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Abstract—In this paper, we study the problem of evolutionary a paper nodecontains between a term node and a paper
clustering of multl-ty_ped objects in a heterogeneous blbllograp_hlc node, published-in between a paper node and a conference
network. The traditional methods of homogeneous clustering ,qqe. Clearly, the richer representation of a heterogeneou

methods do not result in a good typed-clustering. The design . . o
of heterogeneous methods for clustering can help us better network makes it powerful; on the other hand it is also much

understand the evolution of each of the types apart from the More challenging for_min_ing purposes. In recent years ether
evolution of the network as a whole. In fact, the problem of has been an increasing interest in the area of heterogeneous
clustering and evolution diagnosis are closely related because ofinformation networks. In this paper, we will examine the

the ability of the clustering process to summarize the network rophlem of clustering and evolution diagnosis in massive
and provide insights into the changes in the objects over time. : .
information networks.

We present such a tightly integrated method for clustering and
evolution diagnosis of heterogeneous bibliographic information Heterogeneous information networks are often encountered
networks. We present an algorithm, ENetClus, which performs  in gynamic environments which are continuously evolving.

such an agglomerative evolutionary clustering which is able : : :
to show variations in the clusters over time with a temporal The problem of clustering has been studied recently in the

smoothness approach. Previous work on clustering networks is COntext of non-evolving and static information networksy.E
either based on homogeneous graphs with evolution, or it does not Sun et al. [15] present NetClus, which is a clustering atbari
account for evolution in the process of clustering heterogeneous for star schema-based heterogeneous information networks
networks. This paper provides the first framework for evolution-  The center of the star is termed as theget typewhile other

sensitive clustering and diagnosis of heterogeneous information .
networks. The ENetClus algorithm generates consistent typed- type nodes are connected to this center type and are called as

clusterings across time, which can be used for further evoiution aftribute typenodes. E.g. for the DBLP graph, paper is a target
diagnosis and insights. The framework of the algorithm is type while authors, conference, terms are attribute typso
specif[cally designed in order. to facil.itate .insights about the Figure 1 illustrates a net-cluster view of the DBLP network.
evolution process. We use this technique in order to provide The star-schema is a particularly important case, becafise o
novel insights about bibliographic information networks. its representational power in a variety of scenarios.

I. INTRODUCTION
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Information networks have become ubiquitous in recent

years because of the large number of networked applications

such as social networks, the web and other linked entities. -

For example, academic networks such as DBLP, biological Cluster 1

networks, and massive entity-relation models are all exasnp

of information networks. Such networks have the common

property that they contain different kinds of entities whic Fig. 1. Net-cluster view of DBLP network

interact with one another. Some of the examples such asVhile NetClus is a powerful algorithm for determining
social networks and the web are inherently homogeneougterogeneous clusters, it incorporates no notion of &eolu
since they contain entities of the same type. For exampleNeatClus, if used over multiple snapshots, would produce
social network contains actors that are linked by friengshtlusters which would have no correspondence with the ones
relationships, whereas the web contains documents wheeh ar the previous snapshot. This effect becomes much more
linked by hyper-links. prominent because NetClus clusters depend immensely on
Most work in the area of graph and network mining hathe initial seeds. The problem of evolutionary clusteriras h
focused on the homogeneous domain. However, a heterogeen studied in the context bbmogeneous network4). The
neous representation is much richer; for example a richasic principle is to create a clustering which focuses dah bo
representation of a bibliographic network may contain sodenaintaining high quality clusters, and on creating clustar
corresponding to different entities such asthor, confer- which a natural correspondence can be maintained among the
ence, paper and term. Edges may denote more diverselusters across different snapshots. This broad technigue
relationships such asritten-by between an author node andeferred to astemporal smoothingA variety of techniques



[5], [12] have been designed for determining evolutionary 1. THE ENETCLUS ALGORITHM
clusters using temporal smoothing. However, these teadkesiq

are inherently designed for the homogeneous case. Fonhet%r
geneous networks, we wish to cluster entire entity (group RF

:elated objecis)l asl't? Whﬁlﬁ rather tthanl C“tJStPj[ng O];_I_ddﬁﬂ the probability of generation of different objects from kac
ypes separately. It is challenging to cluster the entiezs cluster. A maximum likelihood technique is used to evaluate

consisting of multiple types of nodes) With. temp"fa' Smeo”?he posterior probability of presence of an object in a eust
ness such that the snapshot quality is maintained. The conditionals (i.e., probability of the presence of ajecb

