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Abstract—In this paper, we study the problem of evolutionary
clustering of multi-typed objects in a heterogeneous bibliographic
network. The traditional methods of homogeneous clustering
methods do not result in a good typed-clustering. The design
of heterogeneous methods for clustering can help us better
understand the evolution of each of the types apart from the
evolution of the network as a whole. In fact, the problem of
clustering and evolution diagnosis are closely related because of
the ability of the clustering process to summarize the network
and provide insights into the changes in the objects over time.
We present such a tightly integrated method for clustering and
evolution diagnosis of heterogeneous bibliographic information
networks. We present an algorithm, ENetClus, which performs
such an agglomerative evolutionary clustering which is able
to show variations in the clusters over time with a temporal
smoothness approach. Previous work on clustering networks is
either based on homogeneous graphs with evolution, or it does not
account for evolution in the process of clustering heterogeneous
networks. This paper provides the first framework for evolution-
sensitive clustering and diagnosis of heterogeneous information
networks. The ENetClus algorithm generates consistent typed-
clusterings across time, which can be used for further evolution
diagnosis and insights. The framework of the algorithm is
specifically designed in order to facilitate insights about the
evolution process. We use this technique in order to provide
novel insights about bibliographic information networks.

I. I NTRODUCTION

Information networks have become ubiquitous in recent
years because of the large number of networked applications
such as social networks, the web and other linked entities.
For example, academic networks such as DBLP, biological
networks, and massive entity-relation models are all examples
of information networks. Such networks have the common
property that they contain different kinds of entities which
interact with one another. Some of the examples such as
social networks and the web are inherently homogeneous,
since they contain entities of the same type. For example, a
social network contains actors that are linked by friendship
relationships, whereas the web contains documents which are
linked by hyper-links.

Most work in the area of graph and network mining has
focused on the homogeneous domain. However, a heteroge-
neous representation is much richer; for example a richer
representation of a bibliographic network may contain nodes
corresponding to different entities such asauthor, confer-
ence, paper and term. Edges may denote more diverse
relationships such aswritten-by between an author node and

a paper node,contains between a term node and a paper
node,published-in between a paper node and a conference
node. Clearly, the richer representation of a heterogeneous
network makes it powerful; on the other hand it is also much
more challenging for mining purposes. In recent years, there
has been an increasing interest in the area of heterogeneous
information networks. In this paper, we will examine the
problem of clustering and evolution diagnosis in massive
information networks.

Heterogeneous information networks are often encountered
in dynamic environments which are continuously evolving.
The problem of clustering has been studied recently in the
context of non-evolving and static information networks. E.g.,
Sun et al. [15] present NetClus, which is a clustering algorithm
for star schema-based heterogeneous information networks.
The center of the star is termed as thetarget typewhile other
type nodes are connected to this center type and are called as
attribute typenodes. E.g. for the DBLP graph, paper is a target
type while authors, conference, terms are attribute type nodes.
Figure 1 illustrates a net-cluster view of the DBLP network.
The star-schema is a particularly important case, because of
its representational power in a variety of scenarios.
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Fig. 1. Net-cluster view of DBLP network

While NetClus is a powerful algorithm for determining
heterogeneous clusters, it incorporates no notion of evolution.
NetClus, if used over multiple snapshots, would produce
clusters which would have no correspondence with the ones
in the previous snapshot. This effect becomes much more
prominent because NetClus clusters depend immensely on
the initial seeds. The problem of evolutionary clustering has
been studied in the context ofhomogeneous networks[4]. The
basic principle is to create a clustering which focuses on both
maintaining high quality clusters, and on creating clusters in
which a natural correspondence can be maintained among the
clusters across different snapshots. This broad techniqueis
referred to astemporal smoothing. A variety of techniques



[5], [12] have been designed for determining evolutionary
clusters using temporal smoothing. However, these techniques
are inherently designed for the homogeneous case. For hetero-
geneous networks, we wish to cluster entire entity (group of
related objects) as a whole rather than clustering of individual
types separately. It is challenging to cluster the entities(each
consisting of multiple types of nodes) with temporal smooth-
ness such that the snapshot quality is maintained.

In this paper, we will study the problem of evolutionary
clustering and diagnosis in information networks. We will
take a broader view of clustering and evolution analysis as
two tightly integrated problems which can be used in order
to derive interesting insights from data. This is especially true
in the case of heterogeneous information networks, since one
can study how the trends in the different kinds of entities
are affected by one another. For example, in an authorship
network, evolutionary clustering can be combined with careful
evolutionary diagnosis and metrics to determine merges and
splits of different topical areas, authorship evolution and
topical evolution. Such insights are critical in understanding
the nature of the changes which occur in dynamic and rapidly
evolving information networks. Since clustering can be viewed
as a network summarization technique, it is a natural approach
for integrating with the problem of evolutionary diagnosisin
order to understand and summarize the key changes which
may occur in a network over time.

