality. This is
because the density of the underlying subspaces reduces with increasing dimensionality. It
has been shown in [402], that it is possible to obtain comparable density estimates across
subspaces of different dimensionalities by selecting the bandwidth of the density estimation
process according to the dimensionality of the subspace.

Furthermore, the work in [402] uses statistical techniques in order to meaningfully com-
pare different subspaces. For example, if the data is uniformly distributed, the number of
data points lying within a distance ε of the data point should be regulated by the frac-
tional volume of the data in that subspace. Specifically, the fractional parameter defines a
binomial distribution characterizing the number of points in that volume, if that data were
to be uniformly distributed. Of course, one is really interested in subspaces that deviate
significantly from this behavior. The (local) relevance of the subspace for a particular data
point X is computed using statistical testing. The two hypotheses are as follows:

• Hypothesis H0: The local subspace neighborhood N (X,S) is uniformly distributed.

• Hypothesis H1: The local subspace neighborhood N (X,S) is not uniformly dis-
tributed.

The Kolmogorov-Smirnoff goodness-of-fit test [512] is used to determine which of the afore-
mentioned hypotheses is true. It is important to note that this process provides an idea of
the usefulness of a subspace, and is used in order to enable a filtering condition for remov-
ing irrelevant subspaces from the process of computing the outlier score of a specific data
point. A subspace is defined as relevant, if it passes the hypothesis condition H1. In other
words, outlier scores are computed using a combination of subspaces which must satisfy
this relevance criterion. This test is combined with an ordered subspace exploration pro-
cess in order to determine the relevant subspaces S1 . . . Sk. This exploration process will be
described later in detail (cf. Figure 5.2).

In order to combine the point-wise scores from multiple relevant subspaces, the work
in [402] uses the product of the outlier scores obtained from different subspaces. Thus, if
S1 . . . Sk are the different abnormal subspaces found for data point X, and if O(Si, X) is
its outlier score in subspace Si, then the overall outlier score OS(X) is defined as follows:

OS(X) =
∏
i

O(Si, X) (5.7)
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Algorithm OUTRES(Data Point: X, Subspace: S);
begin
for each attribute i not in S do
if Si = S ∪ {i} passes Kolmogorov-Smirnoff non-uniformity test then
begin

Compute den(Si, X) using Equation 5.6 or kernel density estimation;
Compute dev(Si, X) using Equation 5.8;
Compute O(Si, X) using Equation 5.9;
OS(X) = O(Si, X) · OS(X);

OUTRES(X,Si);
end

end

Figure 5.2: The OUTRES algorithm

The details of the computation of O(Si, X) will be provided later, although the basic as-
sumption is that low scores represent a greater tendency to be an outlier. The advantage of
using the product over the sum in this setting is that the latter is dominated by the high
scores, as a result of which a few subspaces containing normal behavior will dominate the
sum. On the other hand, in the case of the product, the outlier behavior in a small number
of subspaces will be greatly magnified. This is particularly appropriate for the problem of
outlier detection. It is noteworthy that the product-wise combination can also be viewed as
the sum of the logarithms of the scores.

In order to define the outlier score O(Si, X), a subspace is considered significant for
particular objects only if its density is at least two standard deviations less than the mean
value. This is essentially a condition for that subspace to be considered deviant. Thus,
the deviation dev(Si, X) of the data point X in subspace Si is defined as the ratio of the
deviation of the density of the object from the mean density in the neighborhood of X ,
divided by two standard deviations.

dev(Si, X) =
μ− den(Si, X)

2 · σ (5.8)

The values of μ and σ are computed over data points in the neighborhood ofX and therefore
this computation provides a local deviation value. Note that deviant subspaces will have
dev(Si, X) > 1. The outlier score of a data point in a subspace is the ratio of the density of
the point in the space to its deviation, if it is a deviant subspace. Otherwise the outlier score
is considered to be 1, and it does not affect the overall outlier score in the product-wise
function in Equation 5.7 for combining the scores of data point X from different subspaces.
Thus, the outlier score O(Si, X) is defined as follows:

O(Si, X) =

{
den(Si,X)

dev(Si,X)
if dev(Si, X) > 1

1 otherwise
(5.9)

The entire recursive approach of the OUTRES algorithm (cf. Figure 5.2) uses the data
pointX as input, and therefore the procedure needs to be applied separately for scoring each
candidate data point. In other words, this approach is inherently an instance-based method
(like nearest-neighbor detectors), rather than one of the methods that selects subspaces
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up front in a decoupled way (like feature bagging or HiCS). An observation in [402] is
that subspaces that are either very low dimensional (e.g., 1-dimensional subspaces) or very
high dimensional are not very informative for outlier detection. Informative subspaces can
be identified by careful attribute-wise addition to candidate subspaces. In the recursive
exploration, an additional attribute is included in the subspace for statistical testing. When
an attribute is added to the current subspace Si, the non-uniformity test is utilized to
determine whether or not that subspace should be used. If it is not relevant, then the
subspace is discarded. Otherwise, the outlier score O(Si, X) in that subspace is computed for
the data point, and the current value of the outlier score OS(X) is updated by multiplying
O(Si, X) with it. Since the outlier scores of subspaces that do not meet the filter condition
are set to 1, they do not affect the density computation in this multiplicative approach.
The procedure is then recursively called in order to explore the next subspace. Thus, such
a procedure potentially explores an exponential number of subspaces, although the real
number is likely to be quite modest because of pruning. In particular, the non-uniformity
test prunes large parts of the recursion tree during the exploration. The overall algorithm
for subspace exploration for a given data point X is illustrated in Figure 5.2. Note that
this pseudocode assumes that the overall outlier score OS(X) is like a global variable that
can be accessed by all levels of the recursion and it is initialized to 1 before the first call of
OUTRES. The initial call to OUTRES uses the empty subspace as the argument value for
S.