In this paper, we will study the problem of evolutionanin a cluster) are computed using ranking of object within
clustering and diagnosis in information networks. We wilturrent clusters and representativeness from previolsteriu
take a broader view of clustering and evolution analysis &&y. The priors (probability of clusters) are estimatedngsi
two tightly integrated problems which can be used in ordan Expectation Maximization approach. We first describe
to derive interesting insights from data. This is espegialie the problem formulation and the methods for computing the
in the case of heterogeneous information networks, sinee amderlying probabilities. Then we describe the ranking and
can study how the trends in the different kinds of entitiethe clustering parts of the algorithm, with a special emjzhas
are affected by one another. For example, in an authorslip how the dynamic evolution affects different parts of the
network, evolutionary clustering can be combined with ftdre NetClus framework.
evolutionary diagnosis and metrics to determine merges and ]
splits of different topical areas, authorship evolutiond an- Problem Formulation
topical evolution. Such insights are critical in undersiag  Given different snapshots of a graph, each of which contain
the nature of the changes which occur in dynamic and rapictipdes of multiple types, our aim is to find a consistent
evolving information networks. Since clustering can bevwad agglomerative clustering of the graph snapshots acrogs. tim
as a network summarization technique, it is a natural ajgroaConsistency refers to our ability to relate the clustersre o
for integrating with the problem of evolutionary diagnosis another in different snapshots, so that it may be betterilpless
order to understand and summarize the key changes whighdiagnose the evolution process. I@5 denote the graph
may occur in a network over time. sequenceg G;} ¥, where each of the graple; is a snapshot
taken at the time instarfty; }¥_,. Given the number of levels
L and the number of cluster&’, we would like to obtain a

1. While the problem of evolutionary clustering has beefet-cluster tree sequenc&l's for the graph sequend@s.
studied for the homogeneous case, the problem is muChpefinition 2.1 (Net-Cluster)A net-cluster ¢ of a graph
more challenging for the heterogeneous case, because of@lqe/, E) is a subgraphG’(V’, E') such thatV’ C V and
different entity-types which may evolve over time. Thispap ¥ ¢ g and Ve e E, weight W,(E) = We(—E’). Let
is the first to present an evolutionary clustering algorithm) . 7 _, [0, 1] denote the probability with which an object
for heterogeneous networks. Our algorithm returns tenliyora,, - v/ belongs to clustee. If o is a target type object.(o)
smoothed, high quality agglomerative clusters, and |@esa js gjther 0 or 1: for attribute type objects b.(o) € [0, 1].
on some concepts derived from the NetClus framework. Definition 2.2 (Net-Cluster Tree)A net-cluster treeCT

2. We tightly integrate the problems of evolutionary clustefor a graphG is a tree withL levels (level 1 being the root
ing and diagnosis; the evolutionary diagnosis is achiewed Bnd levelL being the leaves) and branching factor Root of
defining metrics and techniques to characterize the clugterCT’ corresponds to the grapfi. Children nodeg{nc;}/L, of
behavior over time. For example, we can design techniqug§ioden store theK net-clusters{c;}/<, obtained as a result
to identify the birth, continuation and slow disappearante Of the clustering of the subgraph,, (V.,, E;,) at noden. The
a community. We also study the influence of one communigjjstribution of the target objects within each of the ctelar
onto another and flux between two different kinds of commupodes of a node: forms a disjoint partition of target objects
nities. Our techniques are general enough to deal withrdiffe in noden. An attribute type object € V;, belongs to the child
time granularities and entity types. nodenc; with probability b; (o). Children nodes of a node

" : : . are ordered.
3. One of the additional results of this effort is to provide . finition 2.3 (Net-cluster Tree Sequencé): net-cluster

novel insights into the evolution of bibliographic netwsrk ;
) . ; . tree sequenc€&'T'S corresponding to a graph sequenGé
with the use of the techniques proposed in this paper. Aﬁ a, sgquence of net-clﬂster '?reééfifgl-‘i? whgre CT;

specific example, we use the DBLP dataset in order to prov@&responds to time instang. Each of the trees in the

novel insights about the evolution process. sequence have the same branching factor and same number
The paper is organized as follows. In Section Il, we firsif levels. The children of every node in each of the trees

present our extension to the NetClus framework. In Sectipn lis ordered in the sense that first child of a nadein CT;

we define evolution diagnosis methods and metrics. We presearresponds to the first child of a similar node in CTj.

experimental results on the DBLP dataset in Section IV. W&e aim at generating such a net-cluster tree sequérce

then present an overview of related work in Section V. Wer a graph sequend@sS such that the trees are consistent and

conclude with a summary and future work in Section VI. represent high-quality clusters.

