
Towards Meaningful High-Dimensional Nearest Neighbor Search by
Human-Computer Interaction

Charu C. Aggarwal
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
charu@us.ibm.com

Abstract

Nearest Neighbor search is an important and widely
used problem in a number of important application do-
mains. In many of these domains, the dimensionality of the
data representation is often very high. Recent theoretical
results have shown that the concept of proximity or nearest
neighbors may not be very meaningful for the high dimen-
sional case. Therefore, it is often a complex problem to find
good quality nearest neighbors in such data sets. Further-
more, it is also difficult to judge the value and relevance
of the returned results. In fact, it is hard for any fully au-
tomated system to satisfy a user about the quality of the
nearest neighbors found unless he is directly involved in the
process. This is especially the case for high dimensional
data in which the meaningfulness of the nearest neighbors
found is questionable. In this paper, we address the com-
plex problem of high dimensional nearest neighbor search
from the user perspective by designing a system which uses
effective cooperation between the human and the computer.
The system provides the user with visual representations of
carefully chosen subspaces of the data in order to repeat-
edly elicit his preferences about the data patterns which are
most closely related to the query point. These preferences
are used in order to determine and quantify the meaningful-
ness of the nearest neighbors. Our system is not only able to
find and quantify the meaningfulness of the nearest neigh-
bors, but is also able to diagnose situations in which the
nearest neighbors found are truly not meaningful.

1. Introduction

The nearest neighbor search problem is defined as fol-
lows: For a given query pointQ, find the data points which
are closest to it based on a pre-defined distance function.
Examples of application domains in which this problem
arises are similarity search in geometric databases, multi-

media databases, and data mining applications such as fraud
detection and information retrieval. Typical domains such
as data mining contain applications in which the dimen-
sionality of the representation is very high. Consequently
a wide variety of access methods and data structures have
been proposed for high dimensional nearest neighbor search
[9, 11, 18, 21, 27].

It has been questioned in recent theoretical work [10] as
to whether the nearest neighbor problem is meaningful for
the high dimensional case. These results have characterized
the data distributions and distance functions for which all
pairs of points are almost equidistant from one another in
high dimensional space and have illustrated the validity of
the results on a number of real work loads. We note that
these results do not necessarily claim that nearest neighbor
is not meaningful in every high dimensional case, but that
one must be careful in interpreting the significance of the
results. For example, a lack ofcontrastin the distribution
of distances implies that a slight relative perturbation of the
query point away from the nearest neighbor could change
it into farthest neighbor and vice versa. In such cases, a
nearest neighbor query is said to beunstable. Furthermore,
the use of different distance metrics can result in widely
varying ordering of distances of points from the target for
a given query. This leads to questions on whether a user
should consider such results meaningful.

Recent work [15] has shown that by finding discrimi-
natory projections in the neighborhood of a query point, it
is possible to improve the quality of the nearest neighbors.
This approach uses the fact that even though high dimen-
sional data is sparse in full dimensionality, certain projec-
tions of the space may contain meaningful patterns. These
meaningful patterns are more closely related to the query
point than the ones determined by using the full dimension-
ality. Related techniques [3, 6] design distance functions in
a data driven manner in order to find the most meaningful
nearest neighbors. In these techniques, the statistical prop-
erties of high dimensional feature vectors are used in order
to obtain meaningful measures of the distances between the



points. This is often a difficult task, since the most effective
method of measuring distances may vary considerably with
the data set and application domain.

Since the issue of meaningfulness is connected to the
instability in measurement of distances, a natural guiding
principle in these methods is to find data projections and
distance functions in which the distances of the nearest
neighbors from the query point have high contrast from
the rest of the data. It has been shown in [15] that such
a strategy leads to improvement in search quality. It has
also been independently confirmed for the multimedia do-
main thatdistinctiveness sensitivenearest neighbor search
[19] leads to higher quality of retrieval. At the same time,
it is quite difficult for a fully automated system to always
find nearest neighbors which would be considered valuable
and meaningful by the user. Furthermore, even if the neigh-
bors found are valuable, a user would have little idea about
the quality of the neighbors found without being actively
involved in the process. The fully automated systems dis-
cussed in [6, 15] are incomplete in their characterization
of the data in terms of a single best projection or distance
function. Different projections can provide different views
of the data, all of which may be informative to a human in
understanding the relationship between the query point and
the rest of the data.

In recent years, the importance of incorporating hu-
man interaction into several data mining problems has been
well understood and appreciated [5, 8, 14, 16, 20, 24, 28].
For particular domains of data such as multimedia, im-
age databases and information retrieval, application-specific
methods have been devised [13, 22, 23, 25, 28] in order to
incorporate user feedback into the retrieval process. The
importance of human interaction in the nearest neighbor
search process arises from the ability of a user to make in-
tuitive judgements that are outside the capabilities of fully
automated systems. Simply speaking, a computer cannot
match the visual insight, understanding and intuition of a
human in distinguishing useful patterns in the data. On the
other hand, a human needs computational support in order
to determine effective summaries of the data which can be
used to derive this intuition and understanding. Therefore,
a natural strategy would be to devise a system which is cen-
tered around a human-computer interactive process. In such
a system, the work of finding nearest neighbors can be di-
vided between the human and the computer in such a way
that each entity performs the task that it is most well suited
to. The active participation of the user has the additional
advantage that he has a better understanding of the quality
of the nearest neighbors found.