5.2.9 Distance-Based Reference Sets

A distance-based method for finding outliers in lower-dimensional projections of the data
was proposed in [327]. In this approach, instead of trying to find local subspaces of abnor-
mally low density over the whole data, a local analysis is provided specific to each data
point. For each data point X, a reference set of points S(X) is identified. The reference
set S(X) is generated as the top-k closest points to the candidate with the use of shared
nearest-neighbor distances [287] (see section 4.3.3).

After this reference set S(X) has been identified, the relevant subspace for S(X) is
determined as the set Q(X) of dimensions in which the variance is small. The specific
threshold on the variance is set to a user-defined fraction of the average dimension-specific
variance of the points in S(X). Thus, this approach analyzes the statistics of individual
dimensions independently of one another during the crucial step of subspace selection. The
Euclidean distance of X is computed to the mean of the reference set S(X) in the subspace
defined by Q(X). This is denoted by G(X). The value of G(X) is affected by the number
of dimensions in Q(X). The subspace outlier degree SOD(X) of a data point is defined by
normalizing this distance G(X) by the number of dimensions in Q(X):

SOD(X) =
G(X)

|Q(X)|

The approach of using the variance of individual dimensions for selecting the subspace set
Q(X) is a rather naive generalization derived from subspace clustering methods, and is
a rather questionable design choice. This is because the approach completely ignores the
interactions among various dimensions. In many cases, such as the example of the young
Alzheimer patient discussed earlier, the unusual behavior is manifested in the violations
of dependencies among dimensions rather than the variances of the individual dimensions.
Variances of individual dimensions tell us little about the dependencies among them. Many
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Figure 5.3: The example of Figure 3.4 re-visited: Global PCA can discover outliers in cases,
where the entire data is aligned along lower dimensional manifolds.

other insightful techniques like HiCS [308, 402], which use biased subspace selection, almost
always use the dependencies among dimensions as a key selection criterion.

Another problem is the use of a single subspace to score outliers. Since the subspace
selection criterion ignores dependencies, it can cause the removal of relevant dimensions.
In the interesting cases, where the number of relevant dimensions is limited, the negative
effects of removing a single relevant dimension can be even more drastic than keeping many
irrelevant dimensions. The particularly problematic factor in using a single subspace is
that if a mistake is made in subspace selection, there is virtually no chance of recovering
from the mistake. In general, these types of methods are almost always outperformed by
the various subspace ensemble methods discussed in this chapter (feature bagging [344],
rotated bagging [32], RS-Hash [476], and isolation forests [367]).

5.3 Generalized Subspaces

Although axis-parallel methods are effective for finding outliers in most real settings, they
are not very useful for finding outliers in cases where the points are aligned along arbitrary
lower-dimensional manifolds of the data. For example, in the case of Figure 5.4, no 1-
dimensional feature from the 2-dimensional data can find the outliers. On the other hand,
it is possible to find localized 1-dimensional correlated subspaces so that most of the data
aligns along these localized 1-dimensional subspaces, and the remaining deviants can be
classified as outliers. Although this particular data set seems to be relatively easy for outlier
detection because of its low dimensionality, this problem can become more challenging with
increasing dimensionality.

These algorithms are generalizations of the following two classes of algorithms:

• The PCA-based linear models discussed in Chapter 3 find the global regions of correla-
tion in the data. For example, in the case of Figure 5.3, the outliers can be effectively
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Figure 5.4: The example of Figure 2.9 revisited: Outliers are best discovered by determining
deviations from local PCA-based clusters. Neither axis-parallel subspace outliers nor global-
PCA can capture such clusters.

identified by determining these global directions of correlation. However, no such global
directions of correlation exist in Figure 5.4.

• The axis-parallel subspace outliers discussed earlier in this chapter can find deviants,
when the data is naturally aligned along low dimensional axis-parallel subspace clus-
ters. However, this is not the case in Figure 5.4, in which the data is aligned along
arbitrary directions of correlation.

The goal in generalized subspace analysis is to combine the ideas in these two types of
algorithms. In other words, it is desired to determine the arbitrarily oriented subspaces
simultaneously with outlier discovery. In the following, we will discuss several methods
for finding such generalized subspaces. We will also discuss some methods for discovering
nonlinear subspaces, in which the data is distributed along local nonlinear manifolds.

5.3.1 Generalized Projected Clustering Approach

This problem can be partially addressed with the use of generalized projected clustering
methods, where the clusters are identified in arbitrarily aligned subspaces of the data [7].
The method discussed in [7] has a built-in mechanism in order to determine the outliers
in addition to the clusters. Such outliers are naturally data points that do not align with
the clusters. However, the approach is not particularly optimized for finding the outliers,
because the primary purpose of the method is to determine the clusters. The outliers are
discovered as a side-product of the clustering algorithm, rather than as the primary goal.
Therefore, the approach may sometimes discover the weaker outliers, which correspond to
the noise in the data. Clearly, methods are required for properly distinguishing between
the strong and weak outliers by using an outlier scoring mechanism to distinguish between
various points. The simplest approach is to compute the local Mahalanobis distance of
every candidate outlier to each cluster centroid. The computation of the local Mahalanobis
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distance of a point to a cluster centroid uses only the mean and covariance matrix of that
cluster. The computation of the local Mahalanobis distance is described in section 4.2 of
Chapter 4 (cf. Equation 4.2). For any given point, its smallest Mahalanobis distance (i.e.,
distance to its nearest centroid) is reported as its outlier score.

