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Abstract. In this paper, we will study the data stream clustering problem in the
context of text and categorical data domains. While the clustering problem has been
studied recently for numeric data streams, the problems of text and categorical data
present different challenges because of the large and un-ordered nature of the corre-
sponding attributes. Therefore, we will propose algorithms for text and categorical data
stream clustering. We will propose a condensation based approach for stream clustering
which summarizes the stream into a number of fine grained cluster droplets. These sum-
marized droplets can be used in conjunction with a variety of user queries to construct
the clusters for different input parameters. Thus, this provides an online analytical pro-
cessing approach to stream clustering. We also study the problem of detecting noisy
and outlier records in real time. We will test the approach for a number of real and
synthetic data sets, and show the effectiveness of the method over the baseline OSKM
algorithm for stream clustering.
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1. Introduction

In this paper, we will study the problem of clustering text and categorical data
streams. This problem is relevant in a number of web related applications such
as news group segmentation, text crawling, and target marketing for electronic
commerce. Some applications of text and categorical data stream clustering are
as follows:
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— Many portals on the world wide web provide real time news and other articles
which require quick summarization and filtering. Such methods often require
effective and efficient methods for text segmentation.

— Many web crawlers continuously harvest thousands of web pages on the web,
which is subsequently summarized by human effort. When the volume of such
crawls is significant, it is not realistically possible to achieve this goal by human
effort. In such applications, data stream clustering algorithms can be helpful
in organizing the crawled resources into coherent sets of clusters.

— In many electronic commerce applications, large volumes of transactions are
processed on the world wide web. Such transactions can take the form of
categorical or market basket records. In such cases, it is often useful to perform
real time clustering for target marketing.

The data stream problem has received increasing attention in recent years be-
cause of technological innovations which have facilitated the creation and mainte-
nance of such data. A number of data mining problems recently have been studied
in the context of data streams (Aggarwal, 2003; Babcock et al, 2002; Domingos et
al, 2000; O’Callaghan et al, 2002). The clustering problem is formally defined as
follows: for a given set of data points, we wish to partition them into one or more
groups of similar objects. The similarity among the objects is typically defined
with the use of some distance measure or objective function. In addition, data
points which do not naturally fit into any particular cluster are referred to as
outliers. Because of the applicability of the clustering and outlier detection prob-
lems, these problems have been well researched in the database and data mining
communities (Bradley et al, 1998; Knorr et al, 1998; Ng et al, 1994; Rastogi et
al, 2000; Zhang et al, 1996). The problems of text and categorical data clustering
have also been recently studied (Cutting et al, 1992; Gibson et al, 1998; Guha et
al, 1997; Silverstein et al, 1997) in the offline context. These methods cannot be
easily extended to the data stream problem because of their high computational
complexity. The data stream problem poses special challenges because of the
large volume of incoming data. As a result, one cannot scan a data point more
than once during the course of the computation. Furthermore, it is extremely
important for the process to be computationally efficient, since the processing
rate needs to be sufficiently fast to match the incoming rate of the data points.

The problem of stream clustering has been studied extensively for the case
of continuous data (Aggarwal et al, 2003b; Aggarwal et al, 2008; Cao et al,
2006; Chen et al, 2007). However, such approaches are difficult to use directly
for other data domains, since the cluster computation and tracking techniques
may be completely different. A number of other techniques for the Topic De-
tection and Tracking (TDT) program have studied incremental clustering of
text streams (Allan et al, 1998a; Allan et al, 1998b; Franz et al, 2001; Yang et
al, 1998) to find new events and to track later articles related to new events. A
recent piece of work in (Yang et al, 1998) is able to perform topic-conditioned
novelty detection, though this approach requires supervision with class labels.
Some recent techniques for streaming text clustering (Banerjee et al, 2004; He
et al, 2007; Surendran et al, 2006; li et al, 2006; Zhang et al, 2005; Zhong, 2005)
adapt a partition based approach to perform rapid online clustering of stream-
ing data. While these techniques are effective for online clustering, they lack the
flexibility to allow the user the ability to perform effective analysis of the clus-
ters over different time horizons. A recent piece of work (Banerjee et al, 2007)
studies the problem of online topic learning in text streams with the use of a
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variety of similarity measures. The machine learning community has also studied
the problem of incremental clustering for non-text data using methods such as
COBWEB and CLASSIT (LFisher, 1987; Gennari et al, 1989). Our goal in this
paper is to study the stream clustering problem for evolving data sets, so that
a user has the maximum flexibility of examining the behavior of the clusters
over different time horizons. In typical applications, users may wish to examine
the clusters only over a particular region of the stream, or may wish to vary
the parameters such as the number of clusters in the data. In particular, the
ability to provide flexibility to the user in specifying different parameters (such
as time horizon) is very challenging for a streaming application. This is because
such parameters affect the clustering process from scratch, and it is difficult to
maintain the results of clustering over multiple choices of parameters such as the
user-specified horizon or the number of clusters. In order to achieve this goal, we
will utilize a technique which leverages on intermediate summary statistics for
the clustering task.

Most real applications present data streams which are highly evolving in
nature. For example, an electronic commerce application containing customer
transactions of market basket data is likely to create data which is highly skewed
from the temporal perspective. Similarly, many newsfeed services receive large
volumes of documents for text clustering and categorization. Thus, real appli-
cations often exhibit temporal locality which is not taken into account by most
batch processing algorithms. The problems of clustering and outlier detection
present a number of unique challenges in an evolving data stream environment.
For example, the continuous evolution of clusters makes it essential to be able
to quickly identify new clusters in the data. While the clustering process needs
to be executed continuously in online fashion, it is also important to be able to
provide end users with the ability to analyze the clusters in an offline fashion. In
many cases, the users may wish to cluster the data based on specific temporal
parameters such as the choice of a particular time horizon or specified number
of clusters.

In order to achieve this goal, we will construct a framework in which care-
fully chosen statistical summary data is stored at regular intervals. We will intro-
duce the concept of cluster droplets which provides an effective representation
of the condensed characterization of the data. We will see that the summary
data has specific characteristics such as additivity and subtractivity which are
useful in computing the effectiveness over user-specified time horizons. The clus-
ter droplets can be considered intermediate summary data which can be reused
for a variety of purposes. Thus, this is an online analytical processing method
in which efficient construction of the intermediate structures is essential for the
success of the approach. While the data stream may have a very large volume,
the condensed droplets are only a summary representation, and can be processed
efficiently because of their compressed format. We will refer to our algorithm as
ConStream which corresponds to CONdensation based STREAM Clustering. A
related problem to clustering is that of outlier detection. We will also examine
the outlier detection problem in the context of data stream clustering. Previ-
ous work has studied anomalies only in the context of either supervised models
(Agrawal, 2007) or non-stream cases (Peterson et al, 2008). In the case of stream
clustering, new patterns in the data often appear as outliers, which eventually
become clusters in such cases. We will show how such outlier patterns can be
extracted from the data stream in real time.
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We note that the nature of the underlying data can affect the procedures for
clustering data streams. For example, the sparsity and distribution of the differ-
ent values of the categorical data can affect the methodology which is utilized for
the clustering process. For example, numerical data allows for easy tracking of
the underlying information in the form of quantitative moment information. This
is not the case for text or categorical data in which the such moment information
cannot be easily defined. Therefore, a different methodology is required for the
case of categorical data streams. In this paper, we will discuss the problem of
clustering different kinds of categorical data sets, including the closely related
text domain.