In this paper, we will describe a human-computer inter-
active system for high-dimensional nearest neighbor search.
In this method, the distribution of the data in carefully cho-
sen projections are presented visually to the user in order

to repeatedly elicit his preferences about the relationships
between the data patterns and the query point. Specifically,
these projections are chosen in such a way that the natural
data patterns containing the query point can be visually dis-
tinguished easily. Recent work [4, 7, 15] has shown that
even though it is difficult to define clusters for sparse high
dimensional data, it is often possible to find clusters in cer-
tain lower dimensional projections. Many of these clusters
may contain the query point. We refer to such projections
asquery centered projectionsand the corresponding clus-
ters asquery clusters. These projections may exist either in
the original sets of dimensions or in an arbitrarily oriented
subspace of the data. For each such projection determined,
the user is provided with the ability to visually separate out
the data patterns which are most closely related to the query
point. In a given view, a user may choose to pick some or
no points depending upon the nature and distribution of the
data. At the end of the process, these reactions are utilized
in order to determine and quantify the meaningfulness of
the nearest neighbors found from theuser perspective.

This paper is organized as follows. The remainder of
this Section discusses issues of nearest neighbor search in
high dimensional data, and formalizes the contributions of
the paper. In section 2, we discuss the interactive system
for nearest neighbor search by data exploration. In section
3, we discuss the quantification of nearest neighbor mean-
ingfulness. The empirical section is discussed in section 4,
whereas section 5 contains the conclusions and summary.

1.1. On the Nature of High Dimensional Data

Recent theoretical results [10] have shown that in high
dimensional space, the nearest and furthest neighbors are
of the same relative distance to the query point for a wide
variety of data distributions and distance functions. How-
ever, it has also been shown in recent work [4, 7, 15] that
even though meaningful contrasts cannot be determined in
the full dimensional space, it is often possible to find lower
dimensional projections of the data in which tight clusters
of points exist. In this spirit, the projected nearest neigh-
bor technique [15] finds a single optimal projection of the
data in which the closest neighbors are determined in an
automated way using the euclidean metric. In reality, no
single projection provides a complete idea of the distribu-
tion of the data in the locality of the query point. The full
picture may be obtained by using multiple projections, each
of which provides the user with different insights about the
distribution of the points. For example, Figure 1(a) illus-
trates a projection in which there is a cluster near the query
point which is well separated from the other data points.
Such a projection is very useful, since it provides a distinct
set of points which can be properly distinguished from the
rest of the data. Figures 1(b) and 1(c) are examples of pro-
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Figure 1. (a) Good Query Centered Projection (b) Poor Query Centered Projection (Query Point in
Sparse Region) (c) Noisy projection

jections in which the closest records to the query point are
not well distinguished from the rest of the data. For exam-
ple, in the case of Figure 1(b), the query point is located
in a region which is sparsely populated; this is not a good
query centered projection, since one cannot identify a dis-
tinct subset of points in proximity to the query. In the case
of Figure 1(c), the projection is a poor one irrespective of
the nature of the query point, since the points are uniformly
distributed and do not separate out well into clusters. It is
often a subjective issue to determine whether or not a given
projection distinguishes the query cluster well. There may
also be many cases in which query points may be located at
the fringes of a cluster, and it may be difficult to determine
the query cluster in an automated way. In all such cases, it
becomes important to use the visual insight and feedback of
a user in diagnosing the query clusters.

We note that it is possible that a good query-centered
projection may be difficult to find in a combination of the
original set of attributes. In such cases, it may be necessary
to determine arbitrary projections created by vectors which
are not parallel to the original axis directions. On the other
hand, the use of axis-parallel projections has the advantage
of greater interpretability to the user. In this paper, we pro-
pose methods for determining projections of both kinds i.e.
axis-parallel and arbitrary projections.

1.2. Contributions of this paper

This paper discusses a interactive system between the
user and the computer for high dimensional nearest neigh-
bor search. The advantage behind such a system is its ability
to share the best skills of a human and a computer in find-
ing the most meaningful nearest neighbors. Effective tech-
niques are proposed for choosing projections of the data in
which the natural data patterns containing the query point
are well distinguished from the entire data set. An inter-
esting method discussed in this paper is agraded subspace

determination processso that most of the data discrimina-
tion is hidden in a small subset of orthogonal projections.
The visual profiles of these projections is used to provide
feedback. The repeated feedback of the user over multiple
iterations is used to determine a set of neighbors which are
statistically significant and meaningful. In the event that
the data does not have any consistently interesting patterns
in different lower dimensional projections, then this is de-
tected by the meaningfulness quantification method and re-
ported. Thus, an additional advantage of this approach is
that it is also able to detect and report cases when the data is
truly not amenable to meaningful nearest neighbor search.

1.3. Notations and Terminology

We assume that the total number of points isN and the
dimensionality of the data space isd. The query point is
denoted byQ. The data set is denoted byD and the univer-
sald-dimensional space byU . Let E be thel-dimensional
subspace defined by a set ofl � d orthogonal vectors
fe1 : : : elg. In the general case, the vectorse1 : : : el may
be arbitrary directions in the space which are not parallel
to the axes directions representing the attributes. The pro-
jection of a pointy onto the subspaceE is thel-dimensional
point(y�e1 : : : y�el) and is denoted byProj(y; E). The pro-
jected distance between two pointsx1 andx2 in subspaceE
is denoted byPdist(x1; x2; E) and is equal to the distance
betweenProj(x1; E) andProj(x2; E) in subspaceE .