To improve robustness, one should use randomized methods to cluster the data in multi-
ple ways, and average the point-wise scores from the different models. It is very important to
combine scores from multiple subspaces, because the individual subspaces discovered using
subspace clustering do not tell us much about the relevant subspaces for outlier detection.
However, the outliers discovered using clustering often inherit the properties of the under-
lying clusters when an ensemble method is used. Therefore, using clusters in subspaces of
the data yields outliers that are subspace sensitive. The work in [406] provides a specific
example in the axis-parallel setting, where it shows that the combination of scores from
multiple clusterings with the use of the Multiple-Proclus method greatly improves over the
performance of a single application of the clustering algorithm.

Many other generalized projected clustering methods can be used and a detailed survey
may be found in [23] (Chapter 9). Many of these methods are quite efficient. One advantage
of this approach is that once the clusters have been identified up front, the scoring process
is very efficient. Furthermore, the model-building process usually requires less than O(N2)
time, which is required by most distance-based detectors.

5.3.2 Leveraging Instance-Specific Reference Sets

In order to determine the outliers that are optimized to the locality of a particular data
point, it is critical to determine localized subspaces that are optimized to the candidate
data point X being scored. The determination of such subspaces is non-trivial, since it
often cannot be inferred from locally aggregate properties of the data, for detecting the
behavior of rare instances. A method was recently proposed in [328] for finding outliers
in generalized subspaces with the use of reference sets. The main difference from earlier
generalized subspace clustering methods is that local reference sets are specific to the various
data points, whereas clusters provide a fixed set of reference sets that are used to score all
points. The price of this flexibility is that the running time of finding each point-specific
reference set is O(N). Therefore, the approach requires O(N2) time for scoring.

For a given data point X , this method finds the full-dimensional k-nearest neighbors of
X. This provides a reference set S with mean vector μ. The PCA approach of Chapter 3 is
applied to the covariance matrix Σ(S) of the local reference set S in order to determine the
key eigenvectors e1 . . . ed, in increasing order of variance, with corresponding eigenvalues
λ1 ≤ λ2 . . . ≤ λd. The discussion in section 3.3 of Chapter 3 performs these same steps [493]
except that they are performed on a global basis, rather than on a local reference set S.
Even if all d dimensions are included, it is possible to create a normalized outlier score of
a data point X to the centroid μ of the data with the use of local eigenvalue scaling, as
discussed in Chapter 3:

Score(X) =

d∑
j=1

|(X − μ) · ej |2
λj

(5.10)

As discussed in section 2.2.2.2 of Chapter 2, this can be approximately modeled as a χ2

distribution with d degrees of freedom for each data point, and the outlier scores of the
different data points can be reasonably compared to one another. Such an approach is used
in [493] in the context of global data analysis. The survey paper of Chandola et al. [125]
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Figure 5.5: Local reference set may sometimes contain points from multiple generating
mechanisms

provides a simpler exposition. Note that this approach can be viewed as a local version of
soft PCA and it is not necessary to use subspaces.

The work in [328] is different from this basic approach in that it emphasizes the pre-
selection of a subset of the eigenvectors for scoring. This is primarily because the work is
positioned as a generalized subspace outlier detection method. As we will discuss later, this
is not necessarily desirable.

The δ eigenvectors3 with the smallest eigenvalues are selected for score computation.
Correspondingly, the pruned score is defined on the basis of the smallest δ ≤ d eigenvectors:

Score(X, δ) =

δ∑
j=1

|(X − μ) · ej|2
λj

(5.11)

How should the value of δ be fixed for a particular data point X? The score is a χ2-
distribution with δ-degrees of freedom. It was observed in [328] that the value of δ can be
parameterized, by treating the χ2 distribution as a special case of the Γ distribution.

Score(X, δ) ∼ Γ(δ/2, 2)

The optimal value of δ is selected specifically for each data point, by selecting the value of δ
in order to determine the maximal unlikely deviation based on this model. This is done by
using the cumulative density function of the aforementioned distribution. While this value
can be directly used as an outlier score, it was also shown in [328], how this score may be
converted into a more intuitive probability value.

This approach, however, has several weaknesses. These weaknesses arise from the lack of
robustness in using a single subspace as relevant set of dimensions, from the way in which

3The work in [328] uses δ as the number of longest eigenvectors, which is only a notational difference,
but is noted here to avoid confusion.



174 CHAPTER 5. HIGH-DIMENSIONAL OUTLIER DETECTION

the reference set is constructed, and from how the hard pruning methodology is used in
score computation. We discuss each of these issues in detail below:

• A single subspace has been used by this approach for finding the outliers with the use
of the local reference set S. If the local reference set S is not accurately determined,
then this will not provide the proper directions of local correlation. The use of a single
subspace is risky, especially with the use of weak aggregation-based hints, because it
is often possible to unintentionally remove relevant subspaces. This can have drastic
effects. The use of multiple subspaces may be much more relevant in such scenarios,
such as the methods proposed in [32, 308, 344, 367, 402, 406].

• There is an inherent circularity in identifying the reference set with the use of full-
dimensional k-nearest neighbor distances, especially if the distances are not meaning-
fully defined in full dimensionality. The choice of points in the reference set and the
choice of the subspace clearly impact each other in a circular way. This is a classical
“chicken-and-egg” problem in subspace analysis, which was first pointed out in [5].
The analysis in such cases needs to be simultaneous rather than sequential. As is well
known, the most robust techniques for handling circularity in virtually all problem
domains (e.g., projected clustering methods) use iterative methods, so that the point-
specific and dimension-specific aspects of the problem are able to interact with one
another. This is however, not the case in [328], in which a sequential analysis is used.