In the presence of data evolution or temporal locality, the exploration of
the stream over different time horizons may lead to different kinds of clusters.
These different kinds of clusters may have applicability in understanding the
behavior of the stream over different periods in time. For this purpose, one may
desire to periodically store a certain amount of summary information which
can be utilized later for better understanding and analysis of the data stream.
This kind of methodology is similar to online analytical processing algorithms in
which summary information is created for the purpose of repeated querying. In
the context of a data stream, such a methodology seems quite convenient, since
a fast data stream cannot be repeatedly processed in order to answer different
kinds of queries.

The clustering algorithm of this paper pre-stores condensed statistical infor-
mation at regular intervals. This condensed statistical data satisfies two require-
ments:

— It should be easy to update the statistical information for a fast data stream.
In this paper, we specifically choose the nature of the statistical information
in such a way that it is possible to perform updates which are linear in the
number of data points.

— The statistical information stored should allow the computation of various
analytical measures required by the user. Such measures could include clusters
or outliers over a specific time horizon. It is also often desirable to find the
nature of the evolution over a given time horizon.

In the next sections, we will discuss methods to store statistical information
which satisfy both the conditions.

This paper is organized as follows. In the next section, we will discuss the
classification of different kinds of clusters and outliers. In section 3, we will
discuss the process of storing and maintaining the data structures necessary
for the clustering algorithm. We will also discuss the differences which arise
from using different kinds of data. In section 4, we will describe the process of
utilizing different kinds of offline processing methods on the underlying summary
data. Section 5 describes the empirical results. The conclusions and summary are
discussed in section 6.

2. The Nature of Clusters and Outliers in Stream
Processing

Data streams exhibit considerable variations in the underlying patterns over the
course of their progression. Old clusters may become inactive, and eventually
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get replaced by new clusters. Similarly, when newly arriving data points do not
naturally fit in any particular cluster, these need to be initially classified as
outliers. However, as time progresses, these new points may create a distinctive
pattern of activity which can be recognized as a new cluster. The temporal
locality of the data stream is manifested by these new clusters. For example,
the first web page belonging to a particular category in a news stream of current
events may be recognized as an outlier, but may later form a cluster of documents
of its own. On the other hand, the new outliers may not necessarily result in the
formation of new clusters. Such outliers are true short-term abnormalities in the
data since they do not result in the emergence of sustainable patterns.

In order to distinguish between the different kinds of clusters and abnormali-
ties, we will introduce some notations and terminology. When a cluster is newly
discovered during the arrival of the data stream, it is referred to as a trend-setter.
From the point of view of the user, a trend-setter is an outlier, until the arrival
of other points certify the fact that it is actually a cluster. If and when a suf-
ficient number of new points have arrived in the cluster, it is referred to as a
mature cluster. We will quantify these definitions more precisely slightly later.
At a given moment in time, a mature cluster can either be active or inactive. A
mature cluster is said to be active when it has continued to receive data points in
the recent past. When a mature cluster is not active, it is said to be inactive. In
some cases, a trend-setting cluster becomes inactive before it has had a chance
to mature. Such a cluster typically contains a small number of transient data
points. In a given application, this may typically be the result of a short-term
abnormality.

Since the stream clustering process should provide a greater level of impor-
tance to recent clusters, we will provide a time-sensitive weightage to each data
point. It is assumed that each data point has a time-dependent weight defined
by the function f(t). The function f(t) is also referred to as the fading function.
The fading function f(t) is a non-monotonic decreasing function which decays
uniformly with time ¢. In order to formalize this concept, we will define the
half-life of a point in the data stream.

Definition 1. The half life ¢y of a point is defined as the time at which f(ty) =

(1/2)£(0).

Conceptually, the aim of defining a half life is to quantify the rate of decay of the
importance of each data point in the stream clustering process. The decay-rate is
defined as the inverse of the half life of the data stream. We denote the decay rate
by A = 1/ty. We denote the weight function of each point in the data stream by
f(t) = 27>t From the perspective of the clustering process, the weight of each
data point is f(¢). It is easy to see that this decay function creates a half life of
1/A. Tt is also evident that by changing the value of ), it is possible to change the
rate at which the importance of the historical information in the data stream
decays. The higher the value of ), the lower the importance of the historical
information compared to more recent data. For more stable data streams, it is
desirable to pick a smaller value of A\, whereas for rapidly evolving data streams,
it is desirable to pick a larger value of A.

When a cluster is created during the streaming process by a newly arriving
data point, it is allowed to remain as a trend-setting outlier for at least one
half-life. During that period, if at least one more data point arrives, then the
cluster becomes an active and mature cluster. On the other hand, if no new
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points arrive during a half-life, then the trend-setting outlier is recognized as a
true anomaly in the data stream. At this point, this anomaly is removed from
the list of current clusters. We refer to the process of removal as cluster death.
Thus, a new cluster containing one data point dies when the (weighted) number
of points in the cluster is 0.5. The same criterion is used to define the death of
mature clusters. A necessary condition for this criterion to be met is that the
inactivity period in the cluster has exceeded the half life 1/\. The greater the
number of points in the cluster, the greater the level by which the inactivity
period would need to exceed its half life in order to meet the criterion. This is
a natural solution, since it is intuitively desirable to have stronger requirements
(a longer inactivity period) for the death of a cluster containing a larger number
of points.

In the next section, we will discuss the process for cluster droplet mainte-
nance. The algorithm dynamically maintains a set of clusters by using an algo-
rithm which scales effectively with data size. In order to achieve better scalability
of the maintenance process, it is necessary to construct data structures which
allow for additive operations on the data points.

3. Storage and Update of Cluster Statistics

The data stream consists of a set of multi-dimensional records of dimensionality
denoted by d. The format of the attribute values for each data point is defined
based on the domain at hand. For the case of the categorical stream domain, each
of these d dimensions corresponds to a categorical attribute value. It is assumed
that the ith categorical dimension contains v; possible values. For the case of text
records, each dimension corresponds to the frequency of a word in the document.
Thus, the dimensionality is defined by the size of the lexicon. Only words which
are included in a document have non-zero frequency. The corresponding attribute
value is the numeric frequency of that word in the vector space representation.

For the purpose of achieving greater accuracy in the clustering process, it is
necessary to maintain a high level of granularity in the underlying data struc-
tures. In order to achieve this goal, we will use a process in which condensed
clusters of data points are maintained. We will refer to such groups as cluster
droplets. We will discuss and define the cluster droplet differently for the case of
text and categorical data streams respectively. First, we will define the cluster
droplet for the categorical data domain:

Definition 2. A cluster droplet D(¢,C) for a set of categorical data points C
at time ¢ is referred to as a tuple (DF2, DF'1, n, w(t), ), in which each tuple
component is defined as follows:

—The vector DF2 contains } ;cq1 4y jeq1,..ay,iz; Vi~ Vj entries. For each pair of
dimensions, we maintain v; - v; values. We note that v; is number of possible
categorical values of dimension ¢ and v; is the number of possible values of
dimension j. Thus, for each of the v; - v; categorical value pairs ¢ and j, we
maintain the (weighted) counts of the number of points for each value pair
which are included in cluster C. In other words, for every possible pair of
categorical values of dimensions 7 and j, we maintain the weighted number of
points in the cluster in which these values co-occur.