2. The Interactive Nearest Neighbor System

Since the system works by determining the distribution
of the nearest records to the query points in a given pro-
jection, we introduce a parameter called thesupport. This
is the number of database points that are candidates for the
nearest neighbor in a given projection, and whose distribu-
tion relative to the rest of the data set is analyzed. The value



Algorithm InteractiveNNSearch(Data Set:D,
QueryPoint:Q, Support:s);

begin
for each data pointi do setP(i) = 0;
f P = fP(1) : : :P(N)g denotes the probability of each of
theN points in the database being a meaningful nearest neighbor;g
while not(terminationcriterion)do
begin
Set countv(i) if each data pointi to zero;
Dc = D; Ec = U ; f U is universal subspaceg
f User counts areV = fv(1) : : : v(N)g g;
for i = 1 to d=2 do
begin
(Eproj ;Enew ;Dnew) = FindQueryCenteredProjection(Dc , Ec, Q, s);
DisplayVisualProfile(Dc , Eproj ,1);
� = AdjustDensitySeparator(Dc , Eproj , �);
V = UpdateCounts(Dc , Eproj , Q,�, V);
Ec = Enew ; Dc = Dnew ;

end;
P = QuantifyMeaningfulness(V , P);
Remove any pointi fromD for which v(i) = 0;
end;

return s points with highest value ofP(i);
end

Figure 2. The Nearest Neighbor Algorithm

Algorithm FindQueryCenteredProjections(Data Set:Dc,
Current Subspace:Ec, QueryPoint:q, Support:s)

begin
lp = Dimensionality ofEc; Ep = Ec;
while lp > 2 do
begin
Compute the value ofPdist(q; x;Ep) for each data pointx 2 Dc;
Find the nearests points toq with smallest value ofPdist(q; x;Ep)

and denote byN ;
Ep = QueryClusterSubspace(Np; lp); lp = maxf2; [lp=2]g;

end
Enew = Ec � Ep;
ComputeDnew as the projection of the set of points inDc ontoEnew ;
return (Ep , Enew ,Dnew);

end

Figure 3. Finding Query Centered Projections

Algorithm QueryClusterSubspace(Query Cluster: C,
Dimensionality of Subspace:lp);

begin
Let �Cij be covariance between dimensionsi andj using the points inC;
f We denote the corresponding covariance matrix by� = [�ij ] g;
Determine the eigenvectors of matrix� with eigenvalues�i;
Let 
i be the variance of entire data set along eigenvectori;
E = Set oflp eigenvectors with least value of�i=
i;
return (E);

end;

Figure 4. Determining Query Cluster Sub-
spaces

Algorithm DisplayVisualProfile(Data Set:Dc,
Projection Subspace:Eproj , Noise Threshold Density:� )

begin
for each data pointxi 2 Dc computeyi = Proj(xi;Eproj);
Y = fy1; : : : yNg;
Divide the 2-dimensional hyperplane forEproj into ap � p grid;
f We denote the coordinate points on the grid to befz1 : : : zp2g; g
UseY to compute kernel density�(zi) on thep2 grid points;
Display the density profile�(�) for the subspaceEproj ;
Superpose the density profile with a hyperplane at density value�;

end

Figure 5. Computing Visual Profiles

Algorithm AdjustDensitySeparator(Data Set:Dc,
Query Cluster Subspace:Eproj );

begin
interaction-flag=true;
while (interaction-flag==true)do
begin

User inputs new height of density separator�;
DisplayVisualProfile(Dc , Eproj , �);
User specifies interaction-flag;

end;
return (�);

end

Figure 6. Visually Separating Query Clusters

Algorithm UpdateCounts(Data Set:Dc, Query Cluster Subspace:Eproj ,
Query Point: Q, Separator Density:�, Counts:V);

begin
for each data pointxi 2 Dc do
begin

Compute density atxi in subspaceEproj ;
if xi is density-connected toQ and has density at least

� then add one to countv(i) of recordi;
end;
return (V);

end

Figure 7. Updating User Preference Counts

Algorithm QuantifyMeaningfulness(Counts:V ,
Meaningfulness Vector:P);

begin
f ni is the number of points picked by
user in projectioni, i 2 f1; : : : [d=2]g g
for j = 1 toN do
begin

E[Yj ] =
Pd=2

i=1
ni=N ; var(Yj ) =

Pd=2

i=1
(ni=N) � (1� ni=N);

p =
v(j)�E[Yj ]p

var(Yj)
; P(j) = P(j) + p;

end;
return (P);

end;

Figure 8. Quantification of Meaningfulness



of this support parameter can either be chosen by the user or
the system. In most real applications, users are not looking
for a single nearest neighbors, but a group of nearest neigh-
bors all of which can be considered to be close matches for
a target query. Therefore, the number of database points to
be retrieved by the user is thesupports used for the analy-
sis. We note that in order to perform a proper analysis of the
directions in the data of greatest discrimination, this support
should at least be equal to the dimensionalityd. Therefore,
in cases when the user-specified support is less thand, we
set it equal tod. We also note that in many cases, there may
be a certain number of points which are inherently more
closely related to the query as compared to the rest of the
database. This number may be different froms, and can-
not be known a-priori. In such cases, we will see that our
approach is able to provide some guidance in returning the
natural sets of points related to the query.

