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Abstract media databases, and data mining applications such as fraud
detection and information retrieval. Typical domains such
Nearest Neighbor search is an important and widely as data mining contain applications in which the dimen-
used problem in a number of important application do- sionality of the representation is very high. Consequently
mains. In many of these domains, the dimensionality of thea wide variety of access methods and data structures have
data representation is often very high. Recent theoretical been proposed for high dimensional nearest neighbor search
results have shown that the concept of proximity or nearest[9, 11, 18, 21, 27].
neighbors may not be very meaningful for the high dimen- It has been questioned in recent theoretical work [10] as
sional case. Therefore, it is often a complex problem to find to whether the nearest neighbor problem is meaningful for
good quality nearest neighbors in such data sets. Further- the high dimensional case. These results have characterized
more, it is also difficult to judge the value and relevance the data distributions and distance functions for which all
of the returned results. In fact, it is hard for any fully au- pairs of points are almost equidistant from one another in
tomated system to satisfy a user about the quality of thehigh dimensional space and have illustrated the validity of
nearest neighbors found unless he is directly involved in thethe results on a number of real work loads. We note that
process. This is especially the case for high dimensionalthese results do not necessarily claim that nearest neighbor
data in which the meaningfulness of the nearest neighborsis not meaningful in every high dimensional case, but that
found is questionable. In this paper, we address the com-one must be careful in interpreting the significance of the
plex problem of high dimensional nearest neighbor search results. For example, a lack obntrastin the distribution
from the user perspective by designing a system which usesf distances implies that a slight relative perturbation of the
effective cooperation between the human and the computerquery point away from the nearest neighbor could change
The system provides the user with visual representations ofit into farthest neighbor and vice versa. In such cases, a
carefully chosen subspaces of the data in order to repeat-nearest neighbor query is said tomestable Furthermore,
edly elicit his preferences about the data patterns which are the use of different distance metrics can result in widely
most closely related to the query point. These preferencesvarying ordering of distances of points from the target for
are used in order to determine and quantify the meaningful- a given query. This leads to questions on whether a user
ness of the nearest neighbors. Our system is not only able teshould consider such results meaningful.
find and quantify the meaningfulness of the nearest neigh- Recent work [15] has shown that by finding discrimi-
bors, but is also able to diagnose situations in which the natory projections in the neighborhood of a query point, it
nearest neighbors found are truly not meaningful. is possible to improve the quality of the nearest neighbors.
This approach uses the fact that even though high dimen-
sional data is sparse in full dimensionality, certain projec-
tions of the space may contain meaningful patterns. These
meaningful patterns are more closely related to the query
point than the ones determined by using the full dimension-
The nearest neighbor search problem is defined as fol-ality. Related techniques [3, 6] design distance functions in
lows: For a given query poir@, find the data points which  a data driven manner in order to find the most meaningful
are closest to it based on a pre-defined distance functionnearest neighbors. In these techniques, the statistical prop-
Examples of application domains in which this problem erties of high dimensional feature vectors are used in order
arises are similarity search in geometric databases, multi-to obtain meaningful measures of the distances between the
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points. This is often a difficult task, since the most effective to repeatedly elicit his preferences about the relationships
method of measuring distances may vary considerably withbetween the data patterns and the query point. Specifically,
the data set and application domain. these projections are chosen in such a way that the natural

Since the issue of meaningfulness is connected to thedata patterns containing the query point can be visually dis-
instability in measurement of distances, a natural guiding tinguished easily. Recent work [4, 7, 15] has shown that
principie in these methods iS to find data projections and even though it is difficult to define clusters for Sparse h|gh
distance functions in which the distances of the nearestdimensional data, it is often possible to find clusters in cer-
neighbors from the query point have high contrast from tain lower dimensional projections. Many of these clusters
the rest of the data. It has been shown in [15] that suchmMay contain the query point. We refer to such projections
a strategy leads to improvement in search quality. It has@squery centered projectiorsnd the corresponding clus-
also been independently confirmed for the multimedia do- ters asjuery clustersThese projections may exist either in
main thatdistinctiveness sensitiveearest neighbor search the original sets of dimensions or in an arbitrarily oriented
[19] leads to higher quality of retrieval. At the same time, Subspace of the data. For each such projection determined,
it is quite difficult for a fully automated system to always the user is provided with the ability to visually separate out
find nearest neighbors which would be considered valuablethe data patterns which are most closely related to the query
and meaningful by the user. Furthermore, even if the neigh-Point. In a given view, a user may choose to pick some or
bors found are valuable, a user would have little idea aboutn© points depending upon the nature and distribution of the
the quality of the neighbors found without being actively data. At the end of the process, these reactions are utilized
involved in the process. The fully automated systems dis-in order to determine and quantify the meaningfulness of
cussed in [6, 15] are incomplete in their characterization the nearest neighbors found from tirger perspective
of the data in terms of a single best projection or distance  This paper is organized as follows. The remainder of
function. Different projections can provide different views this Section discusses issues of nearest neighbor search in
of the data, all of which may be informative to a human in high dimensional data, and formalizes the contributions of

understanding the relationship between the query point andthe paper. In section 2, we discuss the interactive system
the rest of the data. for nearest neighbor search by data exploration. In section

In recent years, the importance of incorporating hu- 3, we discuss the quantification of nearest neighbor mean-

man interaction into several data mining problems has beedndfulness. The empirical section is discussed in section 4,
well understood and appreciated [5, 8, 14, 16, 20, 24 28]_whereas section 5 contains the conclusions and summary.