In particular, it may happen that many locally irrelevant features may be used during
the determination of the local reference set, when full-dimensional distances are used.
This set could therefore contain data points from multiple generating mechanisms, as
illustrated in Figure 5.5. When the number of irrelevant features is unknown, a specific
number of points in the reference set will not be able to avoid this problem. The use
of a smaller reference set size can reduce the chance of this happening to some extent,
but can never guarantee it, especially when many irrelevant features are used. On the
other hand, reducing the reference set size can also result in a correlation hyperplane,
whose eigenvalue statistics overfit an artificially small set of reference points. In fact,
the real challenge in such problems is in properly selecting the reference set; this issue
has been trivialized by this approach.

• It is not necessary to select a particular set of eigenvectors in a hard way, since the
eigenvalues in the denominator of Equation 5.10 already provide a soft weighting to
their relative importance (or relevance). For example, if for a large value of λi, a data
point shows even larger deviations along that direction, such an outlier would either be
missed by dimension pre-selection, or would include other less relevant dimensions. An
example is the outlier B in Figure 5.5, which is aligned along the longer eigenvector,
and therefore the longest eigenvector is themost informative about its outlier behavior.
In particular, the method of selecting the δ smallest eigenvectors implicitly assumes
that the relevance of the attributes are ordered by eigenvalue magnitude. While this
may generally be true for aggregation-based clustering algorithms, it is very often
not true in outlier analysis because of the unusual nature of outliers. The possibility
of outliers aligning along long eigenvectors is not uncommon at all, since two highly
correlated attributes may often show highly deviant behavior of a similarly correlated
nature. This example also shows, how brittle the rare nature of outlier analysis is to
aggregation-based measures. This is because of the varying causes of rarity, which
cannot be fully captured in aggregation statistics. This observation exemplifies the
fact that straightforward generalizations of subspace selection methods from clustering
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(based on aggregates), are often not appropriate or optimized for (the rare nature of)
outlier analysis. One advantage of using all the dimensions is that it reduces to a local
Mahalanobis distance with the same dimensionality, and allows better comparability
in the scores across different outliers. In such cases, intuitive probability values may
be derived more simply from the χ2(d) distribution.

The high-dimensional case is an extremely difficult one, and it is understandable that no
given method will be able to solve these problems perfectly.

5.3.3 Rotated Subspace Sampling

The rotated subspace sampling method was recently proposed in [32] as an ensemble
method, which improves over feature bagging [344]. This approach is also referred to as
rotated bagging. Just as feature bagging is designed for discovering outliers in axis-parallel
subspaces, the rotated bagging method is designed for discovering outliers in generalized
subspaces. As in the case of feature bagging, this approach is an ensemble method and it
can use any off-the-shelf outlier detection algorithm (e.g., LOF) as the base detector.

The basic idea in rotated bagging is to sample randomly rotated subspaces in lower-
dimensional space, and score each point in this low-dimensional space. The scores from
various subspaces can be combined to provide the final result. In particular, the approach
uses subspaces of dimensionality r = 2 + �

√
d/2�, which is much lower the typical dimen-

sionality of the subspace used in feature bagging. This is because the axis rotation enables
the capturing of information from all dimensions to varying degrees. The ability to use
lower-dimensional projections is also useful for inducing diversity and thereby improving
the quality of the overall ensemble score. The rotated bagging algorithm works as follows:

1. Determine a randomly rotated axis system in the data.

2. Sample r = 2+ �
√
d/2� directions from rotated axis system. Project data along these

r directions.

3. Run the base outlier detector on projected data and store the scores of each point.

The component scores can be combined by either (a) using the average score of a point
across different projections, or (b) using the maximum score of a point across different
projections. Other combination functions are discussed in Chapter 6. It is important to use
standardization on the scores before the combination.

In order to determine r = 2+ �
√
d/2� randomly rotated mutually orthogonal directions,

a d× r random matrix Y is generated, such that each value in the matrix is uniformly dis-
tributed in [−1, 1]. Let the tth column of Y be denoted by yt. Then, the r random orthogonal
directions e1 . . . er are generated using a straightforward Gram-Schmidt orthogonalization
of y1 . . . yr as follows:

1. t = 1; e1 = y1

|y1|

2. et+1 = yt+1 −
∑t

j=1(yt+1 · ej)ej

3. Normalize et+1 to unit norm.

4. t = t+ 1

5. if t < r go to step 2
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Figure 5.6: In this 3-dimensional data set, points ‘A’ and ‘B’ are exposed in different 2-
dimensional views (projections). However, the averaging or maximization score-combination
will expose both ‘A’ and ‘B.’

Let the resulting d× r matrix with columns e1 . . . er be denoted by E. The N × d data
set D is transformed and projected to these orthogonal directions by computing the matrix
product DE, which is an N × r matrix of r-dimensional points. The results in [32] show
that the approach improves over feature bagging. Further improvements may be obtained
by combining it with other ensemble techniques. Rotated bagging uses a more general model
to describe the outliers than feature bagging in terms of arbitrary subspaces and therefore
using an ensemble is even more important. It is often difficult to discover a particular local
subspace that is relevant to a particular data point. The great power of ensembles lies in the
fact that an averaged ensemble combination of many global subspace selections is often able
to discover the locally relevant subspaces. In other words, the ensemble is inherently more
powerful than its individual members. This point can be explained from the perspective
of how such types of averaged models use ensembles to reduce representational bias (cf.
section 6.4.3.1 of Chapter 6). Furthermore, the maximization combination function often
does even better in terms of reducing representational bias.