The overall framework of the algorithm is illustrated in
Figure 2. The system works in an iterative loop in which
a set ofd=2 mutually orthogonal projections are presented
to the user in a given iteration. Each of these projections is
carefully chosen such that it brings out the contrast between
the points closest to the query and the remaining points.
Once such a projection has been found, the user separates
out the points which belong to the query cluster. The se-
lection statistics of each data point are maintained in the set
of countsv(1) : : : v(N) which are initialized to zero, and
incremented whenever a set of points is picked. After each
iteration ofd=2 projections, the set of choices made by the
userv(�) are utilized determine his level of perception as to
the level of closeness of each data point to the query point
Q. This number lies in the range(0; 1), and is referred to
as the meaningfulness probability. This number defines the
user-reaction probability that the data point can be distin-
guished as significantly more closely related to the query
point as compared to the average record in the data. The
meaningfulness probability is calculated independently for
each iteration ofd=2 projections, and the values over mul-
tiple iterations are aggregated in order to determine a final
value. At the end of each iteration, those points are removed
from the data set which were not picked even once in any
projection. Thus, the user behavior in an iteration influences
the later profiles which are presented to him. The process
continues until it is determined that the current ordering of
meaningfulness probabilities reliably matches user’s intent
based on his reaction to all views which have been presented
to him so far. The details of the meaningfulness quantifica-
tion and termination criterion are described a later section.

Each iteration (henceforth referred to as a major itera-
tion) is divided into a set ofd=2 minor iterations, in each of
which a projection is determined and presented visually to
the user for his feedback. The set ofd=2 projections which
are determined in each major iteration are mutually orthog-

onal. This is because we would like to present the user with
several independent perspectives of the data, which together
span the full dimensional space. In order to achieve this, we
maintain a current data setDc, and a current subspaceEc.
Let us say that a total ofr < d=2 projections have already
been presented to the user in the current major iteration. Let
the subspaces corresponding to these projections be denoted
byEproj(1) : : : Eproj(r). Then, the current subspaceEc is the
d� 2 � r dimensional subspace which is orthogonal to all of
these projections, and is given byU �[ri=1Eproj(i). HereU
is the full dimensional space. The data setDc is the projec-
tion of the data setD onto the subspaceEc. Thus, each data
pointxi 2 D is represented by the data pointProj(xi; Ec)
in Dc. The next projectionEproj(r+1) is determined by us-
ing the data setDc.

In each minor iteration, we perform the following steps:
(1)Finding the most discriminatory projection which is cen-
tered around the query point. This discriminatory projec-
tion is picked out ofEc. (2) Interactive determination of the
query cluster by the user based on the visual separation of
the query point from the remaining data.(3) Updating the
counts for the points in the query cluster.
In the remaining part of this section, we will discuss each
of these steps in detail.

2.1. Finding Good Query Centered Projections

The overall process for determining a discriminatory
projection is illustrated in Figure 3. A discriminatory pro-
jection is defined as one which distinguishes the natural
lower dimensional clusters containing the query point from
the rest of the data. In order to find the most highly dis-
criminating projection, it may often be desirable to use
projections which are created by arbitrary sets of vectors
fe1 : : : elg which are not parallel to the original axis sys-
tem. In other cases, it may be desirable to pick projections
from the original set of attributes for reasons of better in-
terpretability. Our system can support both versions. In the
following discussion, we will first discuss the general case,
and then discuss the minor changes required for the partic-
ular case of axis-parallel projections.

In order to find the most discriminatory projections, we
compare the distribution of the nearests points, as com-
pared to the rest of the data set. Our goal is to pick a pro-
jection in which this small fraction of points shows a well
distinguished cluster around the query point. Since the cur-
rent data setDc is represented in the spaceEc, the projec-
tion subspace needs to be a subspace ofEc. The process of
finding the query cluster and query subspace is an iterative
one. We start with the subspaceEp = Ec from which the
2-dimensional projectionEproj needs to be found. In each
iteration, we reduce the dimensionality of the subspaceEp
in which there is a distinct clusterNp surrounding the query



point which is also well separated from the data. In the first
iteration, we start off withNp being the set of points which
are closest to the query pointQ in the subspaceEc. Then,
we find a subspaceEp in which this “query cluster”Np is
a tightly-knit cluster as compared to the variance of the re-
maining data set. In order to do so, we find the principle
component directions [17] of the set of points inNp. The
principle component directions are helpful in finding those
projections of the data in whichNp is tightly clustered. In
order to find the principle components, we determine the co-
variance matrix� of the set of points inNp. Since the data
points inNp have dimensionalityjEcj, the covariance ma-
trix is an jEcj � jEcj matrix in which the entry(i; j) denotes
the covariance between dimensionsi and j. This covari-
ance matrix is positive semi-definite and can be expressed
as� = P �D �P T , whereD is a diagonal matrix containing
the eigenvalues, and the columns ofP contain the eigenvec-
tors which form an orthonormal axis-system. These eigen-
vectors are the principal components and represent the di-
rections in the data along which the second order covari-
ances of the points inNp are zero. The eigenvalue�i along
the directioni denotes the variance of the set of points in
Np along the directioni. Therefore, if
i be the variance of
the entire data setDc along the eigenvectori, then the ratio
�i=
i denotes the ratio of the variances between the query
cluster and remaining data when projected onto the eigen-
vectori. Therefore, by picking thelp directions with the
smallest variance ratio, we are able to determine the direc-
tions in which the query cluster is well distinguished from
the rest of the data. The procedure for determining the query
cluster subspace is illustrated in Figure 4.

Once the query subspace has been determined, then it
will be used in the next iteration in order to determine a new
query clusterNp. Specifically, the set of pointsNp in the
next iteration is determined by finding those points which
are closest to the query point when projected into the newly
found subspaceEp. The value of the dimensionality of the
subspaceEp is denoted bylp and is reduced by factor of 2 in
each iteration. The process continues till the value oflp is 2.
The reason for the iterative methodology used by the algo-
rithm is that bothNp andEp are dependent on one another
and the gradual reduction in the dimensionality ensures an
effective refining process in which we find query clusterNp

and a corresponding subspaceEproj in which this cluster is
well distinguished from the rest of the data. When it is de-
sirable to use clusters only from axis parallel projections,
then a minor modification needs to the query subspace de-
termination subroutine of Figure 4. Here instead of using
the principal components of the set of data points inNp, we
use the original set of axis directions.