In this paper,we make the following contributions:

1. While the problem of evolutionary clustering has been
studied for the homogeneous case, the problem is much
more challenging for the heterogeneous case, because of the
different entity-types which may evolve over time. This paper
is the first to present an evolutionary clustering algorithm
for heterogeneous networks. Our algorithm returns temporally
smoothed, high quality agglomerative clusters, and leverages
on some concepts derived from the NetClus framework.

2. We tightly integrate the problems of evolutionary cluster-
ing and diagnosis; the evolutionary diagnosis is achieved by
defining metrics and techniques to characterize the clustering
behavior over time. For example, we can design techniques
to identify the birth, continuation and slow disappearanceof
a community. We also study the influence of one community
onto another and flux between two different kinds of commu-
nities. Our techniques are general enough to deal with different
time granularities and entity types.

3. One of the additional results of this effort is to provide
novel insights into the evolution of bibliographic networks
with the use of the techniques proposed in this paper. As a
specific example, we use the DBLP dataset in order to provide
novel insights about the evolution process.

The paper is organized as follows. In Section II, we first
present our extension to the NetClus framework. In Section III,
we define evolution diagnosis methods and metrics. We present
experimental results on the DBLP dataset in Section IV. We
then present an overview of related work in Section V. We
conclude with a summary and future work in Section VI.

II. T HE ENETCLUS ALGORITHM

In this section, we present our algorithm for clustering of
an evolutionary information network. The broad approach is
to use a probabilistic generative model in which we model
the probability of generation of different objects from each
cluster. A maximum likelihood technique is used to evaluate
the posterior probability of presence of an object in a cluster.
The conditionals (i.e., probability of the presence of an object
in a cluster) are computed using ranking of object within
current clusters and representativeness from previous cluster-
ing. The priors (probability of clusters) are estimated using
an Expectation Maximization approach. We first describe
the problem formulation and the methods for computing the
underlying probabilities. Then we describe the ranking and
the clustering parts of the algorithm, with a special emphasis
on how the dynamic evolution affects different parts of the
NetClus framework.

A. Problem Formulation

Given different snapshots of a graph, each of which contain
nodes of multiple types, our aim is to find a consistent
agglomerative clustering of the graph snapshots across time.
Consistency refers to our ability to relate the clusters to one
another in different snapshots, so that it may be better possible
to diagnose the evolution process. LetGS denote the graph
sequence{Gi}

N
i=1 where each of the graphsGi is a snapshot

taken at the time instant{yi}Ni=1. Given the number of levels
L and the number of clustersK, we would like to obtain a
net-cluster tree sequenceCTS for the graph sequenceGS.

Definition 2.1 (Net-Cluster):A net-cluster c of a graph
G(V,E) is a subgraphG′(V ′, E′) such thatV ′ ⊆ V and
E′ ⊆ E and ∀e ∈ E, weight We(E) = We(E

′). Let
bc : V ′ → [0, 1] denote the probability with which an object
o ∈ V ′ belongs to clusterc. If o is a target type object,bc(o)
is either 0 or 1; for attribute type objectso, bc(o) ∈ [0, 1].

Definition 2.2 (Net-Cluster Tree):A net-cluster treeCT
for a graphG is a tree withL levels (level 1 being the root
and levelL being the leaves) and branching factorK. Root of
CT corresponds to the graphG. Children nodes{nci}Ki=1 of
a noden store theK net-clusters{ci}Ki=1 obtained as a result
of the clustering of the subgraphGn(Vn, En) at noden. The
distribution of the target objects within each of the children
nodes of a noden forms a disjoint partition of target objects
in noden. An attribute type objecto ∈ Vn belongs to the child
nodenci with probability bi(o). Children nodes of a noden
are ordered.

Definition 2.3 (Net-cluster Tree Sequence):A net-cluster
tree sequenceCTS corresponding to a graph sequenceGS
is a sequence of net-cluster trees{CTi}

N
i=1 where CTi

corresponds to time instantyi. Each of the trees in the
sequence have the same branching factor and same number
of levels. The children of every node in each of the trees
is ordered in the sense that first child of a nodeni in CTi

corresponds to the first child of a similar nodenj in CTj .
We aim at generating such a net-cluster tree sequenceCTS
for a graph sequenceGS such that the trees are consistent and
represent high-quality clusters.