For particular domains of data such as multimedia, im- _ _ _
age databases and information retrieval, application-specificl.1. On the Nature of High Dimensional Data
methods have been devised [13, 22, 23, 25, 28] in order to

incorporate user feedback into the retrieval process. The Recent theoretical results [10] have shown that in high
importance of human interaction in the nearest neighbor dimensional space, the nearest and furthest neighbors are
search process arises from the ability of a user to make in-of the same relative distance to the query point for a wide
tuitive judgements that are outside the capabilities of fully yariety of data distributions and distance functions. How-
automated systems. Simply speaking, a computer cannogver, it has also been shown in recent work [4, 7, 15] that
match the visual insight, understanding and intuition of a even though meaningful contrasts cannot be determined in
human in distinguishing useful patterns in the data. On thethe full dimensional space, it is often possible to find lower
other hand, a human needs computational support in ordegimensional projections of the data in which tight clusters
to determine effective summaries of the data which can beof points exist. In this Spirit’ the projected nearest neigh_
used to derive this intuition and Understanding. Therefore, bor technique [15] finds a Singie Optimai projection of the
a natural strategy would be to devise a system which is cenata in which the closest neighbors are determined in an
tered around a human-computer interactive process. In suchyytomated way using the euclidean metric. In reality, no
a system, the work of finding nearest neighbors can be di-single projection provides a complete idea of the distribu-
vided between the human and the computer in such a waytion of the data in the locality of the query point. The full
that each ent|ty pel’forms the task that it is most well suited picture may be obtained by using muitipie projectionS, each
to. The active participation of the user has the additional of which provides the user with different insights about the
advantage that he has a better understanding of the qualityistribution of the points. For example, Figure 1(a) illus-
of the nearest neighbors found. trates a projection in which there is a cluster near the query
In this paper, we will describe a human-computer inter- point which is well separated from the other data points.
active system for high-dimensional nearest neighbor searchSuch a projection is very useful, since it provides a distinct
In this method, the distribution of the data in carefully cho- set of points which can be properly distinguished from the
sen projections are presented visually to the user in orderrest of the data. Figures 1(b) and 1(c) are examples of pro-



Figure 1. (a) Good Query Centered Projection (b) Poor Query Centered Projection (Query Point in
Sparse Region) (c) Noisy projection

jections in which the closest records to the query point are determination processo that most of the data discrimina-
not well distinguished from the rest of the data. For exam- tion is hidden in a small subset of orthogonal projections.
ple, in the case of Figure 1(b), the query point is located The visual profiles of these projections is used to provide
in a region which is sparsely populated; this is not a good feedback. The repeated feedback of the user over multiple
guery centered projection, since one cannot identify a dis-iterations is used to determine a set of neighbors which are
tinct subset of points in proximity to the query. In the case statistically significant and meaningful. In the event that
of Figure 1(c), the projection is a poor one irrespective of the data does not have any consistently interesting patterns
the nature of the query point, since the points are uniformly in different lower dimensional projections, then this is de-
distributed and do not separate out well into clusters. It is tected by the meaningfulness quantification method and re-
often a subjective issue to determine whether or not a givenported. Thus, an additional advantage of this approach is
projection distinguishes the query cluster well. There may that itis also able to detect and report cases when the data is
also be many cases in which query points may be located atruly not amenable to meaningful nearest neighbor search.
the fringes of a cluster, and it may be difficult to determine
the query cluster in an automated way. In all such cases, it1.3. Notations and Terminology
becomes important to use the visual insight and feedback of
a user in diagnosing the query clusters. We assume that the total number of point&Visand the

We note that it is possible that a good query-centereddimensionality of the data spaceds The query point is
projection may be difficult to find in a combination of the denoted byQ. The data set is denoted Byand the univer-
original set of attributes. In such cases, it may be necessaral d-dimensional space k. Let £ be thel-dimensional
to determine arbitrary projections created by vectors which subspace defined by a set bf< d orthogonal vectors
are not parallel to the original axis directions. On the other {e;...;}. In the general case, the vect@s. .. e may
hand, the use of axis-parallel projections has the advantagée arbitrary directions in the space which are not parallel
of greater interpretability to the user. In this paper, we pro- to the axes directions representing the attributes. The pro-
pose methods for determining projections of both kinds i.e. jection of a poinfj onto the subspac2is thel-dimensional

axis-parallel and arbitrary projections. point(y-e1 . ..y-e) and is denoted b¥roj(y, £). The pro-
jected distance between two poifsandz; in subspacé€
1.2. Contributions of this paper is denoted byPdist(z1, 2, ) and is equal to the distance

betweenProj(Z1, £) and Proj(Tz, £) in subspacg.