—The vector DF1 contains Z?Zl v; entries. For each ¢, we maintain a weighted
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count of each of the v; possible values of categorical attribute ¢ occurring in
the cluster.

—The entry n contains the number of data points in the cluster.

—The entry w(t) contains the sum of the weights of the data points at time .
We note that the value w(t) is a function of the time ¢ and decays with time
unless new data points are added to the droplet D(t).

—The entry [ contains the time stamp of the last time that a data point was
added to the cluster.

The reason for keeping the pairwise information on attribute values will become
clear in the section on offline analysis, in which we exploit this information to
perform analysis of inter-attribute correlations within clusters. We note that
the above definition of a droplet assumes a data set in which each categorical
attribute takes on a small number of possible values. (Thus, the value of v; for
each dimension ¢ is relatively small.) However, in many cases, the data might
actually be somewhat sparse. In such cases, the values of v; could be relatively
large. In those instances, we use a sparse representation. Specifically, for each
pair of dimensions ¢ and j, we maintain a list of the categorical value pairs
which have non-zero counts. In a second list, we store the actual counts of these
pairs. In many cases, this results in considerable savings of storage space. For
example, consider the dimension pairs ¢ and j, which contain v; and v; possible
categorical values. Also, let us consider the case when b; < v; and b; < v; of
them have non-zero presence in the droplet. Thus, at most b; - b; categorical
attribute pairs will co-occur in the points in the cluster. We maintain a list of
these (at most) b;; < b; -b; value pairs along with the corresponding counts. This
requires a storage of 3 - b;; values. (Two entries are required for the identities of
the value pairs and one is required for the count.) We note that if the number
of distinct non-zero values b; and b; are substantially lower than the number of
possible non-zero values v; and v; respectively, then it may be more economical
to store 3 - b;; values instead of v; - v; entries. These correspond to the list of
categorical values which have non-zero presence together with the corresponding
weighted counts. This works best for correlated data in which there are even
fewer non-zero entries within a cluster droplet. Similarly, for the case of DF'1,
we only need to maintain 2 - b; entries for each dimension 1.

Next, we consider the case of the text data set which is an example of a
sparse numeric data set. This is because most documents contain only a small
fraction of the vocabulary with non-zero frequency. The only difference with the
categorical data domain is the way in which the underlying cluster droplets are
maintained.

Definition 3. A cluster droplet D(t,C) for a set of text data points C at time ¢
is defined to as a tuple (DF2, DF1,n,w(t),!). Each tuple component is defined
as follows:

—The vector DF2 contains at most 3 - wb - (wb — 1)/2 entries. Here wb is the
number of distinct words with non-zero presence in the cluster C. For each
pair of dimensions, we maintain a list of the pairs of word ids with non-zero
counts. We also maintain the sum of the weighted counts for such word pairs.
In practice, the number is substantially lower than 3 - wb- (wb— 1) /2, since we
only need to keep those word pairs which co-occur in at least one document.

—The vector DF'1 contains 2-wb entries. We maintain the identities of the words
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with non-zero counts. In addition, we maintain the sum of the weighted counts
for each word occurring in the cluster.

—The entry n contains the number of data points in the cluster.

—The entry w(t) contains the sum of the weights of the data points at time ¢.
We note that the value w(t) is a function of the time ¢ and decays with time
unless new data points are added to the droplet D(t).

—The entry [ contains the time stamp of the last time that a data point was
added to the cluster.

We note that the definition of the cluster droplet for the case of categorical and
text data sets are quite similar, except that the text data sets are sparse, and
the categorical data sets are dense. The representation for each case needs to
take this into account. In addition, the categorical data set contains unordered
values for each attribute, which is not the case for the text data set.

The concept of cluster droplet has some interesting properties that will be
useful during the maintenance process. These properties relate to the additivity
and decay behavior of the cluster droplet.

Observation 1. Consider the cluster droplets D(t,C;) =

(DFQl, DF11, ni, w(t)l, ll) and D(t,CQ) =

(DF29, DF12,n9,w(t)2,l2). Then the cluster droplet D(t,C; U Cs) is defined by
the tuple (DF21 + DF22, DF11 + DFIQ, ni + na, ’LU(t)1 + ’lU(t)Q, max{ll, 12})

The cluster droplet for the union of two clusters is the sum of individual
entries. The only exception is the last entry which is the maxima of the two
last-update times. We note that the additivity property provides considerable
convenience for data stream processing since the entries can be updated effi-
ciently using simple additive and maximization operations.

The second observation relates to the rate of decay of the condensed droplets.
Since the weights of each data point decay with the passage of time, the cor-
responding entries also decay at the same rate. Correspondingly, we make the
following observation:

Observation 2. Consider the cluster droplet D(¢,C) =

(DF2,DF1,n,w(t),l). Then the entries of the same cluster droplet C at a time
t' > t (without the addition of new data points) are given by D(t',C) = (DF2 -
2~ =t) DFT. 27N =0 1y qp(t) . 272 =) ),

The above observation is important in regulating the rate at which the data
points in the cluster decay over time. The combination of the two observations
discussed above are essential in maintaining the clusters over time.

3.1. Cluster Droplet Maintenance

In this subsection, we will discuss the process of cluster droplet maintenance.
The purpose of using cluster droplets is to create an effective intermediate rep-
resentation from which a user may query using a variety of parameters. The
maintenance algorithm continuously maintains the droplets Cj ...Cg, which it
updates as new data points arrive. For each cluster, the entire set of statistics
in the droplet is maintained. The maximum number k of droplets maintained is
dependent upon the amount of available main memory. Even if modest memory
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Algorithm MaintainStream Clusters(Clusters: Cy ... Cg,
Incoming Data Point: X9);
begin
{ Let the time at which X4 arrives be t9;
for i = 1 to k S(X4,C;) = ComputeSimilarity(X4,C;);
mindex = argmaxie{lwk}S(ﬁ, Ci);
if (S(X9,Crnindes) > thresh) AddPoints(X9,t9, Coyindes);
else begin
Create new cluster with solitary point X9;
Create cluster droplet statistics with solitary point X7;
Remove the least recently updated cluster to make room for new cluster;
end;
end;

Fig. 1. Maintenance of Cluster Droplets

Algorithm AddPoints(Data Point: X7, Time stamp: t9,
Cluster: Cj);
begin
{ Decay factor needs to be updated since it was last
changed at the last update time of the cluster C; }
Let [ be the last update time of cluster C;;
Use Observation 2 to apply the temporal decay
factor e~ =1 to update
statistics of cluster Cj;
Use Observation 1 to add the data point X9 to C; and update its statistics;
end

Fig. 2. Adding a new point to a cluster

resources are available, the statistics can be maintained at a relatively high level
of granularity.