Once the projection subspaceEp is determined, we com-
pute the new subspace and data setEnew andDnew which
will be used in order to determine the projection in the

next iteration. We wish to ensure that later iterations find
only subspaces which are orthogonal to those found so far.
Therefore,Enew is chosen as the complementary subspace
to Ep, assuming thatEc is the entire subspace. The data
setDc is also projected onto this new subspace in order to
createDnew.

2.2. Interactive Separation of Query Cluster

Once a discriminatory projection has been determined,
human interaction is used in order to separate the query
cluster from the remaining data points. In order to maxi-
mize the use of human intuition, we use a visual profile of
the probabilistic data distribution. To this effect, we use ker-
nel density estimation techniques [26]. In this technique the
probability density at a given point is estimated as the sum
of the smoothed values of kernel functionsKh(�) associated
with each point in the data set. Each kernel function is asso-
ciated with a kernel widthh which determines the level of
smoothing created by the function. The kernel estimation
f(x) based onN data pointsx1 : : : xN and kernel function
Kh(�) is defined as follows:

f(x) = (1=N) �
NX
i=1

Kh(x� xi) (1)

Thus, each discrete pointxi in the data set is replaced by
a continuous functionKh(�) which peaks atxi and has a
variance which is determined by the smoothing parameter
h. An example of such a distribution would be a gaussian
kernel with widthh.

Kh(x� xi) = (1=
p
2� � h) � e�(x�xi)

2=2h2 (2)

The error in density estimation is determined by the band-
width h. One well known approximation formula [26] for
determining the bandwidth ish = 1:06 � � � N�1=5 for a
data set withN points and standard deviation�.

In order to actually construct the density profiles, we es-
timate the probability density of the data at a set ofp � p
grid-points, which are used to create surface plots. Exam-
ples of two such density profiles are illustrated in Figures
9(a) and 9(b). Note that in the case of Figure 9(a) there is
a sharp and well separated peak containing the query point.
This corresponds to the highly dense cluster near the query
point. This behavior is typical of a well chosen projection
which discriminates the data patterns near the query point
well. A second way of providing the user with a visual un-
derstanding of the data is to provide alateral density plot,
in which we have a scatter plot of fictitious points which are
generated in proportion to their density. We note that all of
Figures 1(a), 1(b), and 1(c) are lateral scatter plots of 500
points generated from synthetic data sets.
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(a) A Good Query Centered Projection (b) A Poor Query Centered Projection

Figure 9. Illustration of the Qulaity of Projections

Once the user is provided with this visual profile then it
is possible for him to separate the query cluster from the
remaining points by using either of the two visual profiles.
A convenient way of separating the query cluster visually
is by using density separators of a certain height. In this
technique the user specifies the density� which is the noise
threshold. This threshold is used in order to determine the
set of points which are the user-defined nearest neighbors in
that projection by using the concept of density connectivity.
The concept of density connectivity is discussed in [12, 16],
and is defined as follows:

Definition 2.1 A data pointx is density connected to the
query pointQ at noise threshold�, if there exists as path
P from x toQ such that each point onP has density larger
than the noise threshold�.

Thus, for a given noise threshold� and query pointQ, it
is possible to uniquely determine the set of points in the
database which are density connected to the query point.
For example, in Figures 9(a), we have shown the density
profile of a data set along with adensity separator planes
which separates the data out into different clusters. We
note that the contour of intersection of the density separator
plane with the density profile of the data is a set of closed
regions. Each such closed region corresponds to the con-
tour of the cluster in the projection. However, only one of
these contours is relevant; the one that contains the query
pointQ. All data points contained within this contour are
relevant answers to the query point for this particular pro-
jection. We shall henceforth refer to the contour containing
the query pointQ at noise threshold� as the(�;Q)-contour.
Such a contour is not restricted to be of any particular shape,
and is dependent only upon the distribution of the points in
the data. For example, in Figure 9(a), there are two den-
sity connected regions above the noise threshold�. All the

data points which lie in the same region as the query clus-
ter are the set of preferences for that particular projection.
At a noise threshold of� = 20, a distinct cluster of points
containing the query point are created; by reducing� fur-
ther, more and more points from the fringes of the cluster
are included. Here, the intuition of a user is very useful,
since an accurate delineation of the related data pattern is
often not possible by fully automated methods. We also
note that if the query point had belonged to one of the other
two peaks, then for different values of the noise threshold,
different number of peaks would have been included in the
query cluster. By using� = 0, all points are included in
the query cluster. We refer to such views created by this
process asdensity separated views, since they clearly show
the various clusters in the data based on the density profile
and the noise threshold supplied by the user. We note that
it is not necessary for the user to supply the noise threshold
after just one view of the data. Rather, the user can look
at density separated views for many different values of the
noise threshold� in order to interactively converge at the
most intuitively appropriate value.

As discussed in an earlier section, not all views are
equally informative in understanding the relationship of the
data to the query point. For example, the projection for Fig-
ure 9(a) is significantly better than the similar profile of Fig-
ure 9(b), since in the former case the query point is located
on a peak of the density profile, whereas in the latter case
the query point is in a sparse region of the data. In such
cases, it is difficult to find a coherent cluster of points in
the projection, which are related to the query point. The
user can choose to ignore this projection by specifying an
arbitrarily high value of the noise threshold�.

