
Hierarchical Subspace Sampling: A Unified Framework for
High Dimensional Data Reduction, Selectivity Estimation

and Nearest Neighbor Search

Charu C. Aggarwal
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

charu@us.ibm.com

ABSTRACT
With the increased abilities for automated data collection
made possible by modern technology, the typical sizes of
data collections have continued to grow in recent years. In
such cases, it may be desirable to store the data in a re-
duced format in order to improve the storage, transfer time,
and processing requirements on the data. One of the chal-
lenges of designing e�ective data compression techniques is
to be able to preserve the ability to use the reduced for-
mat directly for a wide range of database and data mining
applications. In this paper, we propose the novel idea of
hierarchical subspace sampling in order to create a reduced
representation of the data. The method is naturally able
to estimate the local implicit dimensionalities of each point
very e�ectively, and thereby create a variable dimensional-
ity reduced representation of the data. Such a technique
has the advantage that it is very adaptive about adjusting
its representation depending upon the behavior of the im-
mediate locality of a data point. An interesting property
of the subspace sampling technique is that unlike all other
data reduction techniques, the overall e�ciency of compres-
sion improves with increasing database size. This is a highly
desirable property for any data reduction system since the
problem itself is motivated by the large size of data sets. Be-
cause of its sampling approach, the procedure is extremely
fast and scales linearly both with data set size and dimen-
sionality. Furthermore, the subspace sampling technique is
able to reveal important local subspace characteristics of
high dimensional data which can be harnessed for e�ective
solutions to problems such as selectivity estimation and ap-
proximate nearest neighbor search.

1. INTRODUCTION
In recent years, the advances in hardware technology have
made it possible to collect large amounts of data in many
applications. Such data sets are often very high dimensional.

Examples of such domains include supermarket data, multi-
media data and telecommunication applications. This often
results in massive data tables whose sizes are of the order of
tera-bytes. In such cases, it is desirable to reduce the data
in order to save on critical system resources such as stor-
age space and transfer time of large �les. In addition, many
database applications can be implemented more e�ciently
on reduced representations of the data.

A well known technique for dimensionality reduction is the
method of Singular Value Decomposition [9, 15] (SVD),
which projects the data into a lower dimensional subspace.
The idea is to transform the data into a new orthonormal
coordinate system in which the second order correlations
are eliminated. In typical applications, the resulting axis-
system has the property that the variance of the data along
many of the new dimensions is very small [15]. These di-
mensions can then be eliminated, a process resulting in a
compact representation of the data with some loss of repre-
sentational accuracy. However, the dimensionality reduction
technique does not provide hard bounds on the deviation of
a record from its true value, and is prohibitively expensive
for increasing data dimensionality. Even though a variety of
other compression techniques [4, 12, 19] provide such guar-
antees, dimensionality reduction methods are more popular
because of their use of multidimensional representations for
the compressed format. Such representations allow the use
of database applications such as indexing directly on the
reduced representation without a �rst phase of reconstruc-
tion. On the other hand, the multidimensional representa-
tion is also a constraint which reduces the e�ectiveness of the
reduction process. This in
exibility also makes it di�cult
for standard dimensionality reduction techniques to provide
worst-case guarantees of the reduction loss of each record.
Furthermore, the high computational requirements of the
dimensionality reduction method reduce the applicability of
the approach for large and high dimensional databases.

Recent research has shown that even though the implicit
dimensionality of a given data set may be quite high, par-
ticular subsets of it may show data dependencies which lead
to much lower implicit dimensionality [2, 7]. An e�ective
data compression system would try to optimize the repre-
sentation of a record depending upon the distribution of
the data in its locality. Clearly, it is a non-trivial task to
�nd a representation in which each point adjusts its storage

requirements naturally to the corresponding local implicit
dimensionality. Since the issue of data reduction is most
relevant in the context of large data sets, it is also necessary
for the computational and representational requirements of
such approaches to scale e�ciently with increasing data size.
Unfortunately, the techniques in [2, 7] are orders of magni-
tude slower than even the standard dimensionality reduction
techniques, and are in
exible in determining the dimension-
ality of data representation. Therefore these methods are
restricted in applicability to speci�c problems such as in-
dexing.

In recent years, random projection [1, 14] has been used as
an e�cient alternative for dimensionality reduction of high
dimensional data sets. These techniques typically use spher-
ically symmetric projections, in which arbitrary directions
from the data space are sampled repeatedly in order to cre-
ate a new axis system for data representation. While ran-
dom projection is a much more e�cient process than meth-
ods such as SVD, its average reduction quality is a little
less e�ective. In this paper, we investigate the use of sub-
space sampling approaches in which the subspaces picked
are determined by the (local) properties of the particular
data set at hand. The use of a locality sensitive random
sampling approach results in a system which is both more
e�ective and e�cient than SVD, while providing worst case
bounds on the error loss of each record. The locality sen-
sitive sampling method uses a hierarchical subspace sam-
pling approach in which the storage requirement of each
data point is in
uenced by the corresponding local implicit
dimensionality. This variation from the global approach of
standard dimensionality reduction methods has the interest-
ing property that local implicit dimensionalities can be es-
timated more robustly for larger data sets. As a result, the
e�ectiveness of reduction improves with increasing database
size. We note that this is a unique feature over any known
dimensionality reduction technique. It is also especially im-
portant in the context of larger data sets which are the mo-
tivating factor for the dimensionality reduction problem.