This paper discusses a interactive system between the ) )
user and the computer for high dimensional nearest neigh2. The Interactive Nearest Neighbor System
bor search. The advantage behind such a system is its ability
to share the best skills of a human and a computer in find-  Since the system works by determining the distribution
ing the most meaningful nearest neighbors. Effective tech-of the nearest records to the query points in a given pro-
nigues are proposed for choosing projections of the data injection, we introduce a parameter called thgport This
which the natural data patterns containing the query pointis the number of database points that are candidates for the
are well distinguished from the entire data set. An inter- nearest neighbor in a given projection, and whose distribu-
esting method discussed in this paper graded subspace tion relative to the rest of the data set is analyzed. The value



Algorithm InteractiveNNSearch(Data SeR,
QueryPoint: @, Support:s);
begin
for each data pointdo setP (i) = 0;
{P ={P(1)...P(N)} denotes the probability of each of
the IV points in the database being a meaningful nearest neighbor;
while not(terminationcriterion) do
begin
Set count(¢) if each data point to zero;
D. = D; & = U; { U is universal subspace
{ User counts ar® = {v(1)...v(N)} };
fori=1tod/2do
begin
(EprojsEnew s Dnew) = FindQueryCenteredProjectiol.., &, Q, s);
DisplayVisualProfileD¢, Eproj, 00);
¢ = AdjustDensitySeparatdc, Eproj, P);
V = UpdateCountsRc, £,r05, Q, ¢, V);
Ec = Enew: De = Drew;
end;
P = QuantifyMeaningfulnes¥|, P);
Remove any point from D for whichv(z) = 0;
end;
return s points with highest value op (z);
end

Figure 2. The Nearest Neighbor Algorithm

Algorithm FindQueryCenteredProjections(Data Séx,
Current Subspacef., QueryPoint:q, Support:s)
begin
lp = Dimensionality of;; £, = &c;
while I, > 2 do
begin
Compute the value aPdist(q, z, Ep) for each data point € D;
Find the nearest points tog with smallest value ofdist(q, z, Ep)
and denote by;
Ep = QueryCluster Subspace(Np,lp); lp, = max{2, [l,/2]};
end
gnew = gc - gp;
ComputeDy,e., as the projection of the set of pointsi. onto&yew;
return (£p, Enew, Pnew);
end

Figure 3. Finding Query Centered Projections

Algorithm QueryClusterSubspace(Query Cluster: C,
Dimensionality of Subspacé;);

begin

Let 6% be covariance between dimensiarend; using the points irT;
{ We denote the corresponding covariance matrixoy= [d;;] };
Determine the eigenvectors of matidxwith eigenvalues\;;

Let~; be the variance of entire data set along eigenvegtor

& = Set ofl, eigenvectors with least value af /v;;

return (£);

end;

Figure 4. Determining Query Cluster Sub-
spaces

Algorithm DisplayVisualProfile(Data SetD.,
Projection Subspacef,,,,;, Noise Threshold Densityp )
begin
for each data point; € D. computey; = Proj(z:,Eproj );
Y={yi,...yn}i
Divide the 2-dimensional hyperplane 18f,,; into ap * p grid;
{ We denote the coordinate points on the grid to{be.. . . z,,2 }; }
Use) to compute kernel density(z;) on thep? grid points;
Display the density profile(-) for the subspacé,.;;
Superpose the density profile with a hyperplane at density vglue
end

Figure 5. Computing Visual Profiles

Algorithm AdjustDensitySeparator(Data Sé®.,
Query Cluster Subspace€,o;);
begin
interaction-flag=true;
while (interaction-flag==truejlo
begin
User inputs new height of density separator
DisplayVisualProfileDc, Eproj, ¢);
User specifies interaction-flag;
end;
return (¢);
end

Figure 6. Visually Separating Query Clusters

Algorithm UpdateCounts(Data Sé®.., Query Cluster Subspacé,,,.;,
Query Point: Q, Separator Densitys, Counts:V);
begin
for each data point; € D, do
begin
Compute density at; in subspace,,.;;
if x; is density-connected %@ and has density at least
¢ then add one to count(:) of records;
end;
return (V);
end

Figure 7. Updating User Preference Counts

Algorithm QuantifyMeaningfulness(Count¥’,
Meaningfulness VectorP);
begin
{ n; is the number of points picked by
user in projectiort, i € {1,...[d/2]} }
for j = 1to N do
begin
Y] = 3y mi/Nivar(¥5) = 320 (g /N) - (1= i/ N);
p="U L PG) = PG) 4
end,
return (P);
end,

Figure 8. Quantification of Meaningfulness



of this support parameter can either be chosen by the user oonal. This is because we would like to present the user with
the system. In most real applications, users are not lookingseveral independent perspectives of the data, which together
for a single nearest neighbors, but a group of nearest neighspan the full dimensional space. In order to achieve this, we
bors all of which can be considered to be close matches formaintain a current data s&t., and a current subspaée.

a target query. Therefore, the number of database points td_et us say that a total of < d/2 projections have already

be retrieved by the user is tisepports used for the analy-  been presented to the user in the current major iteration. Let
sis. We note that in order to perform a proper analysis of thethe subspaces corresponding to these projections be denoted
directions in the data of greatest discrimination, this supportby &,,.;(1) - - - Eproj(r)- Then, the current subspageis the
should at least be equal to the dimensionalityrherefore,  d — 2 -r dimensional subspace which is orthogonal to all of
in cases when the user-specified support is less dhare these projections, and is givenbdy- U;_, £,,,.,;(;). Hereld

set it equal tal. We also note that in many cases, there may is the full dimensional space. The data Betis the projec-
be a certain number of points which are inherently more tion of the data seb onto the subspacg.. Thus, each data
closely related to the query as compared to the rest of thepointz; € D is represented by the data poiftoj(z;, &.)
database. This number may be different frepand can- in D.. The next projectiol,,..;(,+1) is determined by us-
not be known a-priori. In such cases, we will see that our ing the data seb..