An example of a 3-dimensional data set is illustrated in Figure 5.6. Here, we have shown
different 2-dimensional views of the data. It is clear that in the case of Figure 5.6(a), outlier
‘A’ is exposed, whereas in the case of Figure 5.6(b), outlier ‘B’ is exposed. However, if one
were to use the average or maximization combination of the scores obtained by running
the detector on these two views, both points ‘A’ and ‘B’ might be scored highly in the
combination (and therefore discovered as outliers). This is an example of how ensemble
methods overcome the representational bias in individual detectors in order to provide
a more general model. Another example of this power of ensemble methods to overcome
representational bias is provided in Figure 6.4 of Chapter 6. An ensemble-centric description
of rotated bagging is also provided in section 6.4.4 of Chapter 6.

5.3.4 Nonlinear Subspaces

The most difficult case of subspace outlier detection occurs in cases in which the manifolds
exist in lower-dimensional subspaces of arbitrary shape. Examples of such patterns in the
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Figure 5.7: Arbitrarily shaped clusters can exist in lower-dimensional manifolds (Revisiting
Figure 4.3 of Chapter 4)

data are illustrated in Figure 5.7. This figure is the same as Figure 4.3 of Chapter 4. In fact,
the clustering method proposed in section 4.2.1 provides one of the ways in which outliers
can be discovered in such nonlinear settings. Since the discussion in this section is roughly
based on the framework established in section 4.2.1 of Chapter 4, the reader is advised to
revisit that section before proceeding further.

The arbitrary shape of the clusters presents a number of unique challenges. There are
several cases in Figures 5.7(a) and (b), in which the outliers are placed in the interior of non-
convex patterns. Without an appropriate local nonlinear transformation, it becomes more
challenging to discover such outliers. This extraction is achieved with spectral methods,
which can be viewed as a special class of kernel methods that is friendly to discovering
clusters of arbitrary shape.

As in the case of section 4.2.1, a spectral embedding of the data is extracted. This is
achieved by constructing a k-nearest neighbor graph and computing its top eigenvectors.
Because of the way in which the spectral embedding is constructed, it already adapts itself to
local nonlinear patterns in the data, and Euclidean distances can be used on the transformed
data set. One difference from the method of section 4.2.1 is that an additional step is
used to reduce the noise in the spectral embedding [475]. The main problem in spectral
embedding is caused by the presence of bad edges in the neighborhood graph, which connect
disjoint clusters. Therefore, the similarity graph needs to be corrected to improve the quality
of the embedding. In particular, an iterative approach is used to construct the spectral
embedding in which the similarity matrix (used to construct the embedding) is corrected
for erroneous computations between pairs of points. The spectral embedding is used to
correct the similarity matrix, and the corrected similarity matrix is used to construct the
spectral embedding. The basic idea here is that the spectral embedding from a similarity
matrix S will itself create a embedding from which a new similarity matrix S′ can be
constructed. In the new representation, weakly related points move away from each other
on a relative basis (like points A and C in Figure 5.7(a)), and strongly related points move
towards each other. Therefore, the Hadamard product of S and S′ is used to adjust S:

S ⇐ S ◦ S′ (5.12)

This has the effect of correcting the original similarity matrix S to de-emphasize noisy
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similarities on a relative basis. The new similarity matrix is used to again create a new
embedding. These steps are repeated for a small number of iterations and the final embed-
ding is used to score the points. This process is described in detail in [475]. Each of the new
dimensions of the embedding are normalized to unit variance. A k-nearest neighbor detector
is executed on the embedding in order to return the final outlier score. By using a k-nearest
neighbor detector in the transformed space, one is effectively using a data-dependent dis-
tance function that is sensitive to the nonlinear subspace patterns in the original space.
Although the work in [475] does not discuss it, the approach can be strengthened with the
use of averaged scores from multiple clusterings with different parameters.

5.3.5 Regression Modeling Techniques

It is also possible to use regression models for subspace outlier detection by identifying
points violating attribute-wise dependencies (e.g., the young Alzheimer patient discussed
earlier). The basic idea is to decompose a d-dimensional unsupervised outlier detection
problem into a set of d regression modeling problems. One can predict each attribute with
the remaining (d− 1) attributes using an off-the-shelf regression model. For each instance,
the squared errors of predicting the various attributes are aggregated to create the outlier
score. This approach is discussed in detail in section 7.7 of Chapter 7. When certain types
of base detectors like random forests are used, the approach can be interpreted as a local
subspace outlier detection method. These connections are discussed in section 7.7.

5.4 Discussion of Subspace Analysis

The major reason for difficulty in high-dimensional outlier analysis is because of the mask-
ing effects of the locally noisy and irrelevant nature of some of the dimensions, which is
often also manifested in the concentration of distances. It has been claimed in a recent sur-
vey [620] that the literature only focuses on the distance-concentration issue and “abstains
from” discussing the impact of locally relevant dimensions caused by differential generating
mechanisms (thereby claiming the latter as a new insight of the survey [620]). This is an
incorrect and particularly surprising assertion, because both the aspects of local feature se-
lection (relevance) and distance concentration have been studied extensively in the literature
together with their connections to one another. The original work in [4] (and virtually every
subsequent work [308, 344, 402]) provides a pictorial illustration (similar to Figure 5.1) and
a fairly detailed discussion of how (locally) irrelevant attributes mask outliers in different
feature-specific views of the data. In the context of such a pictorial illustration, the following
is stated in [4] about locally irrelevant attributes:

“Thus, by using full dimensional distance measures it would be difficult to de-
termine outliers effectively because of the averaging behavior of the noisy and
irrelevant dimensions. Furthermore, it is impossible to prune off specific features
a priori, since different points may show different kinds of abnormal patterns,
each of which use different features or views.”