An alternative way of separating the query cluster is by
using the lateral density plot in which the user visually spec-
ifies the separating hyperplanes (lines) in order to divide the



space into a set of polygonal regions. The set of points in
the same polygonal region as the query point is the user re-
sponse to the query for that particular projection. However,
using a density separator tends to be a more attractive op-
tion, since it can separate out clusters of arbitrary shapes
with the specification of a single noise threshold. The al-
gorithms for displaying visual profiles and performing user
interaction are illustrated in Figures 5 and 6 respectively.

2.3. Updating the Preference Counts

After each minor iteration, we need to update the prefer-
ence counts for the points which have been determined to lie
in the query cluster. An important problem is to discover all
the points which are density connected to the query point,
without having to calculate the density value at each indi-
vidual data point. It is possible to use the density values
calculated across thep � p grid structure in order to approx-
imate the points which are density connected to the query
point. The first step is to find all the elementary rectan-
gles in the grid structure which approximately lie within the
(�;Q)-contour. We shall denote this set of elementary rect-
angles byR(�;Q). We defineR(�;Q) as follows:

Definition 2.2 An elementary rectangleL is defined to be
a member ofR(�;Q), if and only if there exists some se-
quence of adjacent rectanglesL = L0;L1 : : :Lk such that
(i) Lk containsQ, and (ii) at least three corners of each
rectangleLi have density above the noise threshold�.

Two rectangles are said to be adjacent, when they share a
common side. In effect, the setR(�;Q) is the set of high
density rectangles which are connected to the rectangle con-
tainingQ by some adjacent sequence of high-density rect-
angles. In order to findR(�;Q), we use a simple graph
search algorithm in which we start at the rectangle contain-
ingQ and keep searching adjacent rectangles until we have
determined all rectangles which lie inR(�;Q).

Once the points inside all these rectangles have been de-
termined, we increment their counts by one unit. It is also
possible to weight different query clusters by importance.
Specifically, the weight for each point may be increased by
wi corresponding to the projectioni. This procedure is il-
lustrated in Figure 7. In this paper, we always assume that
wi = 1; therefore each query cluster is considered equally
important. It is important to understand that since the user
has the ability to pick only those projections in which there
are meaningful data patterns surrounding the query point,
the preference countsv(�) will not be affected by those
noisy combinations of dimensions which are not useful for
the nearest neighbor search process. At the end of each ma-
jor iteration, the countv(i) for each pointi quantified into a
meaningfulness value, and is used in order to update a corre-
sponding probability value for that data point. This process

is outlined in Figure 8, and is described in detail in the next
section.

2.4. Iterative User Preference Quantification

The iterative process discussed above continues until a
sufficient amount of feedback has been calculated to find
and quantify the meaningfulness of the nearest neighbors.
In order to do so, we convert the preference countsv(�) of
the user intomeaningfulness probabilitiesin each major it-
eration. These probabilities quantify the level of coherence
in the behavior of the user in classifying a certain point into
the query cluster across different projections. The varia-
tion in these probabilities from iteration to iteration is used
in order to decide whether the process should terminate.
The process for conversion of the user preference counts
in each major iteration into a probability vectorP(�) and
subsequent termination is discussed in the next section.

3. User Quantification of Meaningfulness

If the user coherently picks similar points across the dif-
ferent orthogonal projections in a given major iteration, then
such behavior can be used to quantify the meaningfulness of
the technique. After each major iteration, the set of prefer-
ences provided by the userv(�) are used to update a mean-
ingfulness probability vectorP(�). This procedure is illus-
trated in Figure 8. First, we will analyze the coherence of
a set of reactions by the user in a sequence ofd=2 projec-
tions. LetXij be a random variable which denotes whether
(Xij = 1) or not (Xij = 0) the user picks the pointj in
projectioni. We note thatXij is a bernoulli random vari-
able, and ifni be the number of points that a user picks in
projectioni, then the probability thatXij = 1 for the data
point j is given byni=N . Let wi be the weight for each
preference count in projectioni. Then, the random variable
Yj indicating the total user preference for pointj is given
by:

Yj =

d=2X
i=1

wi �Xij (3)

The corresponding expected valueE[Yj ] is given by:

E[Yj ] =
NX
i=1

wi � ni=N (4)

The value ofE[Yj ] is the same for every data pointj, and is
simply the sum of the (weighted) fractions of points picked
by the user in the different projections. Since this sys-
tem tries to detect the relationships across preference pat-
terns in different projections (because of correlations among
the different attributes), it is instructive to look at the case
when the data is completely uncorrelated. If such were



the case, then the preference values of the users in the dif-
ferent projections in an iteration would be uncorrelated to
one another. This would mean that the random variables
X1j : : : Xd=2;j are also independent. Consequently, we can
compute the variance ofYj as the sum of the variances of
the individual componentswi �Xij . SinceXij is a bernoulli
random variable with probabilityni=N , we have:

var(Yj) =

d=2X
i=1

w2
i � (ni=N) � (1� ni=N) (5)

Again, var(Yj) is independent ofj. Let v(j) be the true
number of preference counts that a user has given to a data
pointxj . When the data is distributed in a noisy way, then
the preference pattern across different projections will not
show any meaningful consistency. Therefore, the value of
v(j) will not vary significantly fromE[Yj ]. In order to
quantify this notion, we define themeaningfulness coeffi-
cientM(j) for the pointxj as follows:

M(j) = (v(j) �E[Yj ])=
q
var(Yj) (6)