In this section, we present our algorithm for clustering of
evolutionary information network. The broad approach is
use a probabilistic generative model in which we model

In this paperwe make the following contributions



B. ENetClus Framework attribute type objects connected to an objectConsider a

To perform evolutionary clustering in a heterogeneoﬁ‘)babi“% distribution using the priors mentioned insté,
S = . ) . : :

network, one could use any of the homogeneous clusterifige = >_;=1 £(0ilck)};,—1- A target objecto is assigned to
algorithms to cluster each type of nodes individually. Buatt cluster ¢, with max probabilityps. Then initial net-clusters
would not guarantee that all the objects related to saméyenfire induced from the original network according to these
lie in the same cluster and also the mutual information betwepartitions, i.e.,{c} };~,. This corresponds to step 2 of the
different types of objects would not be exploited. To achie\algorithm. Initializing clusters using representativesnealues
agglomerative temporally smoothed clusters, we exploit &sures faster convergence to a better local maxima.
natural variation of the NetClus algorithm. NetClus pemisr . .
iterative ranking and clustering. We use the knowledge froRy Ranking and Clustering
the current snapshot clustering to initialize the clustiers In step 3, the algorithm builds ranking-based probabdisti
the next snapshot and also to influence the ranking of objegisnerative model for each net-cluster, i.€P(olc})}E ;.
in these new clusters using the priors. Note that the prioTsie ranking process constructs representative objecta fro
are propagated in the forward direction as time progressése different clusters. The corresponding probability dan
This means that the algorithm can be executed as an onlifecomposed by conditioning on the type of the object in the
evolutionary clustering algorithm. Supplying good pri@s- corresponding cluster. In other words, we haWéo|cy,) =
tually improves the quality of NetClus algorithm. Thus, lWwit P(T,|c) x P(o|T,,cx). P(T,|cx) is estimated as the maxi-
greater consistency, we achieve better quality unlike roth@um likelihood estimate of typ&, in clustercy. P(o|T,, cx)
evolutionary clustering algorithms. Algorithm 1 shows ougan be computed using two different notions of ranking. For
framework. We explain each of the steps in further subsestio some attributes, we can use a frequency-based approach of
estimating this probability. For example, in a bibliograph

Algorithm 1 NetClus with Evolution-Aware Priors information network, the probability for a term is the weleth
1: Priors: Initialize prior probabilitie P(o|c) ;. ratio of number of papers containing this term to the total
2: Initialize: Generate initial net-cluster$c) }<_, . number of papers, where weights are associated with every
3: Rank: Build probabilistic generative model for each nepaper.P(o|T,, ;) can also be computed using authority-based
cluster, i.e..{P(o|c} )} ,. ranking. In this case, ranking of an objects estimated by
4: Cluster-target: Computép(c.|o)) for target objects and propagating authority scores from objects of other atteibu
adjust their cluster assignments. types via the target type. Finally, the overall probability
5: Iterate: Repeat steps 3 and 4 until the clusters don’t changéo|T,, ¢x) is computed as a weighted sum of ranking-based
significantly. P(o|T,,cx) and the priors generated in step 1. The prior
6: Cluster-attribute: Calculatg(cy|o) for each attribute ob- weight (\p) controls how much the current ranking and
ject in each net-cluster. therefore the current clustering depends on the clustatitite
7: return  p(cj o) previous time instant. Thus\p controls the tradeoff between
the snapshot clustering quality and temporal smoothness.
C. Initialization of Priors and Net-Clusters By using the ranked attribute object probabilities, we can

At the first snapshot, which is denoted iy prior probabil- €Ompute the conditional prOb";‘Vb'“ty of a target o‘l/)[/Jecas
ities are defined intuitively. E.g., if we believe that theathas £ (910%) = Tloeng, (o) P(Teler) D x P(a|Ty, c) "2,

4 clusters, we can define high prior probabilities for therer WhereNg, is the neighborhood set of objects in subgréph
representative of each cluster. For other time instangspttor I Step 4, the algorithm calculates the posterior probtsli
probabilities{ P(o|c)}2_, are defined as follows. The priorfor €ach target object. This is done by iterating over the
probability of an object belonging to cluster; is defined EM equationsp’(clo) o« p(olex) x p*(c) and p'*'(cy) =

as its representativeness in the corresponding clustérinwit>\ 2L pt(cklo:) /10,

the net-cluster tree for the previous time instant (stepfhp ~ Once the posterior probabilitieB(c|o) have been com-
use of these priors ensures temporal smoothness, becausétited, these can be used to express the objext a vector
computation of cluster membership in a particular snapishotv, = (p(c1|0), p(cz2|0), ...p(ck|0)). This new vector space can
affected by the membership behavior in previous snapshdis.leveraged for similarity computation and object assigmim
The representativeness of an objedh clusterc depends on By using previous cluster assignments, veetdor the cluster

the probability of generating that object (given clustgrand centroids is computed as an average of objects belonging to
is inversely proportional to the entropy of the cluster memb that cluster. The objeat is re-assigned to a cluster, by using
ship distribution of the objeat. An object with a distribution the cosine similarity value between and cluster centroids.
peaked at cluster will have a high representativeness value The steps 3 and 4 are repeated until the clusters do not
for clusterc. Subsection I1-D illustrates how the ranking parthange significantly, i.e{c;}<, = {cL}5 | ~ {ci '},

of the algorithm uses these priors. in the K-dimensional vector space.