At the beginning of algorithmic execution, we start with an empty set of clus-
ters. As new data points arrive, unit clusters containing individual data points
are created. Once a maximum number k of such clusters have been created, we
can begin the process of online cluster maintenance. Thus, we initially start off
with a trivial set of k clusters. These clusters are updated over time with the
arrival of new data points.

When a new data point X arrives, its similarity to each cluster droplet is
computed. For the case of text data sets, the cosine similarity measure (Cutting
et al, 1992; Silverstein et al, 1997) between DF1 and X is used. Let q; ...q,

be the frequencies of the words in DF'1, and u; ...u, be the frequencies of the
words in X . Then, the cosine measure between DF'1 and X is defined as follows:

Z:L:1 qr - Up
\/Z:-L=1 qz \/Z:-l=1 u?

While the cosine measure is used for the purpose of this paper, other coeffi-
cients such as dice and jaccard coefficients can also be supported. The following
relationships may be used:

cosine(DF1,X) = (1)

n
Zr:l q”‘ . u’l"
PUAEY TR D DRETEED DURY AT

jaccard(DF1,X) = (2)
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Z?:l 2. qr - Up (3)
Z?:l q? + Zle u?

We note that all of these similarity functions simply use different combinations
of the same basic computations (dot product and the La-modulus) as the cosine
function, and can therefore be computed directly from the droplet statistics.
For the case of categorical data sets, the similarity measure is computed as
follows: for each attribute i, we calculate the (weighted) fraction of records in
the clusters which contain the same categorical value as the data point X. We
note that for the cluster C;, this percentage can be computed from the summary

information contained in cluster droplet D(¢,C;). This is because the vector DF1
contains the weighted counts of each value for attribute 7. The relevant weighted
count is divided by the total weight w(t) in order to calculate the correspond-
ing fractional presence of a particular categorical value of attribute ¢. Let the
weighted fraction for attribute ¢ and cluster C; be denoted by wf;(X,C;). The
average weighted fraction over all attributes for cluster C; is given by the simi-

larity value S(X,C;) = Zle wf;(X,C;)/d. The overall process of stream cluster
maintenance is illustrated in Figure 1. o
As illustrated in Figure 1, the similarity value S(X,C;) is computed over

all clusters. The cluster with the maximum value of S(X,C;) is chosen as the
relevant cluster for data insertion. Let us assume that this cluster is Crrindes- If
the value of S(X, Crnindesz) is larger than the threshold thresh, then the point X
is assigned to the cluster C,inder- The process of adding a data point to a cluster
is denoted by AddPoints and is illustrated in Figure 2. On the other hand, when
the similarity value is less than the threshold thresh, a new cluster is created
containing the solitary data point X. This newly created cluster replaces the
inactive cluster. This newly created cluster replaces the least recently updated
cluster from the current set of clusters. We note that the newly cluster is a
potential true outlier or the beginning of a new trend of data points. Further
understanding of this new cluster may only be obtained with the progress of the
data stream. -

In the event that X is inserted into the cluster C,,inder, We need to perform
two steps:

dice(DF1,X) =

— We update the statistics to reflect the decay of the data points at the current
moment in time. This updating is performed using the computation discussed
in Observation 2. Thus, the relevant updates are performed in a “lazy” fashion.
In other words, the statistics for a cluster do not decay, until a new point is
added to it. Let the corresponding time stamp of the moment of addition
be t. The last update time [ is available from the cluster droplet statistics.
We multiply the entries in the vectors DC2, DC1 and w(t) by the factor
2= 20 in order to update the corresponding statistics. We note that the
lazy update mechanism results in stale decay characteristics for most of the
clusters. This does not however affect the afore-discussed computation of the
similarity measures.

— In the second step, we add the statistics for each newly arriving data point to

the statistics for Cnindger by using the computation discussed in Observation
2.

In the event that the newly arriving data point does not naturally fit in
any of the cluster droplets and an inactive cluster does exist, then we replace
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the most inactive cluster by a new cluster containing the solitary data point
X. In particular, the replaced cluster is the least recently updated cluster from
the current set of clusters. We also associate an id with each cluster when it is
created. This id is unique to each cluster and is helpful in book keeping while
comparing the set of droplets at two different time periods. We will discuss more
details on this issue in the next section.

We note that a similarity threshold thresh is used in order to determine
when an incoming data point creates a new cluster. This threshold is dynamsi-
cally determined by using the similarity computation of previous assignments.
The mean p; and standard deviation o; of the minimum similarity values (or
similarity value to assigned cluster) in the history of assignments are computed
at the time of arrival of the tth data point. Note that this can be efficiently
computed in the stream scenario by maintaining the first order and second order
statistics (Zhang et al, 1996) of the history of computations. The threshold is
set at p+ 3 - o, which is consistent with a normal distribution assumption.

At a given moment in time, we maintain only the current snapshot of clusters
in main memory. We also periodically store the statistical information about the
clusters on disk. The main reason behind the storage of the snapshots of clusters
at different moments in time is to be able to create and analyze the clusters over
different time horizons. This can be done at regular time intervals, or it can be
done by using a pyramidal time frame concept discussed in (Aggarwal, 2003).
In the pyramidal time frame concept, the cluster droplets are stored at inter-
vals which decrease exponentially with greater level of recency. Conceptually,
the uniform time interval and the pyramidal time frame concepts provide no
difference in terms of functionality. The only difference is in terms of a better
level of approximation of a user specified time horizon using the pyramidal time
frame. Therefore, we will refer the discussion of the pyramidal time frame to
(Aggarwal, 2003), and proceed with a (simpler) description using regular inter-
vals of storage.

4. Offline Analysis of Clusters

The methods discussed in the previous section are useful for online maintenance
of the cluster droplets. In many cases, it may be valuable to provide the user
with the ability to perform offline analysis of the cluster droplets. For example,
even though the cluster droplets are condensed representations of the data with
relatively high granularity, it may often be desirable to find higher level clusters
which provide a broader overview.

4.1. Horizon Specific Analysis of Clusters

In many applications, it may be desirable to perform a horizon-specific analysis
of the underlying clusters in order to obtain better insight. Some examples of
queries which may be useful to the end-user are as follows:

— For a given time window (¢1,¢2), find the [ higher level clusters in the data.
— For a given time window (t1,t2), find the new trend setting outliers.

— For a given time window (t1,%2), find all the newly created true outliers.

— For a given time window (1, t2) find all clusters which became inactive.
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— For a given time window (t1,t2) find the most correlated sets of categori-
cal/text attribute pairs.