The ineffectiveness of global feature selection in high-dimensional data in fact forms the
motivating reason for subspace analysis, which can be considered a local feature selection
method, or a local dimensionality reduction method [7, 121]. These connections of local
subspace analysis to the ineffectiveness of global feature selection in high-dimensional data
were explicitly discussed in detail in the motivational discussion of one of the earliest works



5.4. DISCUSSION OF SUBSPACE ANALYSIS 179

on subspace analysis [5, 263]. At this point, these results are well known and established4

wisdom. While it is possible to reduce the distance concentration effects by carefully cali-
brating the fraction of informative dimensions, such cases are (usually) not interesting for
subspace analysis.

Although it is most definitely true that noisy and irrelevant attributes mask the out-
liers, the observation is certainly not new, and the two factors of distance concentration
and local feature relevance are closely related. In fact, even the experimental simulations
in the survey [620] show that concentration effects tend to co-occur in settings where there
are too many irrelevant attributes. This is, of course, not a hard rule; nevertheless, it is
a significant issue for distance-based detectors. The interesting cases for subspace analysis
(typically) show some levels of both properties. Even limited levels of distance concentra-
tion impact the effectiveness of full-dimensional distance-based algorithms, and this impact
is therefore important to examine in outlier analysis. It should be noted that noisy and
irrelevant attributes are more likely to lead to concentration of distances. For example, for
the case of uniformly distributed data, where all attributes are noisy, the concentration
effect is extreme, and an outlier deviating along a relatively small number of dimensions
will be hard to discover by full-dimensional methods. In such cases, from a full-dimensional
distance-based or density-based perspective, all data points have almost equally good outlier
scores, and this can be equivalently understood in terms of either locally irrelevant features
or distance concentration effects. Of course, real data sets are not uniformly distributed,
but both irrelevant features and concentration effects are present to varying degrees in dif-
ferent data sets. The general assumption for subspace analysis is that the addition of more
dimensions often does not add proportionally more information for a particular outlier. The
challenging outliers are often defined by the behavior of a small number of dimensions,
and when the point-specific information does not increase substantially with data dimen-
sionality, even modest concentration effects will have a negative impact on full-dimensional
algorithms. The more the number of irrelevant attributes there are, the more erroneous
the computations for full-dimensional distance-based methods are likely to be. An extreme
example at the other end of the spectrum is where an outlier shows informative and deviant
behavior in every dimension, and therefore outlier characteristics grow stronger with increas-
ing dimensionality. However, in this rather uninteresting case, since the outlier shows both
many relevant features and also typically does not conform to the distance concentration
behavior of the remaining data, a trivial full-dimensional distance-based algorithm would
discover it easily in most cases. In general, cases where the informative dimensions also
increase significantly with data dimensionality, are not as interesting for subspace analysis
because the full-dimensional masking behavior becomes less prominent in this easier case.
Subspace analysis does not exclude the possibility that the more obvious deviants may also
be found by full-dimensional analysis.

There are many high-dimensional data sets, where one can perform effective outlier
detection by simpler full-dimensional algorithms. The effectiveness of a particular algorithm
on a full-dimensional data set depends on the application scenario and the way in which
the features are extracted. If the features are extracted with a particular anomaly detection
scenario in mind, then a full-dimensional algorithm is likely to work well. In spite of this
fact, subspace analysis will often discover outliers that are not easily found by other full-
dimensional algorithms. Indeed, subspace analysis should not be viewed as a stand-alone
method, but inherently as an ensemble method to improve the performance of various types

4Some of the earliest methods even refer to these classes of techniques as local dimensionality reduc-
tion [121] in order to emphasize the enhanced and differential local feature selection effect, which arises as
a result of different generating mechanisms.
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of base detectors. Whether one develops a specific base method for high-dimensional outlier
detection (like subspace histograms) or whether one wraps it around existing detectors
(like feature and rotated bagging), there are clear benefits to incorporating this principle in
outlier detection. Furthermore, subspace analysis provides useful insights about the causality
of the anomaly; one can use the relevant local subspaces to extract an understanding about
the specific combination of relevant features. A simple example is the case of the young
Alzheimer patient discussed earlier in this chapter.

Outliers, by their very rare nature, may often be hidden in small combinations of dimen-
sions in a high-dimensional data set. Subspace analysis is particularly interesting for such
scenarios. On the other hand, when more dimensions do add (significantly) more informa-
tion, then this becomes an easy case for analysis, which no longer remains interesting. In
more difficult cases, the vast majority of noisy dimensions make it difficult to discriminate
between data points from a density-based or data-sparsity perspective. Subspace analysis
works particularly well in these cases when the outliers exist in a modest number of locally
relevant dimensions. This observation also points to a particularly difficult case in which
the number of locally irrelevant dimensions increases with data dimensionality, and a very
large number of dimensions also continue to be weakly relevant (but not strongly relevant).
This situation often occurs in data sets containing thousands of dimensions. Such data sets
remain an unsolved case for all classes of full-dimensional and subspace methods.

To summarize, the following principles need to be kept in mind while designing subspace
methods:

• A direct exploration of rare regions is possible, though it is computationally challeng-
ing because of combinatorial explosion [4].

• Aggregation-basedmethods provide only weak hints about the relevant subspaces. The
main power of these methods lies only in the ensemble-centric setting by combining
the results from different subspaces.

• The individual component of an ensemble should be designed with efficiency consid-
erations in mind. This is because efficient components enable the practical use of a
larger number of components for better accuracy.

One interesting observation is that even when weak base detectors are used, combining them
often leads to very strong results. The success of methods like feature bagging, subspace
histograms, and rotated bagging is based on this fact. Note that in each case, the underlying
base detector is not particularly strong; yet the final outlier detection results are very effec-
tive. Recent advancements in the field of high-dimensional outlier detection and ensemble
analysis have been very significant. In spite of these advancements, many high-dimensional
data sets continue to remain a challenge for outlier analysis.