In addition, we will show that the local characteristics of the
data revealed by the hierarchical subspace sampling tech-
nique can be e�ectively leveraged for innovative solutions to
problems such as selectivity estimation and nearest neighbor
indexing. The selectivity estimation problem is motivated
by the time-consuming nature of the query resolution prob-
lem in very large databases. In such cases, it may be desir-
able to estimate the sizes of the query responses, rather than
resolve the query itself. Typical approaches to the selectiv-
ity estimation problem such as histograms work well in low
dimensionality, but degrade rapidly with increasing dimen-
sionality because of dependencies among attributes [8, 10,
18]. In this paper, we will show that the local characteris-
tics of the data revealed by the subspace sampling technique
can be utilized in order to improve the e�ectiveness of the
selectivity estimation procedure. We will also demonstrate
similar results for the approximate nearest neighbor search
problem.

In order to facilitate further development of the ideas, we
will introduce additional notations and de�nitions. We as-
sume that the data set is denoted by D. The number of
points in the data set is denoted byN and the dimensionality

by d. The full dimensional data space is denoted by U . We
de�ne the l-dimensional hyperplane H(y; E) by an anchor
y and a mutually orthogonal set of vectors E = fe1 : : : elg.
The hyperplane passes through y, and the vectors in E form
the basis system for its subspace. The projection of a point
x onto this hyperplane is denoted by P(x; y; E) and is the
closest approximation of x, which lies on this hyperplane. In
order to �nd the value of P(x; y; E), we use y as the reference
point1 for the computation. Speci�cally, we determine the
projections of x� y onto the fe1 : : : elg. Then, we translate
the resulting point by the reference point y. Therefore, we
have:

P(x; y; E) = y +
lX

i=1

[(x� y) � ei] ei (1)

We have illustrated a pictorial representation of x0 = P(x; y; E)
in Figure 1. We note that x0 can be represented in the or-
thonormal axis system for E with the use of only l cooor-
dinates ((x � y) � e1 : : : (x � y) � el)). This incurs the ad-
ditional overhead of maintaining y and E . This is however
a constant storage overhead, which can be amortized over
the large number of points stored on this hyperplane. The
error of approximating x with P(x; y; E) is given by the eu-
clidean distance between x and P(x; y; E) and is denoted
by �(x; y; E). The lossy reduction system discussed in this
paper will determine locality speci�c hyperplanes, so that
for each data record, this value is less than a pre-speci�ed
tolerance �. In other words, for each data point x projected
into a hyperplane denoted by (y; E), we have �(x; y; E) � �.

This paper is organized as follows. In the next section, we
will introduce the hierarchical subspace sampling technique
and discuss some of its properties. In section 3, we will
discuss how the data is stored in compressed form using the
hierarchically sampled subspaces. Section 4 will discuss the
application to the nearest neighbor search and selectivity
estimation problems. The empirical results are discussed in
section 5. Finally, we present the conclusions and summary
in section 6.

1.1 Contributions of this paper
This paper introduces an e�ective and linearly scalable sub-
space sampling approach to the problem of data reduction.
This technique uses a hierarchical partitioning approach in
conjunction with a subspace sampling procedure which is
sensitive to the data set at hand. The dual nature of this
hierarchical partitioning and subspace sampling approach
makes the reduction process very e�ective. While the sub-
space sampling approach provides a much more compact
representation than traditional dimensionality reduction tech-
niques, it also provides hard bounds on the error of the ap-
proximation. An interesting and surprising property of the
subspace sampling technique is that the compression fac-
tor actually improves with increasing database size. This
is di�erent from most other dimensionality reduction tech-
niques in which the compression ratio is largely una�ected
by database size. This behavior with increasing database
size is especially signi�cant, since the data reduction prob-
lem is motivated by the large size of data sets. The use of a
sampling approach also results in a computationally e�cient

1We always choose a point on the hyperplane as the refer-
ence point.

implementation which is almost linearly scalable both with
data set size and dimensionality. In addition, the locality
speci�c multi-dimensional representation makes the reduced
data friendly to use in database applications such as nearest
neighbor search and selectivity estimation. In fact, the sub-
space sampling method reveals important local characteris-
tics of the data which can be used for e�ective solutions to
these problems. We note that traditional methods for selec-
tivity estimation such as histograms do not provide accurate
results for even ten dimensional applications [10], whereas
our empirical results indicated that the subspace sampling
technique provides accurate results on color-histogram data
sets of dimensionality larger than �fty. We will also show
that the partitioning created by the hierarchical subspace
method can be used for e�ective nearest neighbor search in
a way which is signi�cantly more e�ective than currently
used dimensionality reduction techniques.

2. HIERARCHICAL SUBSPACE SAMPLING
The method of random projections [1, 14] has recently been
recognized as an e�cient and scalable alternative to dimen-
sionality reduction. These techniques sample2 spherically
symmetric random directions on which the data is projected.
Such methods may often require an unnecessarily higher di-
mensionality to represent the data, since they do not utilize
the properties of the particular data set at hand. In order
to intuitively understand this point, we will illustrate with
the use of 1-dimensional projections of 2-dimensional data.
Consider the data set illustrated in Figure 2 in which we
have illustrated two kinds of projections. In Figure 2(a),
the data space is sampled in order to �nd a 1-dimensional
line along which the projection is performed. In data space
sampling, random projections are chosen in a spherically
symmetric fashion [1, 14] irrespective of the data distribu-
tion. The reduced data in this 1-dimensional representation
is simply the projection of the data points onto the line, as il-
lustrated in lower diagram of Figure 2(a). Though repeated
applications of subspace sampling [1, 14] provide bounds on
data reduction quality, it is clear from the above illustration
that such a projection may often turn out to be blind to
the basic patterns in the data. In the second case of Fig-
ure 2(b), we have sampled the points in order to create a
random projection. The sampled subspace is de�ned as the
(l � 1)-dimensional hyperplane containing l randomly cho-
sen points from the data. In this case, the chosen subspace
is naturally biased by the original data distribution. For
example, in Figure 2(b), the 1-dimensional line obtained by
sampling two points picks up the directions of greater vari-
ance more e�ectively than the space-sampled random pro-
jection of Figure 2(a). For this reason, the quality of the
reduction for Figure 2(b) is signi�cantly better than that in
Figure 2(a).