approach is able to provide some guidance in returning the In each minor iteration, we perform the following steps:
natural sets of points related to the query. (1) Finding the most discriminatory projection which is cen-

The overall framework of the algorithm is illustrated in tered around the query point. This discriminatory projec-
Figure 2. The system works in an iterative loop in which tion is picked out of... (2) Interactive determination of the
a set ofd/2 mutually orthogonal projections are presented query cluster by the user based on the visual separation of
to the user in a given iteration. Each of these projections isthe query point from the remaining da8) Updating the
carefully chosen such that it brings out the contrast betweencounts for the points in the query cluster.
the points closest to the query and the remaining points_ln the remaining part.of this section, we will discuss each
Once such a projection has been found, the user separate?f these steps in detail.
out the points which belong to the query cluster. The se-
lection statistics of each data point are maintained in the sef2.1. Finding Good Query Centered Projections
of countsu(1)...v(N) which are initialized to zero, and
incremented whenever a set of points is picked. After each  The gverall process for determining a discriminatory
iteration ofd/2 projections, the set of choices made by the projection is illustrated in Figure 3. A discriminatory pro-
userv(-) are utilized determine his level of perception as t0 jection is defined as one which distinguishes the natural
the level of closeness of each data point to the query pointjgwer dimensional clusters containing the query point from
Q. This number lies in the rang®, 1), and is referred to  the rest of the data. In order to find the most highly dis-
as the meaningfulness probability. This number defines thecriminating projection, it may often be desirable to use
user-reaction probability that the data point can be distin- yrojections which are created by arbitrary sets of vectors
guished as significantly more closely related to the query (e 7} which are not parallel to the original axis sys-
point as compared to the average record in the data. Th@em. In other cases, it may be desirable to pick projections
meaningfulness probability is calculated independently for from the original set of attributes for reasons of better in-
each iteration ofl/2 projections, and the values over mul- terpretability. Our system can support both versions. In the
tiple iterations are aggregated in order to determine a finalfo|lowing discussion, we will first discuss the general case,

value. Atthe end of each iteration, those points are removedand then discuss the minor changes required for the partic-
from the data set which were not picked even once in any yjar case of axis-parallel projections.

projection. Thus, the user behavior in an iteration influences |, order to find the most discriminatory projections, we
the later profiles which are presented to him. The Processcompare the distribution of the nearaspoints, as com-
continues until it is determined that the current ordering of pared to the rest of the data set. Our goal is to pick a pro-
meaningful_ness probabilitie_s reliably matches user’s i”te”tjection in which this small fraction of points shows a well
based on his reaction to all views which have been presentedyisiinguished cluster around the query point. Since the cur-
to him so far. The details of the meaningfulness quantifica- (ant data seD. is represented in the spafg, the projec-
tion and termination criterion are described a later section. g subspace needs to be a subspac® oThe process of
Each iteration (henceforth referred to as a major itera- finding the query cluster and query subspace is an iterative
tion) is divided into a set of/2 minor iterations, in each of  one. We start with the subspa€g = &. from which the
which a projection is determined and presented visually to 2-dimensional projectiofi,,,; needs to be found. In each
the user for his feedback. The setdR projections which iteration, we reduce the dimensionality of the subspgce
are determined in each major iteration are mutually orthog- in which there is a distinct clustey¥), surrounding the query



point which is also well separated from the data. In the first next iteration. We wish to ensure that later iterations find
iteration, we start off withV/,, being the set of points which  only subspaces which are orthogonal to those found so far.
are closest to the query poi@t in the subspacé.. Then, Therefore £,,¢,, IS chosen as the complementary subspace
we find a subspacé&, in which this “query cluster’V, is to £,, assuming that, is the entire subspace. The data
a tightly-knit cluster as compared to the variance of the re- setD, is also projected onto this new subspace in order to
maining data set. In order to do so, we find the principle createD,,,,.

component directions [17] of the set of pointsAf). The

principle component directions are helpful in finding those 2 2. Interactive Separation of Query Cluster
projections of the data in whicl), is tightly clustered. In
order to find the principle components, we determine the co-
variance matrixA of the set of points inV,,. Since the data
points inV/, have dimensionality&.|, the covariance ma-
trix is an |&.| x |€.| matrix in which the entry(i, j) denotes
the covariance between dimensianand j. This covari-