We note that the individual cluster droplets are constructed using the data re-
ceived from the beginning of the stream arrival. Therefore, these droplets cannot
be used directly in order to construct the clusters. We assume that the cluster
droplets are stored at pre-decided intervals in the data stream. If the cluster
droplets are stored at an interval with high granularity, then the cluster droplets
at times ¢; and ts can be closely approximated by the droplets at the closest
storage times ¢} ~= ¢ and th ~= 5. Let R(¢1) and R(t2) be the set of (approx-
imated) cluster droplets at times ¢; and t5. Then, it is desirable to find a new
set of cluster droplets which correspond to the activity occurring in the interval
(t1,t2). In order to construct this new set of cluster droplets M(tq,t2), we use
the following procedure:

— For all cluster droplets which are contained in R(t2), we classify them into
two types: (a) Droplets which were created after time ¢; and are therefore
not present in R(¢1) (b) Droplets which were created before time t;, and are
therefore present in R(t¢1). We note that the ids associated with each droplet
can be utilized in order to perform the matching at the two times.

— Those droplets which are not present in R(¢1) are directly added to M(t1,t2).
For each such droplet, we multiply each of the statistical values DF2, DF'1,
and w(t) by e_’\'(“_l“s. The purpose of performing this additional multiplica-
tive operation is to ensure that the decay characteristics of each droplet have
been properly updated.

— For those droplets which are present in both R(¢1) and R(¢2), an additional
droplet subtraction operation needs to be performed for each cluster in R(t3).
After performing the subtraction operation, each newly modified cluster is
added to M(t1,t2). We will discuss this subtraction operation in some detail
below.

We note that the time-discounting of the data points make the subtraction op-
eration somewhat tricky. The time decay component of each cluster droplet con-
tained in R(¢1) assumes a clock value of at most ¢;. In practice, since the time
decay process is applied in a lazy fashion, the individual clusters are decayed to
an even lower extent than the time stamp #;. In order to meaningfully compare
R(t1) and R(t2), we need to apply the same decay function to each corresponding
cluster droplet. Therefore, we need to modify the statistics of each cluster droplet
in R(#1) and R(t2) so that the decay function is applied assuming a time stamp
of t3. We also note that the decay component of a cluster droplet is updated
only when a data point is added to the cluster. Therefore, for a cluster with last
update time [,,, we multiply each of the statistical values DF2, DF1, and w(t)
by e~ (t2=1w) This process is applied to each of the cluster droplets in R(t1) and
R(t2). Next,we match pairs of cluster droplets by using their ids. Thus, a cluster
droplet at time t5 is an evolved version of its matched version at time ¢;. Let
(DF21,DF11,n1,w(t)1,0l1) and (DEF24, DF15,n9,w(t)2,l2) be two correspond-
ing droplets from R(t1) and R(t2). Next, we perform a subtraction operation to
form the droplet (DF25 — DF2,, DF15 — DF1y,n5 — ny, w(t)s — w(t)1,l2). This
modified droplet is added to M (t1,t2).

Once the set of droplets in M(t1,t2) have been constructed, we apply a
higher level clustering operation on these objects. For this purpose, we treat
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each droplet in M(¢1,t2) as a pseudo-point. These pseudo-points are then re-
clustered by using a K-means type algorithm. In this K-means type algorithm,
we apply the following iterative process:

— We first sample K points from M(ty,t2).

— We assign each point in M(t1,t3) to one of these K points. This assignment
is done using the same distance measure which was discussed in the section
on cluster droplet maintenance.

— We re-center each of these K clusters so as to create a new centroid from each
of these K newly created clusters. This process of re-centering simply creates a
new droplet which is the union of the all the pseudo-points (droplets) assigned
to that particular seed.

This iterative process is repeated until the centroids of the cluster droplets con-
verge to a stable set. As in most real applications, the use of 4 or 5 iterations
suffices. As a practical matter, one can set the number of iterations at 10. At
this point, the higher level cluster droplets can be reported as the final clusters.

4.2. Outlier Creation

We define newly created outliers in (t1,t2) as the data points in those clusters
which were created in (t1,t2), and which contain only singleton points. We have
chosen this definition, since the addition of one more point to that cluster could
be interpreted as a trend rather than an outlier by time to. The process of finding
all the newly created outliers in the interval (¢1,%3) is quite simple. In this case,
we need to find all those droplets in R(t3) which contain only one data point,
and for which the last update time is larger than ¢;. Note that the last update
time is the same as the creation time in this case. We note that the cluster
droplet statistics contain both the number of points and the last update time.
This is utilized in order to determine the relevant droplets which correspond to
the newly created outliers. A similar process may be used in order to find all the
newly created outliers in the time window (¢1,t2). The only difference is that in
this case, we need to ensure that the corresponding cluster has become inactive
at time to. This is because we are not looking for a new pattern of activity but
a newly created cluster which did not receive a sufficient number of new data
points. This can be determined by using the weight of the corresponding cluster
droplet at time ¢5. If the weight w(t) of the droplet is less than 0.5, then the
cluster is deemed to be inactive. Such a cluster is considered inactive at time
to. Similarly, all those clusters with weight larger than 0.5 at time ¢;, but with
weight less than 0.5 at time to are said to be clusters which have become inactive
in the interval (¢1,t2).

4.3. Correlation Analysis

Finally, we discuss the process of finding pairwise correlations between attribute
values. In order to achieve this goal, the second order cluster statistics DF'2
need to be used. Since these cluster statistics contain the pairwise count between
different attribute-value pairs, they can be used for the purpose of determining
all pairs of attribute values which satisfy a certain support threshold. We note
that in this model, the pairs of attribute values satisfying the support threshold
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are cluster specific. Such cluster-specific pairs of attribute values are local to a
particular part of the data. Thus, these correspond to the prominent localized
correlations in the cluster within a given temporal locality. Such local correlations
are often quite different from global correlations, and provide unique insights
which cannot be obtained otherwise (Aggarwal et al, 2002).

5. Empirical Results

We tested the clustering system for quality and performance over text and mar-
ket basket data sets. We also wanted to test the behavior of the stream clustering
algorithm under different levels of temporal locality. Clearly, it is more desirable
to have a data stream clustering algorithm which can quickly adapt to the evolu-
tion in the stream in such a way that the clusters represent the behavior within
a given temporal locality.

For the text data sets, we utilized documents obtained from a sample of
the 1996 scan of the Yahoo! taxonomy. This stream contained 1.63 * 10® docu-
ments. A stream was synthetically created from this scan by creating an order
which matched a depth-first traversal of the Yahoo! hierarchy. Thus, the result-
ing stream identically simulates a depth first crawl of the Yahoo! taxonomy.
Since web pages at a given node in the hierarchy are crawled at one time, the
web pages are also contiguous by their particular class as defined by the Y ahoo!
labels.

For the purpose of categorical data streams we used market basket data sets.
In order to generate the base market basket data sets, we used the procedure
discussed in (Agrawal et al, 1994). A transaction generated from this model is
denoted by Tx.ly.Dz, where x, y, and 2z are parameters of the data model. In
this technique, a correlation model is used to construct base mazimum poten-
tial itemsets from which all transactions are generated. The maximum potential
itemsets are generated from a base of 1000 items by randomly selecting items
with an average length selected from a poisson distribution with parameter y.
The transaction length is chosen from a poisson distribution with parameter x.
The transactions are constructed by combining randomly chosen potential item-
sets in order to achieve an average length of x. The bias of choosing a maximal
potential itemset is decided by an exponential distribution. When the potential
itemsets are added to a transaction, they are typically perturbed slightly (as
described in (Agrawal et al, 1994)), by adding or deleting a few items. A total
of z items are then generated which results in a data set which is denoted by
Tx.Iy.Dz. For example, the data set T20.110.D10K corresponds to a data set
with transaction length 20, maximal potential itemset size 10, and with 10,000
records. These data sets were converted into a stream for the testing process.
The conversion process was performed as follows:

— A total of n’ = 10 different random settings of the data set T20.110.D10K of
(Agrawal et al, 1994) were generated. Each such “instance” of the data set
was generated by using a different random seed.