While it is intuitively clear that point sampling is more e�ec-
tive than space sampling for variance preservation, the ad-
vantages are limited when the data distribution varies con-
siderably with locality. For example, in Figure 3(a), even the
optimal 1-dimensional random projection cannot represent
all points without losing a substantial amount of variance

2The hyperplanes are repeatedly sampled, and the best al-
ternative is picked in order to determine the �nal represen-
tation.

of the data. In Figures 3(b) and (c), we have used the ran-
dom projection technique locally in conjunction with data
partitioning. In this technique, each data point is projected
on the closest of a number of point sampled hyperplanes. It
is clear that in the latter cases, the projections of the data
points onto the lines are the best approximations. This is
because each subspace is optimized to a locally sampled set
of points. It is also interesting to see that even though the
data is 2-dimensional, it can be (approximately) represented
by projections along 1-dimensional lines. This is because
the local implicit dimensionality of each data point is only
one, once that data has been partitioned appropriately. We
also note that there may be some di�erences in the qual-
ity of the �nal reduction (such as those in Figures 3(b) and
(c)) depending upon the subspaces which get sampled, but
the �nal representation always loses less information than a
global approach with the same number of samples. This fol-
lows from the straightforward observation that when the k
hyperplanes S1 : : :Sk are sampled, the distance of the data
point x 2 D to the closest of S1 : : :Sk is always at most the
distance loss of x when only one of these hyperplanes (say
Si) is chosen for reduction of each data point in D.

On the other hand, the improvements of the localized sub-
space sampling technique come at the additional storage
costs of the di�erent hyperplanes. This limits the number of
hyperplanes which can be retained from the sampling pro-
cess, and requires us to make judicious choices in picking
these hyperplanes. A second important issue is that even
the implicit dimensionalities of the di�erent data localities
may be di�erent. Therefore, we need a mechanism by which
the sampling process is able to e�ectively choose hyperplanes
of the lowest possible dimensionality for each data locality.
This is an issue which we will discuss after developing some
additional notational machinery:

Definition 2.1. Let P = (x1 : : : xl+1) be a set of (l + 1)
linearly independent points. The representative hyperplane
R(P) of P is de�ned as the l-dimensional hyperplane which
passes through each of these (l+ 1) points.

The hyperplane R(P) can also be represented with the use
of any point y on the hyperplane, and an orthonormal set of
vectors E = fe1 : : : elg, which lie on the hyperplane. We shall
call (y; E) the axis representation of the hyperplane, whereas
the set P is referred to as the point representation. Thus,
R(P) (point representation) is the same as H(y; E) (axis
representation). We note that there can be in�nitely many
point or axis representations of the same hyperplane. The
axis representation is more useful for performing distance
computations of the hyperplane from individual points in
the database, whereas the point representation has advan-
tages in storage e�ciency in the context of a hierarchical
arrangement of subspaces. We will discuss this issue in a
later section.

2.1 The Subspace Tree
In this section, we will introduce the subspace tree, which
is a conceptual organization of subspaces used in the data
reduction process. This conceptual organization imposes a
hierarchical arrangement of the subspaces of di�erent dimen-
sionalities. The hierarchical organization is also useful in de-

y

e(1)

e(2)

x
x’

Hyperplane H

(x-y)

(x-y).e(1)

(x-y).e(2)

Figure 1: Pictorial Representation of Approximation

x

x
x

xx

x x

x

xx

xx

Random Projection

x

x
x

xx

x x

x

xx

xx

(a) (b)

Space Sampled

Random Projection
Point Sampled

Figure 2: Comparing Point Sampled and Space Sam-

pled Random Projections

x

x
x

xx

x x

x

xx

xx

x xx
xx

x

x
x

x x

x x

x

x

x
x

xx

x x

x Projection

xx

xx

x xx
xx

x

x
x

x x

x x

x

x

x

x
x

xx

x x

x

xx

xx

x xx
xx

x

x
x

x x

x

x

(a) (b) (c)