B. ENetClus Framework

To perform evolutionary clustering in a heterogeneous
network, one could use any of the homogeneous clustering
algorithms to cluster each type of nodes individually. But that
would not guarantee that all the objects related to same entity
lie in the same cluster and also the mutual information between
different types of objects would not be exploited. To achieve
agglomerative temporally smoothed clusters, we exploit a
natural variation of the NetClus algorithm. NetClus performs
iterative ranking and clustering. We use the knowledge from
the current snapshot clustering to initialize the clustersfor
the next snapshot and also to influence the ranking of objects
in these new clusters using the priors. Note that the priors
are propagated in the forward direction as time progresses.
This means that the algorithm can be executed as an online
evolutionary clustering algorithm. Supplying good priorsac-
tually improves the quality of NetClus algorithm. Thus, with
greater consistency, we achieve better quality unlike other
evolutionary clustering algorithms. Algorithm 1 shows our
framework. We explain each of the steps in further subsections.

Algorithm 1 NetClus with Evolution-Aware Priors

1: Priors: Initialize prior probabilities{P (o|ck)}
K
k=1.

2: Initialize: Generate initial net-clusters.{c0k}
K
k=1.

3: Rank: Build probabilistic generative model for each net-
cluster, i.e.,{P (o|ctk)}

K
k=1.

4: Cluster-target: Compute(p(ctk|o)) for target objects and
adjust their cluster assignments.

5: Iterate: Repeat steps 3 and 4 until the clusters don’t change
significantly.

6: Cluster-attribute: Calculatep(c∗k|o) for each attribute ob-
ject in each net-cluster.

7: return p(c∗k|o)

C. Initialization of Priors and Net-Clusters

At the first snapshot, which is denoted byy1, prior probabil-
ities are defined intuitively. E.g., if we believe that the data has
4 clusters, we can define high prior probabilities for the terms
representative of each cluster. For other time instants, the prior
probabilities{P (o|ck)}

K
k=1 are defined as follows. The prior

probability of an objecto belonging to clusterck is defined
as its representativeness in the corresponding cluster within
the net-cluster tree for the previous time instant (step 1).The
use of these priors ensures temporal smoothness, because the
computation of cluster membership in a particular snapshotis
affected by the membership behavior in previous snapshots.
The representativeness of an objecto in clusterc depends on
the probability of generating that object (given clusterc), and
is inversely proportional to the entropy of the cluster member-
ship distribution of the objecto. An object with a distribution
peaked at clusterc will have a high representativeness value
for clusterc. Subsection II-D illustrates how the ranking part
of the algorithm uses these priors.

The initialization of clusters should be done in a way
that provides a smooth transition from the clustering in the
previous snapshot. Hence, the algorithm generates initialpar-
titions for target objects as follows. Let{oi}Li=1 be theL

attribute type objects connected to an objecto. Consider a
probability distribution using the priors mentioned in step 1,
{pk =

∑L
i=1 P (oi|ck)}

K
k=1. A target objecto is assigned to

cluster ck with max probabilitypk. Then initial net-clusters
are induced from the original network according to these
partitions, i.e.,{c0k}

K
k=1. This corresponds to step 2 of the

algorithm. Initializing clusters using representativeness values
ensures faster convergence to a better local maxima.

D. Ranking and Clustering

In step 3, the algorithm builds ranking-based probabilistic
generative model for each net-cluster, i.e.,{P (o|ctk)}

K
k=1.

The ranking process constructs representative objects from
the different clusters. The corresponding probability canbe
decomposed by conditioning on the type of the object in the
corresponding cluster. In other words, we haveP (o|ck) =
P (To|ck) × P (o|To, ck). P (To|ck) is estimated as the maxi-
mum likelihood estimate of typeTo in clusterck. P (o|To, ck)
can be computed using two different notions of ranking. For
some attributes, we can use a frequency-based approach of
estimating this probability. For example, in a bibliographic
information network, the probability for a term is the weighted
ratio of number of papers containing this term to the total
number of papers, where weights are associated with every
paper.P (o|To, ck) can also be computed using authority-based
ranking. In this case, ranking of an objecto is estimated by
propagating authority scores from objects of other attribute
types via the target type. Finally, the overall probability
P (o|To, ck) is computed as a weighted sum of ranking-based
P (o|To, ck) and the priors generated in step 1. The prior
weight (λP ) controls how much the current ranking and
therefore the current clustering depends on the clusteringat the
previous time instant. Thus,λP controls the tradeoff between
the snapshot clustering quality and temporal smoothness.

By using the ranked attribute object probabilities, we can
compute the conditional probability of a target objecto as
P (o|ck) =

∏

x∈NGk
(o) P (Tx|ck)

W (o,x) × P (x|Tx, ck)
W (o,x),

whereNGk
is the neighborhood set of objects in subgraphGk.

In step 4, the algorithm calculates the posterior probabilities
for each target object. This is done by iterating over the
EM equationspt(ck|o) ∝ p(o|ck) × pt(ck) and pt+1(ck) =
∑|O|

i=1 p
t(ck|oi)/|O|.