The initialization of clusters should be done in a way Finally, in step 6, posterior probabilities for each atiti
that provides a smooth transition from the clustering in thebject (p(ci|o)) in each net-cluster are computed using the
previous snapshot. Hence, the algorithm generates ipiéiel posterior probabilities of its neighboring target objedtote
titions for target objects as follows. Leio;}~ ; be the L that the way the priors are propagated automatically essure



matching of the clusters at all levels in the hierarchy. Tikis by the number of objects in that set of clusters. Overall
another advantage of our maximum likelihood based modmnsistency is then an average of the consistencies at each
compared to other evolutionary clustering schemes whdewel. Finally, we can express consistency across differen
greedy methods are used to find corresponding clusterssactypes as a weighted sum of consistency with respect to each

different snapshots. of the types.
) . The above definition defines the consistency only over
E. Complexity Analysis successivesnapshots. However, it can be easily generalized

As mentioned in [15], clustering once requir®%c,|E| + to the case of arbitrary intervals, by using the objects & th
coN) time, whereN is the number of target objects. A netcorresponding intervals. Furthermore, we can defiokaned
cluster tree withL levels is created after clustering of allpath consistencyver a sequence of intervals as the product
internal nodes i.e £~ =1 nodes. But, on an average, the sizef consistencies over these corresponding intervals.
of the graph at a node decreasistimes per level. Hence,
the creation of a cluster tree requir€$L x (c;|E| + ¢;N)) B. Quantifying Snapshot Clustering Quality

time. The time required to compute the entirg’S would also  gnetClus represents each objedn a i -dimensional space
depend on the number of time granularities and the numbengfien performing clustering. We could use the average rdtio o
time instants per time granularity. The exact complexityildlo jnra-cluster similarity to inter-cluster similarity asraeasure
depend on how dense the graph becomes at different instaji$he quality of a cluster. This is also calledmpactness
and intervals of time. Higher values of compactness usually imply that the clirsger

is of better quality . The compactnessis defined as follows:

_ _ _ _ _ C= L ZK— Zlgk\ 5(0kisCk)

In this section, we discuss methods for evolution diag- (O k=1 £i=1 %" s(okici)/(K~1)
nosis and metrics. We define metrics for evolution quathereO is the set of the target objects, is the centroid for
tification such as appearance and disappearance rate, édsterk ands(a,b) measures the cosine similarity between
tinue/merge/split rate, stability and sociability of otfie We £ -dimensional vectors andb.
further note that an algorithmic tradeoff exists betweersiglr- ~ We can define averagentropy of a cluster ask =
ing quality and the consistency of the clusters over time.lWhi—ﬁ Zszl ZLO:’“l' bi(0) x log(br(0)). Lower entropy means
most of the properties studied in this section are propedfe that on an average the objects belong to a particular cluster
the data, the latter are the properties of the algorithm in termgith high probability and so the clustering is of higher duyal
of the level of smoothness. We examine methods to quantify
and understand this tradeoff at the algorithmic level. C. Cluster Merge and Splits

A. Quantifying Consistency A_s the network evolves, different _cIu_sters can merge into
} . a single cluster or a cluster can split into multiple cluster

~ ENetClus performs a clustering of the attribute type nodegy soft clustering process has a fixed number of clusters for

in which membership probabilities are assigned to nodes. L&;ch time period. However, we can still study the merging and

the current data set being clustered belong to the timeringta splitting of clusters as follows. Consider a set of clustest

and let the type we are interested intbé.et the prior weight |aye| 7 at time y. If at time y + 1, a substantial part of the

be fixed toAp, number Qf clusterg .bé( and .current level be membership probabilities moves out of a clusterto other

I. Then, the membership probability of objecf type ¢ 10 ¢ysters at the same level, then we can say that the cluster

clusterc; is denoted by{b;(0)}[<,. ¢; has split into multiple parts. Similarly, if cluster; has
Intuitively, consistency between two sets of cluster mengpiained a substantial part of membership probabilitiesfr

bership distributions is the degree of similarity betweeginer clusters at the same level at time- 1, then we can

distri_but.ions of t_he intersecting objects. This impliesatth ¢|5im that cluster; has been formed from a merge of other

the insights derived from one set of the clusters shouiqysters. While measuring the amount of merge or split of a

continue to hold valid over the next set, unless a majgfysterc;, we should consider only those objects which occur

evolution has occurred. We can define consistency of thethe network at both the times i.e., atandy — 1 when

clustering ¢ as the average cosine similarity between thgqying the “merge” phenomena andwatndy + 1 when
cluster membership probability distributions of an objett st,gying the “split” phenomena.