5.5 Conclusions and Summary

Subspace methods for outlier detection are used in cases, where the outlier tendency of
a data point is diluted by the noise effects of a large number of locally non-informative
dimensions. In such cases, the outlier analysis process can be sharpened significantly by
searching for subspaces in which the data points deviate significantly from the normal
behavior. The most successful methods identify multiple relevant subspaces for a candidate
outlier, and then combine the results from different subspaces in order to create a more
robust ensemble-based ranking.
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Outlier analysis is the most difficult problem among all classes of subspace analysis
problems. This difficulty arises out of the rare nature of outliers, which makes direct statis-
tical analysis more difficult. Since subspace analysis and local feature selection are related,
it is noteworthy that even for global feature selection, there are few known methods for
outlier analysis, as compared to clustering and classification algorithms. The reason is sim-
ple: enough statistical evidence is often not available for the analysis of rare characteristics.
Robust statistics is all about more data, and outliers are all about less data and statis-
tical non-conformity with most of the data! Regions and subspaces containing statistical
conformity tell us very little about the complementary regions of non-conformity in the
particular case of high-dimensional subspace analysis, since the potential domain of the lat-
ter is much larger than the former. In particular, a local subspace region of the greatest
aggregate conformity does not necessarily reveal anything about the rare point with the
greatest statistical non-conformity.

Although many recent ensemble methods for subspace analysis have shown great success,
a particularly difficult case is one in which a large number of dimensions are weakly relevant
(but not strongly relevant), and even more dimensions are locally irrelevant. These cases
often occur in data sets containing thousands of dimensions, and remain unsolved by existing
methods. While it is doubtful that the more difficult variations of the problem will ever be
fully solved, or will work completely in all situations, the currently available techniques
work in many important scenarios. There are many merits in being able to design such
methods, because of the numerous insights they can provide in terms of identifying the
causes of abnormality. The main challenge is that outlier analysis is so brittle, that it is
often impossible to make confident assertions about inferences drawn from aggregate data
analysis. The issue of efficiency seems to be closely related to that of effectiveness in high-
dimensional outlier analysis. This is because the search process for outliers is likely to
require exploration of multiple local subspaces of the data in order to ensure robustness.
With increasing advances in the computational power of modern computers, there is as yet
hope that this area will become increasingly tractable for analysis.

5.6 Bibliographic Survey

In the context of high-dimensional data, two distinct lines of research exist, one of which
investigates the efficiency of high-dimensional outlier detection [58, 219, 557], and the other
investigates the more fundamental issue of the effectiveness of high-dimensional outlier
detection [4]. Unfortunately, the distinction between these two lines of work is sometimes
blurred in the literature, even though these are clearly different lines of work with very
different motivations. It should be noted that the methods discussed in [58, 219, 557] are all
full-dimensional methods, because outliers are defined on the basis of their full-dimensional
deviation. Although the method of [557] uses projections for indexing, this is used only as
an approximation to improve the efficiency of the outlier detection process.

In the high-dimensional case, the efficiency of (full-dimensional) outlier detection also
becomes a concern, because most outlier detection methods require repeated similarity
searches in high dimensions in order to determine the nearest neighbors. The efficiency
of these methods degrades because of two factors: (i) the computations now use a larger
number of dimensions, and (ii) the effectiveness of pruning methods and indexing methods
degrades with increasing dimensionality. The solution to these issues still remains unre-
solved in the vast similarity search literature. Therefore, it is unlikely that significantly
more efficient similarity computations could be achieved in the context of high-dimensional
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outlier detection, although some success has been claimed for improving the efficiency of
high-dimensional outlier detection in methods proposed in [58, 219, 557]. On the whole, it
is unclear how these methods would compare to the vast array of techniques available in the
similarity-search literature for indexing high-dimensional data. This chapter does not inves-
tigate the efficiency issue at all, because the efficiency of a full-dimensional outlier-detection
technique is not important, if it does not even provide meaningful outliers. Therefore, the
focus of the chapter is on methods that re-define the outlier detection problem in the context
of lower-dimensional projections.

The problem of subspace outlier detection was first proposed in [4]. In this paper, an evo-
lutionary algorithm was proposed to discover the lower dimensional subspaces in which the
outliers may exist. The method for distance-based outlier detection with subspace outlier
degree was proposed in [327]. Another distance-based method for subspace outlier detection
was proposed in [411]. Some methods have also been proposed for outlier analysis by ran-
domly sampling subspaces and combining the scores from different subspaces [344, 367]. In
particular, the work in [344] attempts to combine the results from these different subspaces
in order to provide a more robust evaluation of the outliers. These are essentially ensemble-
based methods that attempt to improve detection robustness by bagging the results from
different sets of features. The major challenge of these methods is that random sampling
may not work very well in cases where the outliers are hidden in specific subspaces of the
data. The work in [308] can be considered a generalization of the broad approach in [344],
where only high-contrast subspaces are selected for the problem of outlier detection. The
use of information-theoretic measures for biased subspace selection is discussed in [413].

The work on isolation forests is related to earlier work on using random forests and
clustering forests for clustering, similarity computation, sparse encoding, and outlier de-
tection [99, 401, 491, 555]. In particular, the work in [401] creates extremely randomized
clustering forests (ERC-Forests) for clustering and coding. The isolation forest can be viewed
as a special case of the ERC-Forest in which the number of trials at each node is set to 1
and the trees are grown to full height. Many variations of the isolation forest [367], such as
half-space trees [532], have been proposed. The main difference between an isolation tree
and a half-space tree is that the latter is a fully balanced tree of a fixed height, and splits are
performed by picking points that are half-way between the minimum and maximum ranges
of each attribute. Furthermore, the minimum and maximum ranges of each attribute are
defined in a perturbed way to induce diversity. The number of data points in the leaf node
of a test instance is multiplied with the number of leaf nodes to obtain its outlier score in a
single ensemble component. These scores are averaged over different half-space trees. The
multiplication of each component score with the number of leaf nodes is helpful in cases
where different trees have different depth [547]. Recently, the subspace histogram technique,
referred to as RS-Hash, has been proposed in [476]. This techniques averages the log-density
in grid regions of varying sizes and shapes in order to provide the final score. The approach
uses randomized hashing for efficiency and requires linear time. Such methods can also be
used for streaming data.