Once a discriminatory projection has been determined,
human interaction is used in order to separate the query
cluster from the remaining data points. In order to maxi-
mize the use of human intuition, we use a visual profile of
- " R he probabilistic data distribution. To this effect, we use ker-
ance matrix is gosﬂwe ser_nl-de_ﬂmte and can be EXPressed,g density estimation techniques [26]. In this technique the
asA = P-D- P, whereD is a diagonal matrix containing probability density at a given point is estimated as the sum

the e|gh9n;]/a;lues, and t?]e cqumrsttontam the_lt_ar:genvgc- of the smoothed values of kernel functidkig(-) associated
tors which form an orthonormal axis-system. These CIG8N-\\ith each pointin the data set. Each kernel function is asso-

vectors are the principal components and represent the diia e yith a kerel width which determines the level of

rections in the data along which the second order Covarl'smoothing created by the function. The kernel estimation

ances of t_he points W, are Z€ro. The eigenvalug alo_ng . f(x) based onV data pointsr; ... zx and kernel function
the directioni denotes the variance of the set of points in K (") is defined as follows:

N, along the direction. Therefore, ify; be the variance of

the entire data sé?. along the eigenvectar then the ratio N
Ai/v: denotes the ratio of the variances between the query f(x) = (1/N) - Z Kp(x — ;) 1)
cluster and remaining data when projected onto the eigen- im1

vectori. Therefore, by picking thé, directions with the _ o )
smallest variance ratio, we are able to determine the direc-Thus, each discrete poinf in the data set is replaced by
tions in which the query cluster is well distinguished from @ continuous functior<; () which peaks at; and has a

the rest of the data. The procedure for determining the queryvariance which is determined by the smoothing parameter

Once the query subspace has been determined, then I}fernelwnh widthh.

will be used in the next iteration in order to determine a new _ —(z—=:)2/2h2
Ky(x —z;)=(1/vV27-h) -e 2

query clusterV,,. Specifically, the set of pointd/,, in the ( )= (1/v2m-h) @
next iteration is determine_d by finding_those _points which The error in density estimation is determined by the band-
are closest to the query point when projected into the newly idth 1. One well known approximation formula [26] for
found subspacé,. The value of the dimensionality of the determining the bandwidth i = 1.06 - o - N~/ for a
subspacé,, is denoted by, and is reduced by factorof 2in  45t5 set withV points and standard deviation
each iteration. The process continues till the valulg & 2. In order to actually construct the density profiles, we es-
T_he reason for the iterative methodology used by the algo-mate the probability density of the data at a sepaf p
rithm is that bothV/,, and€,, are dependent on one another griq.points, which are used to create surface plots. Exam-
and the graQL_JaI reductlon in the d|mef15|onal|ty €NSUres anyjes of two such density profiles are illustrated in Figures
effective refining process in which we find query clustér  g() and 9(b). Note that in the case of Figure 9(a) there is
and a corresponding subspagg,; in which this clusteris 5 sharp and well separated peak containing the query point.
well distinguished from the rest of the data. When itis de- Ths corresponds to the highly dense cluster near the query
sirable to use clusters only from axis parallel projections, hqint, This behavior is typical of a well chosen projection
then a minor modification needs to the query subspace deyyhich discriminates the data patterns near the query point
termlr?atlpn subroutine of Figure 4. Here ms?ead of using well. A second way of providing the user with a visual un-
the principal components of the set of data point¥jnwe  gerstanding of the data is to providdateral density plot,
use the original set of axis directions. in which we have a scatter plot of fictitious points which are

Once the projection subspaggis determined, we com-  generated in proportion to their density. We note that all of
pute the new subspace and data&gt, andD,,.,, which Figures 1(a), 1(b), and 1(c) are lateral scatter plots of 500
will be used in order to determine the projection in the points generated from synthetic data sets.



Relative Density
Relative Density

(a) A Good Query Centered Projection (b) A Poor Query Centered Projection
Figure 9. lllustration of the Qulaity of Projections

Once the user is provided with this visual profile then it data points which lie in the same region as the query clus-
is possible for him to separate the query cluster from the ter are the set of preferences for that particular projection.
remaining points by using either of the two visual profiles. At a noise threshold o = 20, a distinct cluster of points
A convenient way of separating the query cluster visually containing the query point are created; by reducinigr-
is by using density separators of a certain height. In this ther, more and more points from the fringes of the cluster
technique the user specifies the dengityhich is the noise  are included. Here, the intuition of a user is very useful,
threshold. This threshold is used in order to determine thesince an accurate delineation of the related data pattern is
set of points which are the user-defined nearest neighbors iroften not possible by fully automated methods. We also
that projection by using the concept of density connectivity. note that if the query point had belonged to one of the other
The concept of density connectivity is discussed in [12, 16], two peaks, then for different values of the noise threshold,
and is defined as follows: different number of peaks would have been included in the
query cluster. By using = 0, all points are included in
the query cluster. We refer to such views created by this
process adensity separated viewsince they clearly show
the various clusters in the data based on the density profile
and the noise threshold supplied by the user. We note that
Thus, for a given noise threshoitland query point), it it is not necessary for the user to supply the noise threshold
is possible to uniquely determine the set of points in the after just one view of the data. Rather, the user can look
database which are density connected to the query pointat density separated views for many different values of the
For example, in Figures 9(a), we have shown the densitynoise threshold in order to interactively converge at the
profile of a data set along with density separator planes most intuitively appropriate value.
which separates the data out into different clusters. We As discussed in an earlier section, not all views are
note that the contour of intersection of the density separatorequally informative in understanding the relationship of the
plane with the density profile of the data is a set of closed data to the query point. For example, the projection for Fig-
regions. Each such closed region corresponds to the conure 9(a) is significantly better than the similar profile of Fig-
tour of the cluster in the projection. However, only one of ure 9(b), since in the former case the query point is located
these contours is relevant; the one that contains the queryn a peak of the density profile, whereas in the latter case
point Q. All data points contained within this contour are the query point is in a sparse region of the data. In such
relevant answers to the query point for this particular pro- cases, it is difficult to find a coherent cluster of points in
jection. We shall henceforth refer to the contour containing the projection, which are related to the query point. The
the query point) at noise threshold as the(¢, ())-contour. user can choose to ignore this projection by specifying an
Such a contour is not restricted to be of any particular shape arbitrarily high value of the noise threshajd
and is dependent only upon the distribution of the pointsin  An alternative way of separating the query cluster is by
the data. For example, in Figure 9(a), there are two den-using the lateral density plotin which the user visually spec-
sity connected regions above the noise thresholdll the ifies the separating hyperplanes (lines) in order to divide the