— A continuous stream of records was created by concatenating the different
instances of the data sets with one another. Since each data set contained
b = 10,000 records, the corresponding stream consisted of 100,000 records.
The market basket data stream was referred to as MStream1(S). We note that
this stream has a very high level of temporal locality in its behavior.
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Fig. 3. Cluster Purity with Stream Progression (Marketl Data Stream)

— A second stream was generated from the same set of records, but in this case,
the order of the records from the different data sets was randomized. Thus, a
data point at a given stage of the stream could be generated from any of the
sets of data. We refer to this stream as MStream1(R). This stream has almost
no temporal locality.

— A third stream was created which continuously evolves over time. In order
to create this smoothly evolving data stream, we applied a block mixing pro-
cedure in a sequential fashion. In the first step, the first 2 - b records were
randomized. In the next step, the block of records in the range (b,3 - b) were
randomized. This process was repeated sequentially for each contiguous block
of 2-b records, at intervals of b records. The result was a data stream in which
the evolution was more continuous than the original data. This stream exhibits
a medium level of temporal locality. We refer to this data set as MStream1(E).

A second data stream was generated using the same methodology, except that
the base data generation procedure used the data set T20.I8.D10K. We note that
the change in the size of the underlying maximal potential itemset is useful in
determining the behavior of the data sets with somewhat different correlation
characteristics. The corresponding data streams are referred to as MStream2(R),
MStream2(S), and MStream2(E) respectively.  For the case of the text data
streams, the definition of a class was more straightforward, since the original
Yahoo! class labels could be directly used. However, in this case, the Y ahoo!
hierarchy was truncated in order to create 251 classes. In the Text(S) stream, the
documents are contiguous by class and are arranged as if the Yahoo! taxonomy
was crawled in depth-first order. As in the case of the market basket data sets, we
used the same methodology to generate the other two data streams corresponding
to Text(R) and Text(E). Finally, we constructed a data stream from the 20
newsgroups data set (Newsgroups, Data). The approach for constructing the
data stream was exactly the same as the previous case, and three streams were
constructed corresponding to the random, slowly evolving and rapidly evolving
cases. The corresponding data sets are referred to as NG20(S), NG20(E), and
NG20(R) respectively.

Thus, the data generation process created the following three types of data
streams:
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— The S-Class Streams correspond to Text(S), MStream1(S) and MStream2(S).
These were the data streams with continuous segments of records belonging
to a particular class. The evolution in this class is abrupt, when records move
from one class to the other. The temporal locality was very high in this case.

— The E-class streams correspond to Text(E), MStream1(E), and MStream2(E).
These were the smoothly evolving data streams with intermediate level of
temporal locality.

— The R-class streams correspond to Text(R), MStream1(R) and MStream2(R).
These were the non-evolving data streams with low temporal locality.

We tested how well the algorithm grouped records corresponding to a given
class or category in a cluster. For the case of the market basket data sets, a
class was defined as the set of records created by a particular instantiation of the
random seed. Therefore, there were 10 “classes” in the case of the market basket
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Data Set S-Class  E-class  R-class

MStreaml  96.86% 86.3% 61.0%

MStream2 97.1% 84.35%  56.8%
Text 65.28%  41.07%  22.47%
NG20 83.47%  68.26%  41.35%

Table 1. Overall Cluster Purity (Entire Stream)

data set. For each cluster, we defined the birthing class as the class label of the
record which created the cluster. The fraction of the records in the cluster which
belong to the birthing class is defined as the class purity of the cluster. We note
that the value of the class purity can be computed only for those clusters which
have more than one data point. This is because the first data point in a given
cluster is not used in order to compute the cluster purity. At any given moment
in time, the birthing accuracy was computed over only the last 1000 points in
the stream. Thus, among the last 1000 data points, if n; be the number of trend-
setting outliers, and ny be the number of non-trend setting points which match
their birthing class label, the cluster purity is defined by n2/(1000 — nq).

We wanted to test the effect of the evolution process on the clusters and
outliers detected by the algorithm. For this purpose, we tested the number of
new outliers created at each stage of the stream generation process. In general,
outliers were created by substantial changes in the stream behavior. When a
completely new and sustainable trend in the data appears, then the trend-setting
outlier turns into a mature cluster. On the other hand, in cases when the cluster
dies before the arrival of a second data point, the outlier is recognized to be
a true anomaly. We tracked both the number of trend setting clusters as well
as the number of true anomalies in the data, and plotted these values over the
course of the data stream progression.

For all experiments, we assumed a slowly decaying stream in which the half-
life was set to half the length of the stream. For the case of the initial qualitative
statistics, we used k& = 1000 droplets for the clustering process. In some of
the later cases, we used the second phase of the clustering process to compare
against a baseline approach, when we used the natural number of clusters as an
input parameter. For the insertion of points into a cluster we used a similarity
threshold which was 3 standard deviations less than the average similarity of the
data points to the centroid of that cluster.

We have illustrated the cluster purity results using the different data sets
in Figures 3, 4 and 5 respectively. In Figures 3 and 4, the S-Class stream is
on top with the highest level of cluster purity, whereas the R-class stream is
on the bottom with the lowest level of cluster purity. We note that in the case
of the MStream1(S) and MStream2(S) data sets, the effect of the evolution of
the data stream are quite pronounced and periodic. This is because the dif-
ferent patterns in the data are located at regular intervals. It is interesting to
see that there is a considerable reduction in the class purity at each interval
of b = 10,000 records for the MStream1(S) and MStream2(S) data sets. In the
case of the Text(S) data set, the cluster purity behavior was much more irregu-
lar. This is because some of the classes in the original Y ahoo! taxonomy do not
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correspond to coherent sets of documents. For example, some of the documents
from the QBusiness_And_Economy category of Y ahoo! correspond to disparate
businesses with few keywords in common. In such cases, the classification accu-
racy can vary rapidly with progression of the data stream. This can be seen in
some cases of Figure 5, since the classification accuracy bounces back and forth
at some regions of the stream.