Point Sampled

Global Random

Projection

Point Sampled

Local Random

Projection

Point Sampled

Local Random

Figure 3: E�ects of Data Locality on Subspace Sam-

pling

A

D

x

x

x

F

i1

i2

i6

x
i5

A B

C D E F

{i1, i2} {i3, i4}

{i1, i2, i5} {i1, i2, i6} {i3, i4,i7} {i3, i4, i8}

1-dimensional

 representations

2-dimensional
representations

C

BE
x

x

x

x i3
i4

i7

i8

Figure 4: Illustration of the Sampling Procedure

veloping variable dimensionality representations of the data.
Each node in the subspace tree corresponds to a hyperplane
along with its representative set which is drawn from the
database D. The nodes at level-m in the subspace tree cor-
respond3 to m-dimensional subspaces. The root node cor-
responds to the null subspace. Thus, the dimensionality of
the hyperplane for any node in the tree is determined by its
depth. The subspace at a node is hierarchically related to
that of its immediate parent. Each subspace other than the
null subspace at the root is a 1-dimensional extension of its
parent hyperplane. This 1-dimensional extension is obtained
by adding a sampled data point to the representative set of
the parent hyperplane. In order to elucidate the concept of
a subspace tree, we will use an example. In Figure 4, we
have illustrated a hierarchically arranged set of subspaces.
The �gure contains a two-level tree structure which corre-
sponds to 1- and 2-dimensional subspaces. For each level-1
node in the tree, we store two points which correspond to
the 1-dimensional line for that node. For each lower level
node, we store an additional data point which increases the
dimensionality of its parent subspace by 1. Therefore, for a
level-m node the representative set is of cardinality (m+1).
For example, in the case of Figure 4, the node A in the sub-
space tree (with representative set fi1; i2g) corresponds to
the 1-dimensional line de�ned by fi1; i2g. This node is ex-
tended to a 2-dimensional hyperplane is two possible ways
corresponding to the nodes C and D. In each case, an ex-
tra point needs to be added to the representative set for
creating the 1-dimensional extension. In order to extend to
the 2-dimensional hyperplane for node C, we use the point

3We assume that level 0 corresponds to the root.

i5, whereas in order to extend to the hyperplane for node
D, we use the point i6. Note from Figure 4(a) that the in-
tersection of the 2-dimensional hyperplanes C and D is the
1-dimensional line A. The subspace tree is formally de�ned
as follows:

Definition 2.2. The subspace tree is a hierarchical ar-
rangement of subspaces with the following properties: (1)
Nodes at level-m correspond to m-dimensional hyperplanes
(2) Nodes at level-(m+ 1) correspond to hyperplanes which
are 1-dimensional extensions of their parent hyperplanes at
level-m (3) The point representative set of a level-(m + 1)
node is obtained by adding a sampled data point to the rep-
resentative set of its m-dimensional parent subspace.

Once a subspace tree has been constructed, each data point
x is assigned to a node in this tree, so that the distance of the
corresponding hyperplane from x is less than the compres-
sion tolerance �. The data point x is represented in terms
of its coordinates on the hyperplane to which it is assigned.
Thus, the amount of space needed to represent x depends
only on the dimensionality of the corresponding hyperplane
rather than the dimensionality of D. Since higher levels of
the tree require lower storage overhead, it is desirable to as-
sign x to as high a level of the tree as possible. We note the
following:

Observation 2.1. Let S be a set of representative points,
and let w be a data point which extends the dimensionality of
the corresponding hyperplane to that of its child. Let (y1; E1)

Algorithm SampleSubspaceTree(CompressionTolerance: �,
MaximumTreeDegree: kmax, Database: D, Node Limit: L)

begin
Sample kmax � sampfactor pairs from D to create 1-dim.

point representative hyperplanes (lines) denoted by S;
S = SampleBestHyperplanes(S; kmax);
f Let S1 : : : Skmax denote the hyperplanes in S g
(T (S1); : : : T (Skmax);Q(S1); : : :Q(Skmax)) =

AssignData(D; S);
f Remove nodes with fewer than min-thresh points g
S = RemoveNodes(S1 : : : Skmax , min-thresh);
f Lm is the set of level-m nodes g
L1 = S; f Each hyperplane (line) in S is child of Root g;
m = 1;
while (Lm 6= fg) and
(less than L nodes have been generated) do

begin
for each level-m node R 2 Lm do
begin
Sample kmax � sampfactor points from T (R);
Extend node R by each of these kmax � sampfactor
points (in turn) to create kmax � sampfactor
(m+ 1)-dimensional hyperplanes S;

S = SampleBestHyperplanes(S; kmax);
(T (S1); : : : T (Skmax);Q(S1); : : :Q(Skmax)) =

AssignData(T (R);S);
S = RemoveNodes(S1 : : : Skmax , min-thresh);
Lm+1 = Lm+1 [S;

end; m = m+ 1;
end;
Perform �nal post-processing phase of reassignment of
database D to nodes in subspace tree;

end

Figure 5: Subspace Tree Construction

and (y2; E2) be the axis representations of S and S [fwg
respectively. Then, for any data point z, it must be true that
jjz �P(z; y2; E2)jj � jjz �P(z; y1; E1)jj.

The above observation simply states that the distance of
the point z to a hyperplane H(y2; E2) is lower than the dis-
tance to its parent hyperplane H(y1; E1), since the former
subsumes the latter. Thus, if the reduced data points are
stored in the subspace tree, then as the value of � is re-
duced, a larger number of points would need to be stored
at the lower levels of the tree. Since the storage at lower
levels requires a greater number of coordinates for represen-
tation, it follows that there is a natural trade-o� between
the storage requirements and representational accuracy.

2.2 Subspace Tree Construction
In this section, we will show how the subspace tree may
be constructed by careful localized sampling of the data
points in conjunction with a recursive partitioning of the
data. This procedure turns out to be extremely e�ective
in in
uencing the subspace sampling process so that the re-
sulting subspaces are e�ectively biased for particular data
localities. The input to the subspace sampling algorithm
includes the compression tolerance �, and the data set D.
The subspace tree is constructed hierarchically in top-down
fashion, while also partitioning the data set D along this
hierarchy. The subspace tree construction uses a levelwise
algorithm in order to build the tree structure. This is done
in order to restrict the number of database passes during

the tree construction phase. Each node of the subspace tree
corresponds to a hyperplane de�ned by the sequence of rep-
resentative points sampled, starting from the root up to that
node. Therefore, we will be using the term hyperplane and
node interchangeably throughout the discussion of the sub-
space tree.