Definition 2.1 A data pointz is density connected to the
guery point() at noise threshold, if there exists as path
P from x to@ such that each point o has density larger

than the noise threshold.



space into a set of polygonal regions. The set of points inis outlined in Figure 8, and is described in detail in the next
the same polygonal region as the query point is the user re-section.
sponse to the query for that particular projection. However,
using a density separator tends to be a more attractive op2.4. Iterative User Preference Quantification
tion, since it can separate out clusters of arbitrary shapes
with the specification of a single noise threshold. The al-  The iterative process discussed above continues until a
gorithms for displaying visual profiles and performing user sufficient amount of feedback has been calculated to find
interaction are illustrated in Figures 5 and 6 respectively. and quantify the meaningfulness of the nearest neighbors.
In order to do so, we convert the preference couifts of
2.3. Updating the Preference Counts the user intaneaningfulness probabilities each major it-
eration. These probabilities quantify the level of coherence
After each minor iteration, we need to update the prefer- in the behavior of the user in classifying a certain point into
ence counts for the points which have been determined to liethe query cluster across different projections. The varia-
in the query cluster. An important problem is to discover all tion in these probabilities from iteration to iteration is used
the points which are density connected to the query point,in order to decide whether the process should terminate.
without having to calculate the density value at each indi- The process for conversion of the user preference counts
vidual data point. It is possible to use the density values in €ach major iteration into a probability vect®¥-) and
calculated across thex p grid structure in order to approx- subsequent termination is discussed in the next section.
imate the points which are density connected to the query
point. The first step is to find all the elementary rectan- 3, User Quantification of Meaningfulness
gles in the grid structure which approximately lie within the
(¢, @)-contour. We shall denote this set of elementary rect-  f the user coherently picks similar points across the dif-
angles byR (¢, Q). We defineR (¢, Q) as follows: ferent orthogonal projections in a given major iteration, then
such behavior can be used to quantify the meaningfulness of
the technique. After each major iteration, the set of prefer-
ences provided by the usef:-) are used to update a mean-
ingfulness probability vectaP(-). This procedure is illus-
trated in Figure 8. First, we will analyze the coherence of
a set of reactions by the user in a sequencé/@fprojec-
Two rectangles are said to be adjacent, when they share &ons. LetX;; be a random variable which denotes whether
common side. In effect, the s@&(¢, Q) is the set of high  (Xi; = 1) or not (X;; = 0) the user picks the pointin
density rectangles which are connected to the rectangle conprojectioni. We note thatX;; is a bernoulli random vari-
taining Q by some adjacent sequence of high-density rect- able, and ifn; be the number of points that a user picks in
angles. In order to finRR (¢, Q), we use a simple graph  projectioni, then the probability thaX’;; = 1 for the data
search algorithm in which we start at the rectangle contain-point j is given byn;/N. Letw; be the weight for each
ing Q and keep searching adjacent rectangles until we havepreference countin projectianThen, the random variable
determined all rectangles which lie ®(¢, Q). Y; indicating the total user preference for pojnis given
Once the points inside all these rectangles have been deby:

Definition 2.2 An elementary rectangl€ is defined to be
a member ofR (¢, @), if and only if there exists some se-
guence of adjacent rectanglé€s= Ly, L; ... L) such that
(i) £, contains@, and (ii) at least three corners of each
rectanglel; have density above the noise threshgld

termined, we increment their counts by one unit. It is also d/2

possible to weight different query clusters by importance. Y= wi- X 3)
Specifically, the weight for each point may be increased by i=1

w; corresponding to the projectian This procedure is il-  The corresponding expected valB;] is given by:
lustrated in Figure 7. In this paper, we always assume that N

w; = 1; therefore each query cluster is considered equally

important. It is important to understand that since the user ElY;] = ;wi ~ni/N (4)

has the ability to pick only those projections in which there

are meaningful data patterns surrounding the query point,The value ofE[Y}] is the same for every data pojntand is

the preference counts(-) will not be affected by those simply the sum of the (weighted) fractions of points picked
noisy combinations of dimensions which are not useful for by the user in the different projections. Since this sys-
the nearest neighbor search process. At the end of each maem tries to detect the relationships across preference pat-
jor iteration, the count(i) for each point quantifiedintoa  ternsin different projections (because of correlations among
meaningfulness value, and is used in order to update a correthe different attributes), it is instructive to look at the case
sponding probability value for that data point. This process when the data is completely uncorrelated. If such were



the case, then the preference values of the users in the dif- [ DataSet [ Precision| Recall |
ferent projections in an iteration would be uncorrelated to Synthetic 1 87% 98%
one another. This would mean that the random variables Synthetic 2 91% 96%
Xij...Xg/2,; are also independent. Consequently, we can
compute the variance df; as the sum of the variances of
the individual components; - X;;. SinceX;; is a bernoulli Table 1. Accuracy on Synthetic Data Sets
random variable with probability; /N, we have:

/2 over multiple iterations is given by the following arithmetic
var(Y; Zw (ni/N)- (1 —n;/N) (5)  average: i
P(i) =D (0))/x (8)
Again, var(Y;) is independent of. Letv(j) be the true i=1

number of preference counts that a user has given to a dat&Ve note that the values of the meaningfulness probability
pointz;. When the data is distributed in a noisy way, then vectorP(-) in two successive iterations will be highly cor-
the preference pattern across different projections will not related with one another and the level of this correlation will
show any meaningful consistency. Therefore, the value ofincrease with the value @f. Therefore we compare the set
v(7) will not vary significantly fromE[Y;]. In order to of s points with highest value dP(+) in the iterationx — 1
quantify this notion, we define th@eaningfulness coeffi- andx. When the percentage of common points between

cientM (j) for the pointz; as follows: these two iterations is larger than a certain threshaiden
we terminate. At the end of the procedure, we return the
M(j) = (v(j) — E[Y;])/1/var(Y;) (6) s data points which have the highest valueR{fj). Note

that in Figure 8 for each data poiptve maintain the value
The meaningfulness coefficient is a numerical estimate ofof )7 | (p!) as opposed to the average. Therefore, the true
the level of confidence with which the nearest neighbor value of the meaningfulness probability may be obtained by
found is closer to the target than the average. Note thatdividing this value byk.
when the value off is high, the distribution of\/ (j) is ap-
proximately normal. Le®(-) be the cumulative distribution 4 Empirical Results
of the normal distribution with zero mean and unit variance.
In such a case, we can compute theaningfulness proba-

. In thi ion, we will di he resul in -
bility P(7) as follows: this section, we will discuss the results obtained by us

ing our user-adaptable system for a variety of real and syn-
P(j) = max{2 - &(M(j)) — 1,0} ) thetic data sets. For the case of synthetic data sets, we show
that the nearest neighbors indeed lie within the natural pro-
This value is equal to the probability that the preference jected clusters which are created for testing purposes. We
count for data point:; is larger than the expected prefer- also show some interesting examples of high dimensional
ence countE[Y;] purely by chance. Note that when the data in which the data is truly distributed in a noisy and
value ofz; is smaller tharE[Y], this value is equal to zero. meaningless way. In these cases, we show that the tech-
When the user preference patterns shows considerable comique is effectively able to predict the meaninglessness of
sistency across different projections, we expg@¢f) to be applying a nearest neighbor search process.
almost one for some of the points, whereas for the other
points, the value oP(j) is significantly less than one. This 4.1. Synthetic Data Sets
is a very desirable situation, since some of the data points
can be clearly distinguished as the nearest neighbors. We generated a set of sparse synthetic data sets in high
In a single iteration, we obtain the user preference pat-dimensionality, such that projected clusters were embedded
terns from a set ofl/2 mutually orthogonal projections. in lower dimensional subspaces. We generated two data
The above analysis for calculation®f;) is based on such  sets withV = 5000 points using this technique. We shall
an iteration of mutually orthogonal projections. However, refer to these data sets as Case 1 and Case 2 respectively
as illustrated in Figure 2, the process is repeated for multi- with the same parameters used in [4], except for the number
ple iterations in order to obtain feedback for many sets of of points. These data sets contain 6-dimensional projected
d/2 projections. In such a case, the overall meaningfulnessclusters embedded in 20 dimensional data.
is calculated as the arithmetic average over multiple itera-  For the purpose of testing, we adopted the policy of
tions. Let us say that the values®{;j) for data pointz; isolating a cluster with the query point containing about
for each of thex iterations are given by)}, ...p5. Then, 0.5—5% of the data. Correspondingly, the value of the sup-
the overall meaningfulness probability for the data pgint port used in order to determine a discriminatory projection
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was set af.5%. However, in many cases, when the visual
profile was constructed, the actual cluster was often either
much smaller or larger than this threshold. In such cases, the
interactive query cluster separation process was able to cor-
rect for any discrepancies. Because of the careful method
in which the subspace is determined, we found that in most
cases a clear cluster could be found near the query point.
In each major iteration, the visual profiles obtained during
the first few minor iterations were the most discriminatory.
For example, a visual profile obtained during an early (first)
minor iteration for the first case is illustrated in Figure 10,
whereas the visual profile in the last minor iteration is il-
lustrated in Figure 11. It is clear that the former profile is
one in which the query cluster can be more clearly distin-
guished from the remaining data points. This is because in
the first few minor iterations, the subspace determination
subroutine has considerable flexibility in choosing a sub-
space which results in the best query centered projection.
This does not continue to be the case in the last iteration
in which the algorithm is forced to pick from the subspace
which is complementary to the union of all the subspaces
already chosenThis gradation in the quality of the pro-
jections has an important influence on the nearest neighbor
search process.Since the user can choose to discard the
projections determined in the last few minor iterations, only
the nicely coherent behavior of the data is reflected in the
user preference countg:). Thus, the graded quality of
the projections ensures that most of the noise in the data is
pushed into the last few projections, and the user is able to
use his intuition in order to easily pick out the clearly co-
herent projections (and data patterns) in the first few minor
iterations. In other words, at the end of each major iter-
ation, the user preference counts implicitly define a rele-
vance value for each data point in which the noise/sparsity
effects of high dimensionality have been filtered with the
use of human intuition. However, this intuition could not