Ill. EVOLUTION DIAGNOSIS AND METRICS

time yl and time y2. consistency(clustering, y1, ¥2)=  continue rate: This is the rate at which the objects appear
|Tl>| Y oco Dy br(0)yrxbi(0)y2 to continue in the cluster. If the membership probability of
S k(g1 /D01 br(0)y2? an object belonging to cluster; decreases, ratio of new

Such a comparison of consistency between two sets pbability to old probability is the continue rate of thejett
clusters should be based only on the objects present in bithcluster ¢;. If the membership probability increases, the
time instants. Therefore, the sét used for the computation object is said to continue in the cluster with continue rate
process denotes the set of intersecting objects at tjine Of 1.
and timey2. Furthermore, we can define consistency for a Continue rate of cluster; = 5; 3= ,co mm(bf(é;z: 1)
particular level of the hierarchical clustering as the ager whereO is the set of the objects that occur in the network
consistency of sets of clusters at that level, each weightkdth aty andy — 1.




Merge rate: This is the rate at which the objects appear to 2) Simple Social StabilityThe concept of social stability
merge into a particular clustes; from all other clusters. An is based on cluster membership, and how frequently objects
object is said to be merging into a cluster if its cluster shift clusters. We definsimple social stability as the ratio of
membership probability forc; increases over time. If the number of times the object is retained in the same cluster to
cluster membership probability decreases for the objett wiumber of time instants it appears in the data. For softetast

clusterc;, it contributes0 to the merge rate of clustes. we can assign every object to the cluster for which it has
Merge rate of clustet; = ﬁ S oco max(%, 0) the maximum membership probability. We can also adapt the
@ Y

Split rate: This is the rate at which the objects appedi€finition as the ratio of similarity between cluster mensbey
An object is said to be splitting out from a cluster if its number of times the object appears in the data. N
cluster membership probability for, decreases over time. If 3) Ranked Social Stability:The ranked social stability

the cluster membership probability increases for the abjec  defines the level of stability among theost representative
clustere;, it contributes0 to the split rate of clustet;. objectsin the cluster. This is a natural metric for a clus-

Split rate of cluster; = ﬁzoeo max(bi(o)yq—bi(o)ao) tering process which incorporates multi-typed rankingp int

bi(0)y—1 i i )
Such rates can help us define interesting characteristicsﬂ?ﬁl underlying algorl'ghm. L_etLy ?‘”d Lys1 be the_ list of
the top k£ representative objects in a cluster at timeand

the evolving data. E.g., in the case of bibliographic ddta, t L Ranked ol Stabiiny of clust 2 ‘
merge and split rates can help us determine the influence’of - Ranke ", Sopial stability of clusterc can be Tormally
Ze_mutll - By varying the value ofk, it is

different research areas on another. The ability to detemi€valuated by

. Yy . . . .
both the evolutions of the clusters as well as the interastioP0SSible to gain deeper insights into the effects of theutiat
of different parts of the network is key to the inference of" the most representative objects in the cluster. Since the

interesting evolutionary insights in a multi-typed netkor most representative objects in the cluster can providetiveu
insights into the nature of the clusters, this provides gediht

D. Cluster Appearance and Disappearance perspective on how the clusters may have changed over time.
A cluster can be considered new, when most of its objegts Sociability of Objects
were not present in the previous time period. This can be

formally defined in terms of the membership probabilities as,SOCi,abi"ty of an object is th_e degre_e to which it interacts

_ S o be(0)y with different clusters. An object which belongs to many

follows: Appearance rate = S o < ba(o), clusters is more sociable compared to one which belongs to a
o€/ TNV

Here, the seD’ consists of objects which were not preseritingle cluster. Itis a measure of the entropy of the memigersh
at timey — 1 and are present at timg The setO” consists ©Of the object to different clusters. Therefore, social Hitgb

of all objects in the cluster at timg. over a time interval can be defined asw where
Similarly, a cluster can be considered to be disappearingAf is the number of clusters ang is the ratio of number of
most of the objects in it are absent at time- 1. Disappear- times the object belongs to clusteto the number of time
ance rate= Docom be©)y instants in intervall for which the object was present in the
D vcon be(0)y data. For soft clusterg, can be defined as the ratio of sum of
where the seD"” consists of objects which were present ahembership probability of the object in clusteover I to the

time y and are not present at time+ 1 and setO"” consists number of time instants in intervdlfor which the object was

of all objects in the cluster at timg. present in the data. This can often provide novel insigh in
multi-typed network. E.g., in a bibliographic network, rc
E. Stability of Objects provide insights about how the terms or authors may evolve