At each stage of the algorithm, every node N in the sub-
space tree has a set of descendent assignments T (N) � D
from the database D. These are the data points which will
be assigned to one of the descendants of node N during the
tree construction process. In addition, each node also has a
set of direct assignments Q(N), which are data points within
the speci�ed tolerance � of the hyperplane corresponding to
nodeN . In each iteration, the descendent assignments T (N)
in each of the nodes at a given level are partitioned further
into at most kmax children of node N . This partitioning is
based on the distance of the data points to the hyperplanes
corresponding to the kmax children of N . Speci�cally, each
data point is assigned to the hyperplane from which it has
the least distance. This results in each point from T (N)
becoming either a direct or descendent assignment of one
of these kmax children depending upon whether or not it
lies within the tolerance factor � of the corresponding hyper-
plane. This process continues until each data point becomes
either the direct assignment of some node or is identi�ed as
an outlier. The overall algorithm for subspace tree construc-
tion is illustrated in Figure 5.

The subspace tree construction algorithm proceeds in an
iterative levelwise fashion. The mth level of the tree is con-
structed during themth levelwise phase. The reason for this
levelwise approach is that the database operations during
the construction of a given level of nodes can be consoli-
dated into a single database pass. The actual construction
of the mth level is achieved by sampling one representa-
tive point for each of the kmax children of the level-(m� 1)
nodes in order to create the corresponding 1-dimensional ex-
tension. However, we also use oversampling in order to im-
prove the quality of the resulting subspaces. The subspace
sampling algorithm de�nes a parameter called sampfactor,
which is the factor by which we oversample the points at a
given node from which the �nal kmax representative exten-
sions are chosen. Thus, a total of kmax � sampfactor points
are picked for extension of the nodes from level-(m � 1) to
level-m. Only the �rst iteration of the algorithm (m = 1)
is special in which we sample 2 � kmax � sampfactor points
in order to create kmax � sampfactor lines. Next, the pro-
cedure SampleBestHyperplanes picks kmax lines out of these
kmax � sampfactor lines for which the localized projection
losses are as low as possible. Details of the SampleBestHy-
perplanes procedure are discussed in subsection 2.3. Once
the hyperplanes for the �rst level nodes have been deter-
mined, we assign each point in the database to one of these
nodes either as a direct assignment or as a descendent assign-
ment. This is achieved by the procedure AssignData, and
is discussed in detail in subsection 2.4. We also ensure that
those nodes with fewer than min-thresh points assigned to
them are removed from consideration. These are the outlier
nodes which are discarded by the procedure RemoveNodes.
The assigned points for these nodes are outliers which need
to be stored separately by the algorithm. Details of this
procedure are discussed in subsection 2.5. As a result, the

�nal outdegree of the node may be less than kmax. The
algorithm then proceeds in a levelwise fashion of building
level-m of the tree in the same sequence of operations as
discussed above for level-1 of the tree. The main di�erence
for m � 2 is in the methodology for extending the subspaces
by a dimensionality of one. In this case, for each node N ,
we sample kmax � sampfactor points from T (N). The pro-
cess of sampling the points from T (N) intentionally biases
the children subspaces depending upon the data distribu-
tion of T (N). Further, the purpose of oversampling by a
factor of sampfactor is to increase the e�ectiveness of the
�nal children subspaces which are picked. The larger the
value of sampfactor, the better the sampled subspaces, but
the greater the computational requirement. Thus, a total of
kmax � sampfactor m-dimensional hyperplanes can be gen-
erated by combining the representative points from node N
with each of these sampled points. In each iteration, the
algorithm assigns the data points in a given node N to its
closest child. Next, the SampleBestHyperplanes procedure
picks the kmax hyperplanes out of these kmax � sampfactor
hyperplanes in order to create the most e�ective partition-
ing. As in the case of level-1 nodes, the AssignData proce-
dure determines the assignments of the data points in the
nodes of T (N) to the respective children. We note that in
Figure 5, we have presented the AssignData procedure sep-
arately for each node for ease in description. In the actual
implementation, this procedure is executed simultaneously
for all nodes at a given level in one scan. Similarly, the pro-
cess of picking the best hyperplanes for all nodes at a given
level is executed simultaneously in a single scan of the data.
We will discuss details of these issues in a later subsection.
The process of levelwise tree construction continues until no
node in the current level can be extended any further, or the
maximum limit L for the number of nodes has been reached.
This limit L is governed by the amount of available memory
since we would like the subspace tree to be memory-resident
for a number of useful applications such as nearest neighbor
indexing and selectivity estimation. For our implementa-
tion, we used a conservative limit of only L = 10; 000 nodes,
which was well within current main memory limitations for
even 1000-dimensional data sets. At the end of the subspace
tree construction process, we re-optimized the assignment of
each data point x by �nding the hyperplane at the highest
level of the tree for which the distance value was less than
�. In many cases, this reduces the data even further by
reducing the dimensionality of the representation.