Once the posterior probabilitiesP (ck|o) have been com-
puted, these can be used to express the objecto as a vector
vo = (p(c1|o), p(c2|o), ...p(cK |o)). This new vector space can
be leveraged for similarity computation and object assignment.
By using previous cluster assignments, vectorv for the cluster
centroids is computed as an average of objects belonging to
that cluster. The objecto is re-assigned to a cluster, by using
the cosine similarity value betweenvo and cluster centroids.

The steps 3 and 4 are repeated until the clusters do not
change significantly, i.e.,{c∗k}

K
k=1 = {ctk}

K
k=1 ≈ {ct−1

k }Kk=1

in theK-dimensional vector space.
Finally, in step 6, posterior probabilities for each attribute

object (p(c∗k|o)) in each net-cluster are computed using the
posterior probabilities of its neighboring target objects. Note
that the way the priors are propagated automatically ensures



matching of the clusters at all levels in the hierarchy. Thisis
another advantage of our maximum likelihood based model
compared to other evolutionary clustering schemes where
greedy methods are used to find corresponding clusters across
different snapshots.

E. Complexity Analysis

As mentioned in [15], clustering once requiresO(c1|E| +
c2N) time, whereN is the number of target objects. A net-
cluster tree withL levels is created after clustering of all
internal nodes i.e.,K

L−1−1
K−1 nodes. But, on an average, the size

of the graph at a node decreasesK times per level. Hence,
the creation of a cluster tree requiresO(L × (c1|E| + c2N))
time. The time required to compute the entireCTS would also
depend on the number of time granularities and the number of
time instants per time granularity. The exact complexity would
depend on how dense the graph becomes at different instants
and intervals of time.

III. E VOLUTION DIAGNOSIS AND METRICS

In this section, we discuss methods for evolution diag-
nosis and metrics. We define metrics for evolution quan-
tification such as appearance and disappearance rate, con-
tinue/merge/split rate, stability and sociability of objects. We
further note that an algorithmic tradeoff exists between cluster-
ing quality and the consistency of the clusters over time. While
most of the properties studied in this section are properties of
thedata, the latter are the properties of the algorithm in terms
of the level of smoothness. We examine methods to quantify
and understand this tradeoff at the algorithmic level.

A. Quantifying Consistency

ENetClus performs a clustering of the attribute type nodes,
in which membership probabilities are assigned to nodes. Let
the current data set being clustered belong to the time instant y
and let the type we are interested in bet. Let the prior weight
be fixed toλP , number of clusters beK and current level be
l. Then, the membership probability of objecto of type t to
clusterci is denoted by{bi(o)}Ki=1.

Intuitively, consistency between two sets of cluster mem-
bership distributions is the degree of similarity between
distributions of the intersecting objects. This implies that
the insights derived from one set of the clusters should
continue to hold valid over the next set, unless a major
evolution has occurred. We can define consistency of the
clustering c as the average cosine similarity between the
cluster membership probability distributions of an objectat
time y1 and time y2. consistency(clusteringc, y1, y2)=
1

|O|

∑

o∈O

∑

K

k=1
bk(o)y1×bk(o)y2

√

∑

K

k=1
bk(o)y1

2

√

∑

K

k=1
bk(o)y2

2

Such a comparison of consistency between two sets of
clusters should be based only on the objects present in both
time instants. Therefore, the setO used for the computation
process denotes the set of intersecting objects at timey1
and timey2. Furthermore, we can define consistency for a
particular level of the hierarchical clustering as the average
consistency of sets of clusters at that level, each weighted

by the number of objects in that set of clusters. Overall
consistency is then an average of the consistencies at each
level. Finally, we can express consistency across different
types as a weighted sum of consistency with respect to each
of the types.

The above definition defines the consistency only over
successivesnapshots. However, it can be easily generalized
to the case of arbitrary intervals, by using the objects in the
corresponding intervals. Furthermore, we can define achained
path consistencyover a sequence of intervals as the product
of consistencies over these corresponding intervals.

B. Quantifying Snapshot Clustering Quality

ENetClus represents each objecto in aK-dimensional space
when performing clustering. We could use the average ratio of
intra-cluster similarity to inter-cluster similarity as ameasure
of the quality of a cluster. This is also calledcompactness.
Higher values of compactness usually imply that the clustering
is of better quality . The compactnessC is defined as follows:

C = 1
|O|

∑K
k=1

∑|Ok|
i=1

s(oki,ck)
∑

k′ 6=k
s(oki,c′k)/(K−1)

whereO is the set of the target objects,ck is the centroid for
clusterk and s(a, b) measures the cosine similarity between
K-dimensional vectorsa andb.