have been harnessed without the use of a carefully graded Data Set Accuracy| Accuracy
subspace determination process. This interdependence be- (Dimensionality) (L) (Interactive)
Fween t_he user and the comput.e.r reflects tlhe naturg of the lonosphere(34) 1% 36%
interaction betweep th_e two entities. The visual profile for Segmentation(19) 61% 3%

the first and last minor iterations in the second data set were
similar to those obtained in the first. In each case, we deter-
mined the meaningfulness probability of each data point at Table 2. Accuracy on Real Data Sets

the termination of the process. We sorted the data in order of

meaningfulness probability and found that a few of the data

points had meaningfulness probability in the range.6fto ~ fore, it is interesting to test what happens in such a system
1, after which there was a steep drop. This steep drop cor-for uniformly distributed data.

responds to the distinct projected cluster to which the query ~We tested a case witlv = 5000 uniformly distributed
point belongs. By using the threshold which occurs just be- points ind = 20 dimensions. In this case, we found that it
fore this steep drop, it is possible to isolate the natural setwas difficult to find views in which the points were well dis-
of points related to the query. Note that the correspondingcriminated from one another. A typical example of a view
cardinality may be quite different from the user-specified obtained from such a case is illustrated in Figure 12. We
support. In this case, the corresponding value WAsThis note that the discrimination of the the data surrounding the
corresponds to about 520 neighbors in Case 1, which had &uery cluster is very poor in such a case. This is valuable
meaningfulness probability higher than this threshold. This information for a user, since it tends to indicate the poor
also compares well with the cardinality (562) of the pro- Selectivity of the data even in carefully chosen projections.
jected cluster containing the query point. Of the 520 neigh- Therefore, a user can infer that the data is not very prone
bors recovered in case 1, 508 belonged to the same clusteio meaningful nearest neighbor search in high dimensional
as the query point. In order to illustrate the effectiveness of space. Even further evidence may be obtained from the dis-
the technique, we have illustrated some summary results fortribution of the meaningfulness probability values. Even
the case 1 and case 2 data sets in Table 1 over a set of 1though it was difficult to pick out the query cluster because
examples on which we ran the method. We have illustrated of the poor discrimination behavior, we were able to find a
the precision and recall of the two techniques in the Table few query-clusters in some of the projections because of lo-
using the natural number of nearest neighbors found by thecal variations in density. When the process was completed,
thresholding technique. Typically, the natural number of we found that there was very little coherence in the prefer-
nearest neighbors are often a slight overestimate (about €nce counts across the different views, and they got evenly
to 15% over the correct value), and hence the recall valuesdistributed among the different data points. In this case, the
are higher than the precision. The recall value indicates thatneaningfulness values do not show the kind of steep drop
very few of the true nearest neighbors are actually missed.which is visible in the synthetic data sets. Consequently, it
Itis clear that in each case, since both the precision and reis difficult to isolate a well defined query cluster based on a
call are so high, the nearest neighbor search technique wasimilar threshold. The conclusion from these numerous ob-
not only accurate, but was able to determine the “natural” servations is that in those high dimensional cases in which
number of nearest neighbors effectively. This is very useful meaningful nearest neighbors do not exist, the technique is
for nearest neighbor applications in which finding a natural able discover this valuable information.

number of nearest neighbors is as important as the quality

of the records returned. 4.3. Results on Real Data

4.2. Results on Poorly Behaved Data We also tested the results on a number of real data sets
obtained from the UCI machine learningepository. An
b_example of a visual profile from a query-centered projec-
tion obtained from the ionosphere data set is illustrated in
Figures 13. The meaningfulness probability values also
showed a similar steep drop as in the case of the clustered
synthetic data. Thus, both the visual profiles and the mean-
ingfulness behavior for this real data set is similar to the
clustered synthetic data set as opposed to the uniformly
distributed case. We tested the results on the ionosphere
sand segmentation data sets from the UCI machine learning

The meaningfulness issue of the nearest neighbor pro
lem in high dimensionality critically depends upon the fact
that often the local implicit dimensionality of the data is
significantly lower than the full dimensionality [1, 2, 4, 11].
The technique discussed in this paper exploits this fact in
conjunction with the user interaction. However, for some
data sets even the local implicit dimensionality is high. An
example of such a case is uniformly distributed data. In
such a situation, the problem of nearest neighbor search i
indeed not very meaningful in high dimensionality. There-  http:/iwww.cs.uci.eddmlearn.
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teractive nearest neighbor process was more effective tha 1996.
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