Each of the procedures SampleBestHyperplanes and Assign-
Data require the computation of distances of data points x
to the representative hyperplanes. In order to perform these
distance computations, the axis representations of the hy-
perplanes need to be determined. A hyperplane node N at
level-m is only implicitly de�ned by the (m+1) data points
fz1 : : : zm+1g stored at the nodes along the path from the
root to N . The next tricky issue is to compute the axis rep-
resentation (y; E = fe1 : : : emg) of the points fz1 : : : zm+1g
e�ciently in a way that can be replicated exactly at the
time of data reconstruction. This is especially important,
since there can be an in�nite number of axis representa-
tions of the same hyperplane, but the projection coordi-
nates are computed only with respect to a particular axis-
representation. The corresponding representation (y; E =
fe1 : : : emg) is computed in a procedure which is essentially

similar to the Gram-Schmidt orthogonalization process [11].

We �rst set y = z1 and e1 = (z2 � z1)=jjz2 � z1jj. Next, we
iteratively compute ei from e1 : : : ei�1 as follows:

ei =
zi+1 � z1 �

Pi�1
j=1 [(zi+1 � z1) � ej] ej

jjzi+1 � z1 �
Pi�1

j=1 [(zi+1 � z1) � ej] ej jj
(2)

It can be shown that the set (y; E) generated by the Equation
2 is an axis representation of the hyperplane de�ned by the
points fz1 : : : zm+1g.

Many axis representations can be generated using Equation
2 for the same hyperplane R(fz1 : : : zm+1g) depending upon
the ordering of fz1 : : : zm+1g. Since we need to convert from
point representations to axis representations in a consistent
way for both data reduction and reconstruction, this or-
dering needs to be �xed in advance. For the purpose of
this paper, we will assume that the point ordering is al-
ways the same as one in which it was sampled during the
top-down tree construction process. This leads to repre-
sentative points sampled at higher levels of the tree to be
ordered �rst, and points at lower levels to be ordered last.
The only ambiguity is for the level-1 nodes at which 2 points
are stored instead of one. In that case, the record which is
lexicographically smaller is ordered earlier. We shall refer
to this particular convention for axis representation as the
path-ordered axis representation.

2.3 Oversampling and Selection of Subspaces
This section describes details of the SampleBestHyperplanes
subroutine of Figure 5. The �rst task is to partition the
kmax � sampfactor hyperplanes into sampfactor sets of
kmax hyperplanes. We will pick one of these partitions
depending upon the quality of the assignment of the data
points to these hyperplanes. In order to do this, the dis-
tance of the data point x to each of the kmax � sampfactor
hyperplanes is determined. For each of the sampfactor sets
of hyperplanes, we assign the data point x to the closest
hyperplane from that partition. This results in a total of
sampfactor possible assignments of the data points. The
cost of the assignment is the average distance of the data
point to its assigned hyperplane, and is equal to the aver-
age distance information lost by the corresponding reduced
representation. The lowest cost of these sampfactor assign-
ments is determined. The SampleBestHyperplanes proce-
dure returns the kmax points which can be used to extend
the current node to each of the kmax children by a dimen-
sionality of one.

2.4 Partitioning the Points
In this section, we will describe the AssignData procedure of
Figure 5. The procedure AssignData partitions the points
among the children nodes, and also decides whether the as-
signment of a data point x to a hyperplane is of the de-
scendent or direct type. For each child hyperplane (y; E),
the distance value �(x; y; E) is calculated. Next, we check if
this value is below the compression tolerance �. If so, then
the data point x is directly assigned to that node. Other-
wise, it is assumed that a higher implicit dimensionality is
needed to represent that point and it is considered a de-
scendent assignment. The top-down algorithmic process of
subspace tree construction ensures that such a data point

will be a direct assignment for one of the descendants of its
current node, unless it is determined to be an outlier.

2.5 Removal of Outlier Nodes
This procedure is denoted by RemoveNodes in Figure 5.
Many points in any data set may be outliers for which e�-
cient locality speci�c representations cannot be found. Such
points need to be stored separately by the algorithm. In each
iteration, we �nd all nodes in the current level of the tree
which have less than min-thresh descendent assignments.
These nodes and the corresponding points are removed by
the algorithm. The corresponding points are stored sepa-
rately in their full dimensional representation.

2.6 Disk Sensitive Implementation
Each of the procedures AssignData and SampleBestHyper-
planes require the assignment of the data to nodes at a given
level of the tree. In order to improve the I/O e�ciency, we
process all the nodes at a given level in a single database
scan. We maintain an additional vector with one entry for
each database record. Each entry in this vector indicates
the node to which the corresponding database record is as-
signed and whether the corresponding record is a descendent
or direct assignment. During the database scan, we use the
vector to �nd the hyperplane (y; E) for each database record
x. This is then used to calculate the value of �(x; y; E) for
the AssignData and SampleBestHyperplanes procedure.

3. STORAGE AND RECONSTRUCTION
Since the reduction process stores the reduced data in the
context of a hierarchical subspace tree structure, we need to
maintain the following two pieces of information:

� The Subspace Tree: This is a constant overhead which
can be maintained very e�ciently with the use of the point
representation. For each level-1 node we maintain the two
points which de�ne the sampled line in lexicographic order-
ing. For each level-m node, we maintain the additional data
point which increases the dimensionality of the correspond-
ing subspace by one. In addition, we need to maintain the
identity of the node and its immediate parent, which re-
quires another two integers for each node. Thus, for a sub-
space tree with � nodes, the storage requirement is of the
order of (� � (d+2)) values. This is almost the best that one
could hope to achieve, since at least � � d values will always
be required in order to store all the � subspaces of a d-
dimensional space. In fact if the subspaces were maintained
explicitly, then the storage requirement would be � �d � l val-
ues for an average subspace dimensionality of l. The storage
requirement of � � (d+2) values requires the storage of only
1 additional vector for each of the � subspaces. The reason
for this extraordinarily high storage e�ciency is the use of
the point representation in which the hyperplane at a given
node is not stored explicitly, but is implicitly represented by
the points stored along the path from that node to the root.
(Therefore, the vector stored at a node is reused for the sub-
space representation of all descendents of that node.) Our
empirical results indicated that the overhead for maintain-
ing the subspace tree is very small compared to the storage
requirements of the database itself.