We can define averageentropy of a cluster asE =
− 1

|O|

∑K
k=1

∑|Ok|
o=1 bk(o) × log(bk(o)). Lower entropy means

that on an average the objects belong to a particular cluster
with high probability and so the clustering is of higher quality.

C. Cluster Merge and Splits

As the network evolves, different clusters can merge into
a single cluster or a cluster can split into multiple clusters.
Our soft clustering process has a fixed number of clusters for
each time period. However, we can still study the merging and
splitting of clusters as follows. Consider a set of clustersc at
level l at time y. If at time y + 1, a substantial part of the
membership probabilities moves out of a clusterci to other
clusters at the same level, then we can say that the cluster
ci has split into multiple parts. Similarly, if clusterci has
obtained a substantial part of membership probabilities from
other clusters at the same level at timey − 1, then we can
claim that clusterci has been formed from a merge of other
clusters. While measuring the amount of merge or split of a
clusterci, we should consider only those objects which occur
in the network at both the times i.e., aty and y − 1 when
studying the “merge” phenomena and aty and y + 1 when
studying the “split” phenomena.

Continue rate: This is the rate at which the objects appear
to continue in the cluster. If the membership probability of
an object belonging to clusterci decreases, ratio of new
probability to old probability is the continue rate of the object
in cluster ci. If the membership probability increases, the
object is said to continue in the cluster with continue rate
of 1.

Continue rate of clusterci = 1
|O|

∑

o∈O min(
bi(o)y

bi(o)y−1
, 1)

whereO is the set of the objects that occur in the network
both aty andy − 1.



Merge rate: This is the rate at which the objects appear to
merge into a particular clusterci from all other clusters. An
object is said to be merging into a clusterci if its cluster
membership probability forci increases over time. If the
cluster membership probability decreases for the object wrt
clusterci, it contributes0 to the merge rate of clusterci.

Merge rate of clusterci = 1
|O|

∑

o∈O max(
bi(o)y−bi(o)y−1

bi(o)y
, 0)

Split rate: This is the rate at which the objects appear
to split out of a particular clusterci to all other clusters.
An object is said to be splitting out from a clusterci if its
cluster membership probability forci decreases over time. If
the cluster membership probability increases for the object wrt
clusterci, it contributes0 to the split rate of clusterci.

Split rate of clusterci = 1
|O|

∑

o∈O max(
bi(o)y−1−bi(o)y

bi(o)y−1
, 0)

Such rates can help us define interesting characteristics of
the evolving data. E.g., in the case of bibliographic data, the
merge and split rates can help us determine the influence of
different research areas on another. The ability to determine
both the evolutions of the clusters as well as the interactions
of different parts of the network is key to the inference of
interesting evolutionary insights in a multi-typed network.

D. Cluster Appearance and Disappearance

A cluster can be considered new, when most of its objects
were not present in the previous time period. This can be
formally defined in terms of the membership probabilities as

follows: Appearance rate=

∑

o∈O′ bc(o)y
∑

o∈O′′ bc(o)y

Here, the setO′ consists of objects which were not present
at time y − 1 and are present at timey. The setO′′ consists
of all objects in the cluster at timey.

Similarly, a cluster can be considered to be disappearing if
most of the objects in it are absent at timey+1. Disappear-

ance rate=

∑

o∈O′′′ bc(o)y
∑

o∈O′′ bc(o)y

where the setO′′′ consists of objects which were present at
time y and are not present at timey + 1 and setO′′ consists
of all objects in the cluster at timey.

E. Stability of Objects

While many of the afore-mentioned definitions quantify
the behavior ofclusters, it is also interesting to quantify the
evolutionary behavior ofobjects. The stability of an object
quantifies the level to which the object is stable wrt its cluster
or the network.

1) Temporal Stability:An object may appear continuously
over multiple time instants or may appear intermittently.
Simple temporal stability can be defined as the ratio of the
number of time instants the object appears to the number
of time instants in the observed time interval.Sequential
temporal stability can be defined as the ratio of the number
of time instants the object disappears to the number of time
instants in the observed time interval.Maximum sequential
temporal stability can be defined as the ratio of the maximum
time interval for which the object is present in the network to
the number of time instants in the observed time interval.

2) Simple Social Stability:The concept of social stability
is based on cluster membership, and how frequently objects
shift clusters. We definesimple social stabilityas the ratio of
number of times the object is retained in the same cluster to
number of time instants it appears in the data. For soft clusters,
we can assign every object to the cluster for which it has
the maximum membership probability. We can also adapt the
definition as the ratio of similarity between cluster membership
distribution for the object over consecutive time instantsto the
number of times the object appears in the data.