The meaningfulness coefficient is a numerical estimate of
the level of confidence with which the nearest neighbor
found is closer to the target than the average. Note that
when the value ofd is high, the distribution ofM(j) is ap-
proximately normal. Let�(�) be the cumulative distribution
of the normal distribution with zero mean and unit variance.
In such a case, we can compute themeaningfulness proba-
bility P(j) as follows:

P(j) = maxf2 ��(M(j))� 1; 0g (7)

This value is equal to the probability that the preference
count for data pointxj is larger than the expected prefer-
ence countE[Yj ] purely by chance. Note that when the
value ofxj is smaller thanE[Y ], this value is equal to zero.
When the user preference patterns shows considerable con-
sistency across different projections, we expectP(j) to be
almost one for some of the points, whereas for the other
points, the value ofP(j) is significantly less than one. This
is a very desirable situation, since some of the data points
can be clearly distinguished as the nearest neighbors.

In a single iteration, we obtain the user preference pat-
terns from a set ofd=2 mutually orthogonal projections.
The above analysis for calculation ofP(j) is based on such
an iteration of mutually orthogonal projections. However,
as illustrated in Figure 2, the process is repeated for multi-
ple iterations in order to obtain feedback for many sets of
d=2 projections. In such a case, the overall meaningfulness
is calculated as the arithmetic average over multiple itera-
tions. Let us say that the values ofP(j) for data pointxj
for each of the� iterations are given byp1j ; : : : p

�
j . Then,

the overall meaningfulness probability for the data pointj

Data Set Precision Recall

Synthetic 1 87% 98%
Synthetic 2 91% 96%

Table 1. Accuracy on Synthetic Data Sets

over multiple iterations is given by the following arithmetic
average:

P(j) =
�X
i=1

(pij)=� (8)

We note that the values of the meaningfulness probability
vectorP(�) in two successive iterations will be highly cor-
related with one another and the level of this correlation will
increase with the value of�. Therefore we compare the set
of s points with highest value ofP(�) in the iteration�� 1
and�. When the percentage of common points between
these two iterations is larger than a certain thresholdt, then
we terminate. At the end of the procedure, we return the
s data points which have the highest value ofP(j). Note
that in Figure 8 for each data pointj we maintain the value
of
P�

i=1(p
i
j) as opposed to the average. Therefore, the true

value of the meaningfulness probability may be obtained by
dividing this value by�.

4. Empirical Results

In this section, we will discuss the results obtained by us-
ing our user-adaptable system for a variety of real and syn-
thetic data sets. For the case of synthetic data sets, we show
that the nearest neighbors indeed lie within the natural pro-
jected clusters which are created for testing purposes. We
also show some interesting examples of high dimensional
data in which the data is truly distributed in a noisy and
meaningless way. In these cases, we show that the tech-
nique is effectively able to predict the meaninglessness of
applying a nearest neighbor search process.

4.1. Synthetic Data Sets

We generated a set of sparse synthetic data sets in high
dimensionality, such that projected clusters were embedded
in lower dimensional subspaces. We generated two data
sets withN = 5000 points using this technique. We shall
refer to these data sets as Case 1 and Case 2 respectively
with the same parameters used in [4], except for the number
of points. These data sets contain 6-dimensional projected
clusters embedded in 20 dimensional data.

For the purpose of testing, we adopted the policy of
isolating a cluster with the query point containing about
0:5�5% of the data. Correspondingly, the value of the sup-
port used in order to determine a discriminatory projection



−100 −50 0 50 100 150 200

−50
0

50
100

150
0

50

100

150

200

250

300

350

400

X

* Query Point

Y

R
el

at
iv

e 
D

en
si

ty

Figure 10. Density Profile (Syn. 1: Early Minor
Iteration)
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Figure 11. Density Profile (Syn. 1: Late Minor
Iteration)
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Figure 12. Density Profile (Uniform)
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Figure 13. Density Profile (Ionosphere)

was set at0:5%. However, in many cases, when the visual
profile was constructed, the actual cluster was often either
much smaller or larger than this threshold. In such cases, the
interactive query cluster separation process was able to cor-
rect for any discrepancies. Because of the careful method
in which the subspace is determined, we found that in most
cases a clear cluster could be found near the query point.
In each major iteration, the visual profiles obtained during
the first few minor iterations were the most discriminatory.
For example, a visual profile obtained during an early (first)
minor iteration for the first case is illustrated in Figure 10,
whereas the visual profile in the last minor iteration is il-
lustrated in Figure 11. It is clear that the former profile is
one in which the query cluster can be more clearly distin-
guished from the remaining data points. This is because in
the first few minor iterations, the subspace determination
subroutine has considerable flexibility in choosing a sub-
space which results in the best query centered projection.
This does not continue to be the case in the last iteration
in which the algorithm is forced to pick from the subspace
which is complementary to the union of all the subspaces
already chosen.This gradation in the quality of the pro-
jections has an important influence on the nearest neighbor
search process.Since the user can choose to discard the
projections determined in the last few minor iterations, only
the nicely coherent behavior of the data is reflected in the
user preference countsv(�). Thus, the graded quality of
the projections ensures that most of the noise in the data is
pushed into the last few projections, and the user is able to
use his intuition in order to easily pick out the clearly co-
herent projections (and data patterns) in the first few minor
iterations. In other words, at the end of each major iter-
ation, the user preference counts implicitly define a rele-
vance value for each data point in which the noise/sparsity
effects of high dimensionality have been filtered with the
use of human intuition. However, this intuition could not