� The Reduced Database: For each data point, we need
to maintain one integer which indicates the identity of the

node for which it is a direct assignment. In addition, we
maintain the coordinates of the data point for the axis repre-
sentation (y; E) of this hyperplane in accordance with Equa-
tion 1. For the data point x, these coordinates are given by
(c1 : : : cm) = fe1 �(x�y) : : : em � (x�y)g. Thus, only (m+1)
values need to be stored for each database point.

3.1 Reconstruction Algorithm
The reconstruction algorithm proceeds in two phases. In
the �rst phase, the (path-ordered) axis representation of the
subspace tree is built. In the second phase, this subspace
tree is used in order to reconstruct the database.

At �rst sight, it would seem that the �rst phase could be
time consuming, since for each node in the subspace-tree,
we would need to �nd its d-dimensional axis representation.
However, it turns out that because of the use of the path-
ordered convention for axis-representations, the �rst phase
can be achieved in a time complexity which requires the
computation of only one axis per node. The trick is to con-
struct the axis representations of the nodes in the tree in a
top-down fashion. This is because the axis representation
fe1 : : : eig of a given node can be computed using the axis
representation fe1 : : : ei�1g of its parent and the point z0

stored at that node in just the single computation of Equa-
tion 2. (For the nodes at level-1, lexicographic ordering of
the representative points is assumed.) This automatically
results in the path-ordered axis representation of the node.

Once the axis representations of the nodes have been con-
structed, it is simple to perform the necessary axis transfor-
mations which represent the reconstructed database in terms
of the original attributes. Recall that for each database
point x, the identity of the corresponding node is also stored
along with it. Let (y; E) be the corresponding hyperplane
and (c1 : : : cm) = fe1 � (x� y) : : : em � (x � y)g be the coor-
dinates of x along this m-dimensional axis representation.
Then, as evident from Equation 1, the reconstructed point
x0 is given by:

x0 = y +
mX

i=1

[ci] ei (3)

4. APPLICATIONS
The hierarchical subspace sampling technique exposes the
di�ering implicit dimensionalities in di�erent parts of the
data. Traditional indexing structures [6] and selectivity es-
timation techniques [18] treat all parts of the data in a ho-
mogeneous way from the dimensionality perspective. This
strategy results in the worst-case behavior of the data to
dominate. In this section, we will provide additional insights
into how hierarchical subspace sampling techniques can lead
to inherently more e�ective solutions to such problems by
using its variable dimensionality local decompositions. The
aim of writing this section is to demonstrate that even sim-
ple applications of the proposed principles can lead to dra-
matically improved solutions for di�cult high dimensional
problems. A detailed treatment of the optimization of these
schemes will be discussed in future work.

4.1 Approximate Nearest Neighbor Search
In the approximate nearest neighbor search problem, we
would like to �nd the nearest neighbor to a given target

List of pages containing

direct assignments to node

List of pages containing

direct assignments to node

partitions

Subspace Tree with compressed data in

Figure 6: Index built from Subspace Tree

record within the pre-speci�ed error bound of �. Since our
compression system provides such a worst-case guarantee, a
sequential scan can be used on the reduced representation
in order to �nd the approximate nearest neighbor. In fact,
any compression method can provide savings in I/O even
with the use of a sequential scan, as long as the reconstruc-
tion procedure can recognize individual records as they are
generated in main memory. Such a technique works quite ef-
fectively, since the I/O requirements are the motivation for
index structure construction. However, the subspace tree
provides savings even beyond the advantages of lower stor-
age requirements, since it allows us to create an index in
which large portions of the reduced representation need not
even be accessed. The ability to use such query optimization
directly on compressed database systems has recently been
recognized as a promising approach for optimizing perfor-
mance in database systems.

The subspace tree imposes a natural partitioning of the data
in which similar records occur together in one block. Unlike
an index tree in which only leaf nodes contain the individual
records, we allow each node in the tree to point to a list of
pages which contain all the direct assignments to that node.
Thus, the internal tree size is only dependent upon the origi-
nal subspace tree, rather than the restrictions created by the
page sizes of individual nodes. Furthermore, the subspace
tree construction algorithm imposes a maximum limit L on
the number of subspace tree nodes, which is determined by
the main memory limitations. Thus, the subspace tree itself
is maintained in main memory. On the other hand, the lists
of pages pointed to by each node are maintained on the disk.
The index structure is illustrated in Figure 6.

The actual nearest neighbor search of the tree uses a branch
and bound method on the partitioning created by the direct
assignments of data points to nodes. The branch and bound
method is a classical technique in combinatorial optimiza-
tion. It uses an ordered search method on a partitioning
of the data in order to avoid searching many of the sets in
this partitioning. A global pessimistic bound is maintained
which provides an upper bound on the distance of the query
point to the nearest neighbor. Pruning is done by �nding
good optimistic bounds (lower bounds) on the distance of
a target point to each set in this partition. A set may be
pruned when its optimistic bound is higher than the global
pessimistic bound. For example, in the case of a query point
q and subspace (y; E), this optimistic bound for any direct
assignment of that hyperplane is given by jjq � P(q; y; E)jj.