3) Ranked Social Stability:The ranked social stability
defines the level of stability among themost representative
objects in the cluster. This is a natural metric for a clus-
tering process which incorporates multi-typed ranking into
the underlying algorithm. LetLy and Ly+1 be the list of
the top k representative objects in a cluster at timey and
y + 1. Ranked social stability of clusterc can be formally
evaluated by |Ly∩Ly+1|

|Ly|
. By varying the value ofk, it is

possible to gain deeper insights into the effects of the evolution
on the most representative objects in the cluster. Since the
most representative objects in the cluster can provide intuitive
insights into the nature of the clusters, this provides a different
perspective on how the clusters may have changed over time.

F. Sociability of Objects

Sociability of an object is the degree to which it interacts
with different clusters. An object which belongs to many
clusters is more sociable compared to one which belongs to a
single cluster. It is a measure of the entropy of the membership
of the object to different clusters. Therefore, social stability

over a time intervalI can be defined as−
∑

i
pi×log(pi)

log(K) where
K is the number of clusters andpi is the ratio of number of
times the object belongs to clusteri to the number of time
instants in intervalI for which the object was present in the
data. For soft clusters,pi can be defined as the ratio of sum of
membership probability of the object in clusteri over I to the
number of time instants in intervalI for which the object was
present in the data. This can often provide novel insights ina
multi-typed network. E.g., in a bibliographic network, it can
provide insights about how the terms or authors may evolve
across different topical areas.

G. Effect of Social Influence

Multiple authors may move out of one research area to
another. But there would still be some authors who may
not. We need a metric to quantify the degree to which
an object follows the cluster trend. Consider a vectorV ′

which has sizeK2. Let V ′(i, j) denote the movement of
membership probabilities of an objecto from cluster ci to
clustercj at time periody + 1 i.e. the influence that cluster
ci has on clustercj via object o. Intuitively if cluster ci
influencescj through objecto, bi(o)y+1 should be less than
bi(o)y and bj(o)y+1 should be more thanbj(o)y, otherwise
V’(i,j)=0. In the first case,V ′(i, j) can be computed as
V ′(i, j) = (bi(o)y − bi(o)y+1)× (bj(o)y+1 − bj(o)y). Finally,
we normalizeV ′(i, j) so that all elements add up to 1.



Consider another similar vectorV of sizeK2. We compute
V ′(i, j) for every objecto ∈ O and store the average influence
values inV . The cosine similarity between the vectorsV and
V ′ provides a good metric to measure the degree to which the
object follows the trend. This can be callednormality .

IV. EXPERIMENTS

In this section, we will study the power of our tightly
integrated approach of studying evolution and clustering in
finding interesting cases in bibliographic networks. We usethe
DBLP network. Such a network affords the ability to examine
appearance of new research areas, cluster appearance rate
for terms, authors and conferences. The goal of this section
is to illustrate the power of our techniques in determining
interesting changes in such a data set. Since the focus of this
paper is to study clustering as a tool for evolutionary analysis
of information networks, the focus of this section is also to
make interesting observations about the underlying evolution
with the use of such an approach.

A. Data Set

We perform clustering and study of evolution on DBLP data
from 1993 to 2008. This data set contains approximately 654K
papers, 484K authors, 107K title terms and 3900 conferences.
The number of clusters was set to 4. We varied the prior
weight between 0 and 1. The priors were specifically used
for terms. The different node types in the graph were papers,
authors, conferences and terms. Edges exist between paper
and author node types, paper and conference node types and
between paper and term node types. Our algorithm explicitly
assigns paper nodes to particular partitions, and maintains a
membership probability distribution for other nodes.

We also use a four area data set, which has been used earlier
in [15]. This data set focuses on four information processing
related areas. This is a subset of the DBLP data set containing
approximately 24K papers (with 12K title terms) written by
26K authors in 20 conferences in the four areas of data mining,
databases, information retrieval and machine learning over the
years 1993 to 2008. We study the entire DBLP dataset in terms
of slices and four area dataset in terms of snapshots.

B. Evolutionary Analysis of DBLP Data Set

We present some interesting results for the DBLP data
set. Figure 2 shows that the #authors per paper has been
increasing over time. We conjecture that this general trend
in bibliographic networks is a result of greater collaborative
efforts in recent years as a result of better communications
and networking abilities, as well as better software support
and enablement of collaborative efforts. We also observed that
the #terms in the title of a paper has also increased over
time. This is because the increasing complexity of research
has brought in new terms into the vocabulary, while the old
terms also continue to be used. With increasing maturity of
research areas, authors have been writing more detail-oriented
papers which need to use both the old terms and the new terms
in order to describe the underlying topic.