While many of the afore-mentioned definitions quantiffilcross different topical areas.
the behavior ofclusters it is also interesting to quantify the )
evolutionary behavior obbjects The stability of an object G. Effect of Social Influence
quantifies the level to which the object is stable wrt its tdus  Multiple authors may move out of one research area to
or the network. another. But there would still be some authors who may
1) Temporal Stability:An object may appear continuouslynot. We need a metric to quantify the degree to which
over multiple time instants or may appear intermittentian object follows the cluster trend. Consider a vector
Simple temporal stability can be defined as the ratio of thevhich has sizeK?2. Let V'(i,j) denote the movement of
number of time instants the object appears to the numbeaembership probabilities of an objeatfrom clusterc; to
of time instants in the observed time interv@equential clusterc; at time periody + 1 i.e. the influence that cluster
temporal stability can be defined as the ratio of the number; has on clusterc; via object o. Intuitively if cluster ¢;
of time instants the object disappears to the number of tin&luencesc; through objecto, b;(0),+1 should be less than
instants in the observed time intervélaximum sequential b;(o), andb;(o),+1 should be more thah;(o),, otherwise
temporal stability can be defined as the ratio of the maximuriv’(i,j)=0. In the first case,V’(i,j) can be computed as
time interval for which the object is present in the netwask tV’ (i, j) = (bi(0)y — bi(0)y+1) X (b;j(0)y+1 — b;(0)y). Finally,
the number of time instants in the observed time interval. we normalizeV’(z, j) so that all elements add up to 1.



100% 100000 100

Consider another similar vectdf of size K2. We compute g, [FFERRRRRRRRRRNY . ooooncs —wos 2w |

10000 | —2006  —2005

V'(i, j) for every objecb € O and store the average influence so% I"" oy o0 |
values inV. The cosine similarity between the vectdfsand i "III"'"I Hiathonz 0 \ °
- . . " 10
V' provides a good metric to measure the degree to which th o« I .
object follows the trend. This can be calladrmality . §8888288 "SESES
IV. EXPERIMENTS €) (b)

In this section, we will study the power of our tlghtlyFi 2. (a) Evolution in the number of authors per paper (b) &odaws in

. . . . g.
integrated approach of studying evolution and clusterimg jhe pBLP network: #papers vs. rank of a term(left), #papersrask of an
finding interesting cases in bibliographic networks. Wethge author(right)
DBLP network. Such a network affords the ability to examine
appearance of new research areas, cluster appearance rate

for terms, authors and conferences. The goal of this section [ Priorwt | 0.0 [ 02 | 04 [ 06 [ 08 1.0
is to illustrate the power of our techniques in determining | Author | 0.108 | 2.432 | 1.199 | 1.342 | 2.818 | 5.273
) ; . ) . [ Term [ 0.470| 3.105 | 2.168 | 2.222 | 3.646 | 6.024
interesting changes in such a data set. Since the focussof thi —=srr—T 0557 T2 7301 1800 T 7326 3293 | 6.709
paper is to study clustering as a tool for evolutionary asialy
of information networks, the focus of this section is also tg
make interesting observations about the underlying elawiut
with the use of such an approach.

TABLE |
CONSISTENCY VERSUS PRIOR WEIGHT

articular term in the title or the number of papers publishe
y an author follow the expected power laws. One interesting
observation was that the power law curve became more gentle
over time. This is a result of the fact that the size of the
A. Data Set network has increased over time. This suggests that larger

We perform clustering and study of evolution on DBLP datibliographic networks tend to have gentler power law csirve
from 1993 to 2008. This data set contains approximately 654K Effect of Prior Weights
papers, 484K authors, 107K title terms and 3900 conferencestaple | shows the effect of varying the prior weight when

The number of clusters was set to 4. We varied the prigerforming clustering. The use of a higher prior-weightitss
weight between 0 and 1. The priors were specifically us¢dl more consistency and smoothness in the clustering over
for terms. The different node types in the graph were papeffiferent time-periods. We note that the consistency \afise
authors, conferences and terms. Edges exist between papefve increase the prior weight. The increase in prior weight
and author node types, paper and conference node types @pfbases the influence of the previous clustering on thestrr
between paper and term node types. Our algorithm explicitly,stering. Introduction of new nodes in the network camites
assigns paper nodes to particular partitions, and mas@injy flyctuations of the underlying consistency values. Thus,
membership probability distribution for_ other nodes. compared to the original NetClus, we achieve much more
_ We also use a four area data set, which has been used eaglififsistent clusters. Table Il shows the variation in cortiess

in [15]. This data set focuses on four information procegsingefined in subsection I11-B) with increasing prior weight.
related areas. This is a subset of the DBLP data set conainfjotice that the quality decreases initially and then impsoas
approximately 24K papers (with 12K fitle terms) written byye increase the prior weight. The decrease happens because
26K authors in 20 conferences in the four areas of data mining;, |ower prior weight, the clustering is confused betwelea t
databases, information retrieval and machine learning e yior information and the current information while where th
years 1993 to 2008. We study th_e entire DBLP dataset in terfi%or weight is high, the clustering iterations align theremt

of slices and four area dataset in terms of snapshots. information around the prior information and tend to cogeer