The reverse problem of finding outlying subspaces from specific points was studied
in [605, 606, 607]. In these methods, a variety of pruning and evolutionary methods were
proposed in order to speed up the search process for outlying subspaces. The work in [59]
also defines the exceptional properties of outlying objects, both with respect to the entire
population (global properties), and also with respect to particular sub-populations to which
it belongs (local properties). Both these methods provide different but meaningful insights
about the underlying data. A genetic algorithm for finding the outlying subspaces in high-
dimensional data is provided in [606]. In order to speed up the fitness function evaluation,
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methods are proposed to speed up the computation of the k-nearest neighbor distance
with the use of bounding strategies. A broader framework for finding outlying subspaces in
high-dimensional data is provided in [607]. A method that uses two-way search for finding
outlying subspaces was proposed in [582]. In this method, full-dimensional methods are first
used to determine the outliers. Subsequently, the key outlying subspaces from these outlier
points are detected and reported. A method for using rules in order to explain the context
of outlier objects is proposed in [405].

A number of ranking methods for subspace outlier exploration have been proposed
in [402, 403, 404]. In these methods, outliers are determined in multiple subspaces of the
data. Different subspaces may either provide information about different outliers or about
the same outliers. Therefore, the goal is to combine the information from these different
subspaces in a robust way in order to report the final set of outliers. The OUTRES algorithm
proposed in [402] uses recursive subspace exploration in order to determine all the subspaces
relevant to a particular data point. The outlier scores from these different subspaces are
combined in order to provide a final value. A tool-kit for ranking subspace outliers was
presented in [403]. A more recent method for using multiple views of the data for subspace
outlier detection is proposed in [406]. Methods for subspace outlier detection in multimedia
databases were proposed in [64].

Most of the methods for subspace outlier detection perform the exploration in axis-
parallel subspaces of the data. This is based on the complementary assumption that the
dense regions or clusters are hidden in axis-parallel subspaces of the data. However, it has
been shown in recent work that the dense regions may often be located in arbitrarily oriented
subspaces of the data [7]. Such clustering methods can be used in conjunction with the
methodology discussed in section 5.2.4 to discover outliers. Another work in [328] provides
a solution based on local reference sets rather than clusters. The work in [32] proposes a
rotated bagging approach; this can be viewed as the analog of the feature bagging approach
for the arbitrarily oriented case. Finally, a method for finding outliers in the context of
nonlinear subspaces was proposed in [475].

Recently, the problem of outlier detection has also been studied in the context of dy-
namic data and data streams. The SPOT method was proposed in [604], which is able to
determine projected outliers from high-dimensional data streams. This approach employs a
window-based time model and decaying cell summaries to capture statistics from the data
stream. The most sparse subspaces are obtained by a variety of supervised and unsuper-
vised learning processes. These are used to identify the projected outliers. A multi-objective
genetic algorithm is employed for finding outlying subspaces from training data.

The problem of high-dimensional outlier detection has also been extended to other
application-specific scenarios such as astronomical data [261], uncertain data [26], trans-
action data [255], and supervised data [619]. In the uncertain scenario, high-dimensional
data is especially challenging, because the noise in the uncertain scenario greatly increases
the sparsity of the underlying data. Furthermore, the level of uncertainty in the different
attributes is available. This helps determine the importance of different attributes for outlier
detection purposes. Subspace methods for outlier detection in uncertain data are proposed
in [26]. Supervised methods for high-dimensional outlier detection are proposed in [619].
In this case, a small number of examples are identified and presented to users. These are
then used in order to learn the critical projections that are relevant to the outlierness of an
object. The learned information is then leveraged in order to identify the relevant outliers
in the underlying data.
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5.7 Exercises

1. Which of the following data points is an outlier in some well chosen two-dimensional
projection: { (1, 8, 7), (2, 8, 8), (5, 1, 2), (4, 1, 1), (3, 1, 8) }

2. Download the Arrythmia data set from the UCI Machine Learning Repository [203].
Write a computer program to determine all distance-based outliers in different 2-
dimension projections. Are the outliers the same in different projections?

3. In the Arrythmia data set mentioned in the previous exercise, examine the Age, Height
and Weight attributes of the Arrythmia data set both independently and in combi-
nation. Draw a scatter plot of each of the 1-dimensional distributions and different
2-dimensional combinations. Can you visually see any outliers?

4. Write a computer program to determine the subspace outlier degree of each data
point in the Arrythmia data set for all 1-dimensional projections and 2-dimensional
projections. Which data points are declared outliers?

5. Write a computer program to perform subspace sampling of the Arrythmia data set,
using the approach of [344] by sampling 2-dimensional projections. How many sub-
spaces need to be sampled in order to robustly identify the outliers found in Exercise
2 over different executions of your computer program.

6. Consider a data set with d-dimensions, in which exactly 3 specific dimensions behave
in an abnormal way with respect to an observation. How many minimum number of
random subspaces of dimensionality (d/2) will be required in order to include all 3
dimensions in one of the sampled subspaces with probability at least 0.99? Plot the
number of required samples for different values of d > 6.