We also studied the power law behavior of the bibliographic
network. Figure 2 shows that the number of papers using a
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Fig. 2. (a) Evolution in the number of authors per paper (b) Power laws in
the DBLP network: #papers vs. rank of a term(left), #papers vs. rank of an
author(right)

TABLE I
CONSISTENCY VERSUS PRIOR WEIGHT

Prior wt 0.0 0.2 0.4 0.6 0.8 1.0
Author 0.108 2.432 1.199 1.342 2.818 5.273
Term 0.470 3.105 2.168 2.222 3.646 6.024
Conf 0.567 2.730 1.800 1.326 3.293 6.709

particular term in the title or the number of papers published
by an author follow the expected power laws. One interesting
observation was that the power law curve became more gentle
over time. This is a result of the fact that the size of the
network has increased over time. This suggests that larger
bibliographic networks tend to have gentler power law curves.

C. Effect of Prior Weights

Table I shows the effect of varying the prior weight when
performing clustering. The use of a higher prior-weight results
in more consistency and smoothness in the clustering over
different time-periods. We note that the consistency values rise
as we increase the prior weight. The increase in prior weight
increases the influence of the previous clustering on the current
clustering. Introduction of new nodes in the network can result
in fluctuations of the underlying consistency values. Thus,
compared to the original NetClus, we achieve much more
consistent clusters. Table II shows the variation in compactness
(defined in subsection III-B) with increasing prior weight.
Notice that the quality decreases initially and then improves as
we increase the prior weight. The decrease happens because
for lower prior weight, the clustering is confused between the
prior information and the current information while when the
prior weight is high, the clustering iterations align the current
information around the prior information and tend to converge
to a better local maxima of log likelihood. The prior infor-
mation provide a firm initial clustering. This nature is quite
different from other clustering algorithms where it has been
shown that the snapshot quality decreases as the consistency
increases. Also note that as prior weight is increased, the
correspondence between two clusters between two snapshots
increases. Hence, as against evolutionary K-means clustering,
our clustering automatically results into matched clusters. Thus
a prior weight of 0.8 helps provide both good consistency
as well as good clustering quality. It would be interesting
to see how quality and consistency change when priors are
defined over other types like authors and conference also and
at different time granularities. We leave it as part of future
work.

D. Continue, Merge and Split Rates

Figure 3 shows the continue, merge and split rates for
different types of nodes where prior weight is fixed at 0.8. The



TABLE II
QUALITY VARIATION WITH PRIOR WEIGHT

Prior wt 0.0 0.2 0.4 0.6 0.8 1.0
Compactness 4594.175155 2166.869518 1978.39471 2932.194099 4267.585485 3972.629098
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Fig. 3. (a) Variation of the merge, continue and split rates (b) Variation of
the appearance and disappearance rates

rate values are averaged over all the years from 1993 to 2008.
Also, in each histogram, each bar represents values for one
level of the agglomerative clustering. Notice that the continue
rate is more than merge and split rates. Also, merge rate is
generally lower than the split rate. Looking out for outliers,
we did observe a high split rate in DB cluster of 0.892 and
a high merge rate of 0.8578 for DM cluster for authors in
2002 (denoting the rise of data mining from databases). There
is a high merge rate for terms in IR cluster in time period
1998-1999 (possibly due to publications related to ranking
techniques).

E. Cluster Appearance and Disappearance

Figure 3 illustrates the appearance and disappearance rates
for entire DBLP dataset for different types. The rate values
are averaged over all the years from 1993 to 2008. A bar
in each histogram represents values for one level of the
agglomerative clustering. On average, the appearance and the
disappearance rates increase as we go deeper into the lower
levels of clustering, which represent finer grained topics of
the bibliographic network. An intuition for this is as follows.
Authors often publish in different sub-areas in different years,
as a result of which they can appear to have disappeared from
that sub-area in that time period. However, the author’s major
area usually remains the same, and hence the disappearance
rate for authors would be higher in sub-areas than in major
areas. This broad intuition is true across different kinds of
evolution of the clustering process.

In the four area dataset, ML is the most dominant cluster
in the first few years. We observe ML conferences at the top
in DM and IR clusters for those years. But slowly in late 90s,
we see IR and DM conferences appearing at the top.

F. Evolution of Individual Nodes

While our afore-mentioned observations discuss the evolu-
tion of clusters, we will now study the evolution of individual
nodes. We perform these experiments on the entire DBLP
dataset. We study the evolution of individual nodes in terms
of the stability metrics. Figure 4 shows the different types
of temporal stability values in terms of the number of years.
The figure shows the number of objects versus the temporal
stability expressed in terms of number of years. Note that the
conferences and terms are more stable than the authors. A
stability value of 4 implies that the object disappeared from
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Fig. 5. (a) Ranked social stability (b) Influences among the four areas

the graph 4 times in the 16 years in which it was represented.
The trend for sequential stability is quite different compared
to the simple and maximum sequential stability values.