In some other cases, the number of documents in a class was less than 10.
In such cases, it was not possible to easily put a document in the cluster with
the correct birthing class. On the other hand, for classes containing a larger
number of documents, it was easy for the clustering process to adapt to the
new class of documents. In such cases, the corresponding classification accuracy
increased considerably. However, the overall level of cluster purity was higher
in the Text(S) data set because of the greater level of temporal locality in the
document data stream. As illustrated in Table 1, the text and newsgroup data
sets had a higher level of cluster purity for the S-class and E-class data sets, as
compared to the R-class data sets. This was also the case with the two market
basket data sets. In the case of the Text(R), MStream1(R) and MStream2(R)
data sets, there was no significant change in the cluster purity over the course of
the data stream computation. This was also the case for the smoothly evolving
data streams Text(E), MStream1(E), and MStream2(E) in which there was no
significant change in the cluster purity during stream progression. In each case,
the S-class streams had the highest cluster purity, whereas the R-class streams
had the lowest cluster purity. The reason for this was that the R-class streams
had a larger number of classes running in parallel. This resulted in a greater
number of available possibilities in the class labels of the current clusters. On
the other hand, the S-Class streams were pure within a given local segment. As
a result, the corresponding cluster purity was much higher in this case.

In Figures 6, 7 and 8, we have illustrated the fraction of new cluster creations
with stream progression for the different data sets. Again, the R-class streams
had the highest fraction of new cluster creations, whereas the S-class streams
had the smallest fraction of new cluster creations. At each interval of b = 10,000
records, the MStream1(S) and MStream2(S) data streams showed a higher frac-
tion of new cluster creations. The text data stream was somewhat more irregular,
but the new clusters were created whenever a new class of records arrived. We
note that this coincides with the precise periods at which the patterns changed
in the underlying data sets. For the case of the E-class and R-class data streams,
the fraction of new cluster creations was more uniform. However, the average
number of new cluster creations was higher in this case because of the greater
non-uniformity of the data stream in the R-class and E-class data sets. More
details of the quality of the underlying results are illustrated in Tables 5 and 6.

Not all the new cluster creations were true outliers. In Figures 9, 10 and
11, we have illustrated the fraction of true outliers with progression of the data
stream. As in the previous case, the S-class and E-class streams had fewer outliers
because of the lower level of heterogeneity in the data stream. In fact, in the case
of the MStream1(S) and MStream2(S) data sets, no true outliers were created
throughout the entire cluster maintenance process. Consequently, the number of
true outliers for the MStream1(S) and MStream2(S) data sets in Figures 9 and
10 cannot be distinguished from the X-axis. A natural observation from these
results is that the number of outliers in a data stream is highly dependent upon
the ordering and skew of the underlying data stream. Clearly, when there are
bursts of homogeneous behavior within a given temporal locality of the data
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Data Set Outlier Precision Inactive Cluster Precision
MStreaml1(E) 89% 98.3%
MStream2(E) 87.1% 95.4%

Text(E) 82.3% 89.1%

Table 2. Horizon-specific and Outlier Behavior

stream (as in the case of the S-class data sets), very few outliers are observed.
The rate of outlier generation is thus an indirect indicator of the level of temporal
locality of the underlying data stream. Data streams with lower temporal locality
are likely to have a greater number of outliers. This is because there are likely
to be fewer clusters corresponding to consistent patterns of activity in the data
stream.

5.1. Horizon Specific Applications and Outlier Detection

In this section, we will test the behavior of the different horizon-specific appli-
cations discussed in this paper. The horizon-specific applications are very useful
in determining the evolution behavior over specific time horizons. In order to
test this aspect, we used the continuously evolving E-class streams. For example
in the case of the market basket data stream, the positions b, 2-b, 3-b, ...
9 - b formed the change points at which a new pattern was introduced within
the stream. These were also the positions at which some of old patterns in the
stream expired. Therefore, we computed two metrics:

— For each horizon [r-b, (r+1)-b], we computed the fraction of trend setting out-
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Data Set E-class E-class R-class R-class
ConStream  OSKM  ConStream  OSKM

MStream1 90.6% 81.7% 73.2% 65.8%
MStream?2 89.5% 80.3% 71.7% 64.3%
Text 51.07% 44.7% 33.56% 21.32%
NG20 87.54% 81.44% 46.35% 38.27%

Table 3. Overall Cluster Precision (Entire Stream)

Data Set E-class E-class R-class R-class
ConStream  OSKM  ConStream  OSKM

MStreaml 88.3% 81.8% 71.5% 64.3%
MStream?2 87.4% 80.0% 70.3% 63.2%
Text 49.05% 45.1% 31.4% 20.5%
NG20 83.32% 80.7% 45.1% 36.3%

Table 4. Overall Cluster Recall (Entire Stream)

liers which correspond to new patterns in the underlying data. In other words,
the first data point in the cluster corresponds to a new pattern of activity. We
refer to this metric as the outlier precision. This metric was averaged over all
horizons.

— For each horizon [r - b, (r + 1) - b], we determined the percentage of replaced
clusters which correspond to expired patterns. In this case, the majority of
points in the cluster need to be drawn from an expired pattern. We refer to
this metric as the inactive cluster precision. This metric was averaged over
all horizons. The outlier precision and the inactive cluster precision for the
data sets are illustrated in Table 2. We note that the precision values are
typically much higher than 80% in most cases. The inactive cluster precisions
are typically higher since inactivity behavior is determined by the behavior of
the clustering over a period of time, and therefore more robust.

5.2. Baseline Comparisons

We compared the method to the OSKM algorithm discussed in (Zhong, 2005),
which is the most recent method for streaming text clustering. The algorithm in
(Zhong, 2005) was adapted to the market basket data set by using the similarity
measure discussed in (Aggarwal et al, 1999) for the partitioning step. In the
case of the OSKM algorithm, we used M = 20 iterations, segment length S =
2000 and v = 0.2 (using the notations of (Zhong, 2005)). The learning rate
schedule of OSKM was set by 19 = 1.0 and ny = 0.01. We further note that both
algorithms require an input parameter & which defines the number of clusters.
In order to test the the relative effectiveness of the two methods, we used an
input parameter k which was equal to the number of natural clusters in the data
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Data Set E-class E-class R-class R-class
ConStream  OSKM  ConStream  OSKM

MStream1 89.6% 75.3% 72.4% 58.5%
MStream?2 88.4% 72.1% 70.5% 59.2%
Text 52.1% 41.2% 32.1% 16.1%
NG20 83.1% 74.2% 44.7% 31.9%

Table 5. Overall Cluster Precision (Horizon Specific)

Data Set E-class E-class R-class R-class
ConStream  OSKM  ConStream  OSKM

MStream1 87.1% 74.8% 71.5% 58.6%
MStream?2 86.95% 70.3% 68.7% 58.3%
Text 49.4% 39.5% 31.4% 15.5%
NG20 81.2% 73.3% 51.5% 32.0%

Table 6. Overall Cluster Recall (Horizon Specific)

set. Since this parameter is set to the same value for both algorithms, the results
should provide a good idea of the overall effectiveness of the approach. In the
case of the ConStream approach, the number of droplets was still set at 1000,
though the second phase of the clustering process reduced the number of droplets
to the number of natural clusters in the data set. For the purpose of testing, we
utilized two approaches:

— The entire data stream was clustered in one pass, and the precision and recall
of the two methods were measured.

— We calculated the accuracy of clustering over the middle third of the stream.
In the case of the ConStream method, this means that the online clustering
for constructing the droplets was performed on the entire stream, but the
second phase of offline phase of clustering the droplets was performed only
over the horizon-specific portion after applying the subtractivity property.
The precision and recall were measured over the final result of the clustering.
On the other hand, in the case of the OSKM algorithm, the precision and
recall were measured after discarding the irrelevant documents from the first
and last third of the stream in the clusters. This ensures a fair comparison
between the two methods.