have been harnessed without the use of a carefully graded
subspace determination process. This interdependence be-
tween the user and the computer reflects the nature of the
interaction between the two entities. The visual profile for
the first and last minor iterations in the second data set were
similar to those obtained in the first. In each case, we deter-
mined the meaningfulness probability of each data point at
the termination of the process. We sorted the data in order of
meaningfulness probability and found that a few of the data
points had meaningfulness probability in the range of0:9 to
1, after which there was a steep drop. This steep drop cor-
responds to the distinct projected cluster to which the query
point belongs. By using the threshold which occurs just be-
fore this steep drop, it is possible to isolate the natural set
of points related to the query. Note that the corresponding
cardinality may be quite different from the user-specified
support. In this case, the corresponding value was0:9. This
corresponds to about 520 neighbors in Case 1, which had a
meaningfulness probability higher than this threshold. This
also compares well with the cardinality (562) of the pro-
jected cluster containing the query point. Of the 520 neigh-
bors recovered in case 1, 508 belonged to the same cluster
as the query point. In order to illustrate the effectiveness of
the technique, we have illustrated some summary results for
the case 1 and case 2 data sets in Table 1 over a set of 10
examples on which we ran the method. We have illustrated
the precision and recall of the two techniques in the Table
using the natural number of nearest neighbors found by the
thresholding technique. Typically, the natural number of
nearest neighbors are often a slight overestimate (about5
to 15% over the correct value), and hence the recall values
are higher than the precision. The recall value indicates that
very few of the true nearest neighbors are actually missed.
It is clear that in each case, since both the precision and re-
call are so high, the nearest neighbor search technique was
not only accurate, but was able to determine the “natural”
number of nearest neighbors effectively. This is very useful
for nearest neighbor applications in which finding a natural
number of nearest neighbors is as important as the quality
of the records returned.

4.2. Results on Poorly Behaved Data

The meaningfulness issue of the nearest neighbor prob-
lem in high dimensionality critically depends upon the fact
that often the local implicit dimensionality of the data is
significantly lower than the full dimensionality [1, 2, 4, 11].
The technique discussed in this paper exploits this fact in
conjunction with the user interaction. However, for some
data sets even the local implicit dimensionality is high. An
example of such a case is uniformly distributed data. In
such a situation, the problem of nearest neighbor search is
indeed not very meaningful in high dimensionality. There-

Data Set Accuracy Accuracy
(Dimensionality) (L2) (Interactive)

Ionosphere(34) 71% 86%
Segmentation(19) 61% 83%

Table 2. Accuracy on Real Data Sets

fore, it is interesting to test what happens in such a system
for uniformly distributed data.

We tested a case withN = 5000 uniformly distributed
points ind = 20 dimensions. In this case, we found that it
was difficult to find views in which the points were well dis-
criminated from one another. A typical example of a view
obtained from such a case is illustrated in Figure 12. We
note that the discrimination of the the data surrounding the
query cluster is very poor in such a case. This is valuable
information for a user, since it tends to indicate the poor
selectivity of the data even in carefully chosen projections.
Therefore, a user can infer that the data is not very prone
to meaningful nearest neighbor search in high dimensional
space. Even further evidence may be obtained from the dis-
tribution of the meaningfulness probability values. Even
though it was difficult to pick out the query cluster because
of the poor discrimination behavior, we were able to find a
few query-clusters in some of the projections because of lo-
cal variations in density. When the process was completed,
we found that there was very little coherence in the prefer-
ence counts across the different views, and they got evenly
distributed among the different data points. In this case, the
meaningfulness values do not show the kind of steep drop
which is visible in the synthetic data sets. Consequently, it
is difficult to isolate a well defined query cluster based on a
similar threshold. The conclusion from these numerous ob-
servations is that in those high dimensional cases in which
meaningful nearest neighbors do not exist, the technique is
able discover this valuable information.

4.3. Results on Real Data

We also tested the results on a number of real data sets
obtained from the UCI machine learning1 repository. An
example of a visual profile from a query-centered projec-
tion obtained from the ionosphere data set is illustrated in
Figures 13. The meaningfulness probability values also
showed a similar steep drop as in the case of the clustered
synthetic data. Thus, both the visual profiles and the mean-
ingfulness behavior for this real data set is similar to the
clustered synthetic data set as opposed to the uniformly
distributed case. We tested the results on the ionosphere
and segmentation data sets from the UCI machine learning

1http://www.cs.uci.edu/~mlearn.



repository. We have illustrated the nearest neighbor clas-
sification accuracy for using 10 query points (and as many
nearest neighbors as determined by the natural query clus-
ter size) for a number of data sets. The results are illustrated
in Table 2. As evident from Table 2, it is clear that the in-
teractive nearest neighbor process was more effective than
the full dimensional method. In the particular case of the
segmentation data set, the improvement was32% over the
full dimensional method, which was quite significant.

5. Conclusions and Summary

In this paper, we discussed a user-adaptive method
for meaningful high dimensional similarity search. High
dimensional data has always been a challenge to simi-
larity search methods from the meaningfulness perspec-
tive because of its peculiar property of getting distributed
sparsely throughout the data space. Therefore, we propose
an interactive method to present a user with meaningful
query-centered projections which can distinguish the near-
est points to the query from the remaining points. The user
is provided with a visual perspective which he can use in or-
der to separate out these points. Such choices made by the
user over multiple iterations are used to quantify the mean-
ingfulness of the discovered nearest neighbors. In cases
when the nearest neighbor is truly not meaningful, our sys-
tem is able to detect and report the poor behavior of the
data. Thus, our system provides a unique understanding
by either solving or diagnosing the poor behavior of high
dimensional nearest neighbor search from the user perspec-
tive.
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