B. Evolutionary Analysis of DBLP Data Set to a better local maxima of log likelihood. The prior infor-

mation provide a firm initial clustering. This nature is quit

WeF.preser21t shome w;}tereitm?# reiults for the DB:;P dt‘?&'i‘fferent from other clustering algorithms where it has rbee
;et. lgure = shows that t € autnors per paper nas DEER\yn that the snapshot quality decreases as the congistenc
Increasing over time. We_conjecture that this gener:_;ll UeMtreases. Also note that as prior weight is increased, the
in bib Ilqgraphlc networks is a result of greater °°”ab‘_m. correspondence between two clusters between two shapshots
efforts in recent years as a result of better communicatiopireases. Hence. as against evolutionary K-means dhugter
and networking abilities, as .We" as better software Subpq{urclustering automatically results into matched clust€hus

and enablement of collaborative efforts. We also observatl t. orior weight of 0.8 helps provide both good consistency

the #terms in the title of a paper has also increased OVRI'\ o) a5 good clustering quality. It would be interesting
time. This |s_because the increasing complexity qf researtl caa how quality and consistency change when priors are
has brought in new terms into the vocabulary, while the Ol§egined over other types like authors and conference also and

terms also continue to be used. W'th. Increasing m?t“”ty 8t different time granularities. We leave it as part of fetur
research areas, authors have been writing more detaiitede

papers which need to use both the old terms and the new terms = _
in order to describe the underlying topic. D. Continue, Merge and Split Rates

We also studied the power law behavior of the bibliographic Figure 3 shows the continue, merge and split rates for
network. Figure 2 shows that the number of papers usingddferent types of nodes where prior weight is fixed at 0.8 Th



TABLE Il
QUALITY VARIATION WITH PRIOR WEIGHT

Prior wt 0.0 0.2 0.4 0.6 0.8 1.0
Compactness 4594.175155| 2166.869518| 1978.39471| 2932.194099| 4267.585485| 3972.629098
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Fig. 3. (a) Variation of the merge, continue and split ratgs\riation of Fig. 4. (a) Temporal stability (b) Simple social stability
the appearance and disappearance rates 0.8 =k=1000 At level=1 and prior wt=0.

oo
i
®

0.7 = k=100

k=10

Stability
=]
B

0.

rate values are averaged over all the years from 1993 to 200 £ o2

Also, in each histogram, each bar represents values for or § 33 K
level of the agglomerative clustering. Notice that the tore 3 22 h " °
rate is more than merge and split rates. Also, merge rate ® sssszmEzszzssss
generally lower than the split rate. Looking out for outier ~  ~ "~~~ """ """ EER
we did observe a high split rate in DB cluster of 0.892 and (@)

a high merge rate of 0.8578 for DM cluster for authors in

2002 (denoting the rise of data mining from databases).€rher
is a high merge rate for terms in IR cluster in time periothe graph 4 times in the 16 years in which it was represented.

1998-1999 (possibly due to publications related to ranking€ trend for sequential stability is quite different comgza
techniques). to the simple and maximum sequential stability values.
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Fig. 5. (a) Ranked social stability (b) Influences among the freas

Next, we plot the simple social stability values for the most
temporally stable objects (i.e., objects which were pregen

Figure 3 illustrates the appearance and disappearanc® rg{g data for all the 16 years). Figure 4 shows that on an
for entire DBLP dataset for different typeS. The rate ValU%/erage objects maintain their cluster membership digtdb
are averaged over all the years from 1993 to 2008. A bgpto a degree of 70%. The membership behavior of terms
in each histogram represents values for one level of th@ad conferences in clusters is much more stable as compared
agglomerative clustering. On average, the appearancehendty the membership behavior of authors. This is reasonable
disappearance rates increase as we go deeper into the laweexpect, because the broad topics in the clusters evolve
levels of clustering, which represent finer grained topits @elatively slowly, whereas the authors may move in and out
the blbllographlc network. An intuition for this is as folls. of different topica| areas more rap|d|y We note that such
Authors often publish in different sub-areas in differeeiys, observations about the evolutionary behavior of infororati
as a result of which they can appear to have disappeared fragiworks can be useful in order to identify the object types
that sub-area in that time period. However, the author'ssmajwhich show the most interesting evolution trends over time.
area usually remains the same, and hence the disappearan

rate for authors would be higher in sub-areas than in majO{ type “term” with a prior weight of 0.8. The results are

areas. This broad intuition is true across different kindls - L
evolution of the clustering process illustrated in Figure 5(a). The number of representativiea
; in the ranking was varied at top-= 10,100, 1000. While

In the four area dataset, ML is the most dominant clust ) N .
in the first few years. We observe ML conferences at the t(t) ere is some variation in the results across differentsjear
e results show that higher stability values are achiewed b

in DM and IR clusters for those years. But slowly in late 90g, :
we see IR and DM conferences appearing at the top. ixing k=10 as compared to k=100 or 1000. This suggests that

only the most representative objects in the cluster coatihou
F. Evolution of Individual Nodes be stable, whereas the “modestly” representative objeeals m
ry more significantly.