Next, we plot the simple social stability values for the most
temporally stable objects (i.e., objects which were present in
our data for all the 16 years). Figure 4 shows that on an
average objects maintain their cluster membership distribution
upto a degree of 70%. The membership behavior of terms
and conferences in clusters is much more stable as compared
to the membership behavior of authors. This is reasonable
to expect, because the broad topics in the clusters evolve
relatively slowly, whereas the authors may move in and out
of different topical areas more rapidly. We note that such
observations about the evolutionary behavior of information
networks can be useful in order to identify the object types
which show the most interesting evolution trends over time.

Further, we study ranked social stability for the nodes
of type “term” with a prior weight of 0.8. The results are
illustrated in Figure 5(a). The number of representative objects
in the ranking was varied at top-k = 10, 100, 1000. While
there is some variation in the results across different years,
the results show that higher stability values are achieved by
fixing k=10 as compared to k=100 or 1000. This suggests that
only the most representative objects in the cluster continue to
be stable, whereas the “modestly” representative objects may
vary more significantly.

Figure 5(b) shows average social influence among different
research areas using the fourarea dataset across 16 years.
Different bars represent different types. We can clearly see
the influence between the DB and IR areas. We also notice
ML to IR influence which is somewhat counter-intuitive. We
think that this happens because in the first few years, since IR
was not much developed, ML authors, conferences and terms
occupy the “IR” cluster. Mutual influence between DM and
ML is quite natural.



V. RELATED WORK

Traditionally, clustering has been performed using mincut,
min-max cut, normalized cut, spectral and density-based meth-
ods in homogeneous graph networks. Sun et al. present a
system called RankClus [14] and then NetClus [15] for clus-
tering over heterogeneous information networks. We extended
NetClus to perform agglomerative evolutionary clusteringand
then provided metrics to analyse these clusters and measure
evolution. Our method could be extended by building one
cluster tree sequence per type similar to [3], [11], which have
different number of clusters per type.

Evolutionary clustering has been studied in some of the
works [5], [4]. Chakrabarti et al. [4] proposed heuristic so-
lutions to evolutionary hierarchical clustering problemsand
evolutionary k-means clustering problems. They introducethe
concepts of consistency of clusters and cluster correspondence.
Chi et al. [5] incorporate temporal smoothness in evolution-
ary spectral clustering which provides stable and consistent
clustering results. They also handle the case when new data
points are inserted and old ones are removed over time. While
our framework automatically takes care of the new and old
data points, we incorporate them separately when evaluating
the similarity between clusterings. Also, unlike these works,
we focus on evolution of heterogeneous networks. Mei et
al. [12] discover and summarize the evolutionary patterns of
themes in a text stream. Kumar et al. [7] study the evolution
of structure within large online social networks. They present
a segmentation of the network into three regions and study the
evolution of these regions. The area of evolutionary clustering
is also closely related to areas like clustering data streams. We
leave storage and clustering of network data streams as future
work.

Sun et al. [13] propose a system, GraphScope, which iden-
tifies communities in a parameter-free way, using the MDL
principle. Kim and Han [6] perform evolutionary clustering
using density-based methods. We use NetClus to identify
clusters. Similar to their work, we can also track changes
in clusters, appearance and disappearance of various clusters
over time. Backstrom et al. [2] present an analysis of group
formation and evolution in LiveJournal and DBLP. Some of
our evolution metrics are influenced by their work. However,
they define conferences in DBLP as clusters while we have
typed-clusters obtained using NetClus. Leskovec et al. [8],
[9] present a detailed study of network evolution. However,
they do not deal with clustering of these graphs or study of
the evolution of clusters. Tang et al. [16] study community
evolution in a multi-mode network using a spectral framework.
FacetNet [10] provides a framework for analysing commu-
nities and their evolution. We study evolution of clusters in
much more detail. Apart from that the clusters obtained using
the iterative NetClus algorithm have been shown to be more
meaningful and hence studying their evolution is interesting.
Asur et al. [1] characterize complex behavioral patterns of
individuals and communities over time. They do not perform
any temporally smoothed clustering.

VI. CONCLUSION AND FUTURE WORK

In this paper, we designed a clustering algorithm for
evolution diagnosis of heterogeneous information networks.
This approach tightly integrates the evolution and clustering
process, and provides novel insights into the evolution both at
the object level and the clustering level. We studied the appli-
cation of our approach on bibliographic information networks.
We provided novel insights for evolution diagnosis on the
DBLP data set, and showed the effectiveness of the evolution-
sensitive clustering approach for heterogeneous information
networks.

We can further modify the technique to incorporate variable
number of clusters at different time periods. Also, it wouldbe
interesting to study the effect on compactness for different
time granularities and when priors are defined for other node
types. Such an evolutionary clustering over heterogeneous
information networks can also be helpful in identifying outliers
in the network both in the static as well as evolutionary sense.
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