In Tables 3 and 4 we have illustrated the precision and recall behavior of the
ConStream method with respect to the OSKM approach. The precision and
recall were computed against the true clusters which were either known from
the base data in the case of market basket data sets or were available in the
form of categories in the case of the two text data sets. Since the results on
the S-class data sets are near perfect for all methods, we have illustrated the
results only on the E-class and R-class data sets for all methods. In each case,
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Data Set Peak Consumption/droplet Total Consumption
MStream1(E) 127.2KB 127 MB
MStream?2(E) 131.5KB 131 MB

Text(E) 863.2KB 863 MB

Table 7. Memory Consumption Requirements

it is clear that the ConStream method substantially outperforms the OSKM
technique in terms of both precision and recall. In the particular case of the
ConStream method, the precision is slightly higher than the recall, since some
of the droplets were dropped by the cluster maintenance algorithm. However,
even in terms of the recall, the ConStream method was substantially superior to
the OSKM algorithm. This is because the use of fine grained cluster droplets in
combination with a parameter-specific user phase provides a much higher level of
accuracy than the OSKM algorithm. We note that the complexity of the second
phase is not proportional to the number of data stream points, but only to the
number of cluster droplets.

The advantages of the ConStream method over the OSKM algorithm become
even more apparent when the precision and recall are computed only over a
user-specified horizon. As discussed above, only the middle third of the stream
was used for the purpose of computing the precision and recall. In this case,
the difference between the ConStream method and the OSKM method was quite
significant. This is because the ConStream method was able to use the additive
property in order to restrict the second phase to a particular user-specified hori-
zon. This gave it a clear advantage over the OSKM method. This also illustrates
the advantage of the ConStream method over the OSKM method over a vari-
ety of applications in which the cluster-specific parameters may be utilized at
query-time. In such cases, the droplet construction provides a summary of the
data which can be efficiently aggregated at query time in order to construct the
final set of high-level clusters.

5.3. Memory Consumption

We also tested the memory consumption of the ConStream approach. The mem-
ory consumption requirement is defined by the space required to hold the cluster
droplets. Therefore, we tested the memory requirement of the approach. We com-
puted the average memory requirement of the approach over all cluster droplets,
and then computed the peak memory requirement per droplet over the entire
data stream. The results are presented for the MStream1(E), MStream2(E) and
Text(E) data sets in Table 7. We note that the memory requirements are quite
modest and typically in the range of a few hundred kilobytes per droplet. This
is essentially because of the sparsity of the underlying data set in which the
co-occurence of a pair of data values is quite rare in a given record. Since the
droplets use a sparsity-friendly representation, this greatly reduces the memory
requirements when the number of possible values is large. With current main
memory availability in desktop machines of the order of gigabytes, this effec-
tively means that it is possible to run the stream clustering algorithm with
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Data Set Average Proc. Rate (ConStream) Average Proc. Rate (OSKM)

(pts per min.) (pts per min.)
MStream1(S) 5314.4 2664.7
MStream1(E) 6586.1 2682.3
MStream1(R) 9538.9 2673.6
MStream?2(S) 5123.8 2601.5
MStream2(E) 6629.8 2631.6
MStream2(R) 9950.2 4622.4
Text(S) 4231.9 2435.7
Text(E) 4580.9 2501.6
Text(R) 4863.2 2522.7
NG20(S) 4361.2 2541.6
NG20(E) 4781.3 2561.3
NG20(R) 5134.5 2556.7

Table 8. Running Times

thousands of cluster droplets. In this particular case, we used k = 1000 droplets,
and the corresponding total peak consumption may be obtained by multiplying
the per-droplet consumption by 1000. The total peak requirement is also illus-
trated in Table 7. The results suggest that the approach is quite scalable in terms
of memory requirements. Next, we will test the scalability in terms of efficiency.

5.4. Efficiency

We have also compared the efficiency of our text clustering method with the
OSKM algorithm. For the case of the OSKM algorithm, we used the same set of
parameters as discussed in section 5.1, except that we used k = 1000 consistently
for both algorithms. In Table 8, we have illustrated the stream processing rate
for each of the data sets and the two methods. In each case, our method is
significantly faster than the OSKM algorithm. It is clear that in each case, several
thousand data points per minute could be processed. The other observation is
that the market basket data sets exhibit much better performance than the text
data sets. This is because the text data sets had a significantly larger number of
attributes (text words) in each record. As a result, the corresponding processing
times were faster in the case of the market basket data. We also note that the
running time was not uniform across the entire execution. In Figure 12, we have
illustrated the processing rate with progression of the data stream the market
basket data set MStreaml(E). The numbers on the Y-axis illustrate the rate
at which the last 5000 data points were processed. The behavior for the other
data sets was very similar. As evident from Figure 12, the initial processing
rate is somewhat higher than the steady state processing rate. This is because
the number of cluster droplets at the initial stage of the algorithm execution
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is significantly lower. In addition, at the earlier stages of the stream, most of
the attribute values/text words in the sparse data are not represented in the
cluster. Over the course of progression of the data stream, the number of values
represented increases. As this number increases and reaches a steady state, the
corresponding rate of processing stabilizes over time. Another observation was
that the processing rates of the data sets with lower temporal locality were much
higher. This is because in such data streams, the clusters get discarded more
quickly as outliers. This also means that the average life of a cluster is relatively
low in such streams. In such cases, not much statistics is maintained for the
different attributes in the underlying sparse data. This results in faster similarity
computations. While there was variation across the different data streams in
terms of the processing speed, the overall speed was over a few thousand data
points per minute in each case. This suggests that the approach is extremely
efficient and robust over different kinds of data sets.

6. Conclusions and Summary

In this paper, we discussed a new method for clustering and outlier detection
of text and categorical data streams. In order to achieve this goal, we used a
compact representation of the clusters which was utilized to construct an addi-
tive data stream mining algorithm. The resulting algorithm was applicable over
both the text and categorical data mining domain with minor modifications. In
addition, the technique can be applied to study the nature of the outliers and
the evolution in the underlying stream. In addition, since the approach stores
summary data about the clusters, it can be used in conjunction with a second
level of clustering based on user-specified parameters. This is possible because of
the additivity property of the droplets, which make it feasible for the clustering
to be performed on user-specified horizons with the use of a second offline phase.
In most real applications, a stream may continue to evolve over time, but a user
may query for clusters over different time horizons. For such cases, the additivity
property is particularly useful at the cost of some offline processing.

The algorithm was tested on a number of real and synthetic data sets. We
found the algorithm to be highly effective in being able to quickly adapt to
variations in the data stream and recognize the underlying temporal locality.
We also tested the method against a recent stream clustering method known as
OSKM using traditional measures such as precision and recall. In such cases,
our method turns out to be much more effective, and the advantage was greater
when the query was restricted to a particular user-specified horizon. We also
tested the method for scalability, and it turns out to be highly efficient over a
variety of data sets.
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