E. Cluster Appearance and Disappearance

e
%urther, we study ranked social stability for the nodes

While our afore-mentioned observations discuss the evol(f
tion of clusters, we will now study the evolution of individlu ~ Figure 5(b) shows average social influence among different
nodes. We perform these experiments on the entire DBI@search areas using the foarea dataset across 16 years.
dataset. We study the evolution of individual nodes in ternidifferent bars represent different types. We can clearly se
of the stability metrics. Figure 4 shows the different typethe influence between the DB and IR areas. We also notice
of temporal stability values in terms of the number of year$iL to IR influence which is somewhat counter-intuitive. We
The figure shows the number of objects versus the tempotiaihk that this happens because in the first few years, siRce |
stability expressed in terms of number of years. Note that tlvas not much developed, ML authors, conferences and terms
conferences and terms are more stable than the authorsockupy the “IR” cluster. Mutual influence between DM and
stability value of 4 implies that the object disappearedrfro ML is quite natural.



VI. CONCLUSION AND FUTURE WORK

In this paper, we designed a clustering algorithm for
evolution diagnosis of heterogeneous information netaork
Traditionally, clustering has been performed using mincuthis approach tightly integrates the evolution and clister
min-max cut, normalized cut, spectral and density-basei-meprocess, and provides novel insights into the evolutiom kot
ods in homogeneous graph networks. Sun et al. preseniha object level and the clustering level. We studied thdiapp
system called RankClus [14] and then NetClus [15] for clugation of our approach on bibliographic information netisor
tering over heterogeneous information networks. We exté@ndwe provided novel insights for evolution diagnosis on the
NetClus to perform agglomerative evolutionary clusteramgl DBLP data set, and showed the effectiveness of the evolution
then provided metrics to analyse these clusters and measg#@sitive clustering approach for heterogeneous inféomat
evolution. Our method could be extended by building ongetworks.
cluster tree sequence per type similar to [3], [11], whickeha e can further modify the technique to incorporate variable
different number of clusters per type. number of clusters at different time periods. Also, it wobkl
Evolutionary clustering has been studied in some of th@teresting to study the effect on compactness for differen
works [5], [4]. Chakrabarti et al. [4] proposed heuristic- sotime granularities and when priors are defined for other node
lutions to evolutionary hierarchical clustering problemisd types. Such an evolutionary clustering over heterogeneous
evolutionary k-means clustering problems. They introdinge information networks can also be helpful in identifying lers
concepts of consistency of clusters and cluster correspured in the network both in the static as well as evolutionary sens
Chi et al. [5] incorp_orate t.emporal-smoothness in evoluj[ion VII. ACKNOWLEDGEMENTS
ary spectral clustering which provides stable and consiste .
clustering results. They also handle the case when new datd he Work was supported in part by NSF 11S-09-05215, and
points are inserted and old ones are removed over time. WHfi¢ U-S. Army Research Laboratory under Cooperative Agree-
our framework automatically takes care of the new and offent Number W911NF-09-2-0053 (NS-CTA). The views and
data points, we incorporate them separately when evag,atﬁ,pnclusmns contalneq in this document are thos_e of the)mut.h.
the similarity between clusterings. Also, unlike these kgor @nd should not be interpreted as representing the official
we focus on evolution of heterogeneous networks. Mei Bplicies, either expressed or implied, of the Army Research
al. [12] discover and summarize the evolutionary patterins baboratory or the U.S. Government. The U.S. Government is

V. RELATED WORK

themes in a text stream. Kumar et al. [7] study the evolutidi/thorized to reproduce and distribute reprints for Govesmt
of structure within large online social networks. They jerets PUrpPoses notwithstanding any copyright notation here on.

a segmentation of the network into three regions and stuely th
evolution of these regions. The area of evolutionary chirsge [1]
is also closely related to areas like clustering data stse&ve
leave storage and clustering of network data streams asefutu?]
work.

Sun et al. [13] propose a system, GraphScope, which idef
tifies communities in a parameter-free way, using the MDLy
principle. Kim and Han [6] perform evolutionary clustering
using density-based methods. We use NetClus to identifty!
clusters. Similar to their work, we can also track changegs]
in clusters, appearance and disappearance of variougrmdust
over time. Backstrom et al. [2] present an analysis of group/]
formation and evolution in LiveJournal and DBLP. Some ofjg
our evolution metrics are influenced by their work. However,
they define conferences in DBLP as clusters while we havél
typed-clusters obtained using NetClus. Leskovec et al. [§]0]
[9] present a detailed study of network evolution. However,
they do not deal with clustering of these graphs or study
the evolution of clusters. Tang et al. [16] study communit
evolution in a multi-mode network using a spectral framewor[12]
FacetNet [10] provides a framework for analysing commlﬁs]
nities and their evolution. We study evolution of clustens i
much more detail. Apart from that the clusters obtainedgisif4]
the iterative NetClus algorithm have been shown to be more
meaningful and hence studying their evolution is intergsti |15
Asur et al. [1] characterize complex behavioral patterns of
individuals and communities over time. They do not perfori®l
any temporally smoothed clustering.
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