This is the nearest distance between the query point and
the hyperplane, and any point lying on the hyperplane can-
not have distance lower than this value. The global pes-
simistic bound is the nearest distance to any subset of the
data accessed so far. However, unlike a traditional branch
and bound technique, we cannot prune entire subtrees by
using the optimistic bound at the root of the subtree. This
is because in traditional index structures, lower level nodes
are subsumed by higher level nodes, whereas in the subspace
tree structure, the lower level subspaces subsume the higher
level subspaces. Therefore, in a traditional index structure,
the optimistic distance bounds from the query point to the
nodes along a given path increase with the depth of the
tree structure, whereas this is the reverse in a subspace tree
(see Observation 2.1). Hence, one cannot use the optimistic
bounds at the root of a subtree as representative of the opti-
mistic bounds at the lower level nodes. In order to account
for this, we treat each node as an independent entity irre-
spective of the hierarchical relationships between the nodes.
Initially the pessimistic bound is set to the closest of all the
outlier points and is gradually updated as more and more
records are accessed. The nodes in the tree are accessed in
increasing order of optimistic distance. When the distance
jjq�P(q; y; E)jj is larger than the pessimistic bound, all data
points assigned to this node can be pruned from considera-
tion. This is because it is certain that all data points which
lie on this hyperplane are not as close as the best point
found so far. Otherwise, we need to access the records in
the list for the node (y; E), and calculate their distances to
the query point q. This may result in the improvement of
the pessimistic bound to the closest record to query point
q lying on this hyperplane. The record corresponding to
the pessimistic bound at termination is returned as the ap-
proximate nearest neighbor. We note that this approximate
nearest neighbor is an exact nearest neighbor over the set
of reduced data points. However, since each reduced data
point may have distance at most � from its original repre-
sentation, it follows that the �nal nearest neighbor found
lies within the error tolerance of �.

4.2 Selectivity Estimation
The selectivity estimation problem becomes increasingly dif-
�cult in high dimensional cases. For the high dimensional
case, it has been conjectured [10] that simple random sam-
pling may be the most e�ective method for selectivity esti-
mation: \We conjecture that sampling will outperform any
of these techniques for dimensionality of around 10, but the
error will be too large to make the technique practical."

The reason for the (relative) robustness of random sampling
in higher dimensionality is that it can model the correla-
tions in multi-dimensional data more accurately than meth-
ods such as histograms, since the correlations in the data
are also re
ected in the sample. On the other hand, the
histogram technique is signi�cantly more e�ective for lower
dimensional cases.

The subspace tree procedure naturally reveals those parts
of the data which have low implicit dimensionality. Since it
is known that di�erent techniques work more e�ectively in
di�erent implicit dimensionalities, this data decomposition
naturally suggests an ensemble-based approach to the prob-
lem. Ensemble based approaches are especially attractive

because of their ability to combine di�erent techniques in a

exible way so that the �nal solution is signi�cantly more
robust than the use of each individual method.

In the ensemble-based approach for selectivity estimation,
we use a histogram based technique for all hyperplanes in
the subspace tree with dimensionality at most qmax, whereas
we use random sampling for data points in the higher dimen-
sional components. The histograms for the lower dimen-
sional component are built directly on the sampled hyper-
planes, and are thus not parallel to the original axis-system.
Thus, a separate set of histograms is constructed for each
partition of the data in its locally optimized subspace. A
wide array of methods are available to construct histograms.
This choice is orthogonal to our primary aim of showing the
e�ectiveness of the decomposition and the corresponding en-
semble based approach. We will demonstrate that even the
use of a simple equi-width grid based histogram for the lower
dimensional component of the ensemble is su�cient to out-
perform existing approaches.

Let ns be the total number of points with implicit dimen-
sionality larger than qmax and nt be the remaining number of
points. We de�ne a fraction rf known as the representation
factor, which has the same value but is de�ned di�erently
for each of the two components of the ensemble:
(1) For the random sampling approach, the representation
factor rf is de�ned as the fraction of the ns points (with im-
plicit dimensionality greater than qmax) which are sampled.
(2) For the histogram based approach, the representation
factor rf is de�ned as the number of buckets b used divided
by the number nt of low implicit dimensionality points.

For the histogram based approach, we assume uniform dis-
tribution within each bucket and store the number of points
and index of each bucket. Empty buckets are not included
in this list. The index of a bucket provides its position in the
multidimensional grid assuming a unique ordering conven-
tion of the grid points. Thus, only two values are required in
order to store a bucket, while d values are required to store
each sampled point. In addition, a �xed amount of space CT

is required in order to store (the relevant segment of) the
subspace tree. Thus, the total space requirement for this en-
semble based procedure is given by CT+rf �(nt�2+ns �d). We
note that CT is likely to be (asymptotically) negligible for
very large databases. The rf � nt histogram buckets are di-
vided among the di�erent hyperplanes in the subspace tree.
The number of buckets assigned to each hyperplane is pro-
portional to the number of points assigned to it. Therefore,
for a m-dimensional hyperplane with q assigned buckets,
the number of intervals into which the data is discretized is
given by bq1=mc. This also results in adaptive bucket sizes
and orientations depending upon the subspace speci�c data
localities.

At query time, we determine all the buckets which intersect
with user-speci�ed query ranges. Let the total number of
(extrapolated) points4 in these buckets be denoted by s1.

4For partially intersected buckets, we needed to �nd the
fraction of the bucket inside user-speci�ed ranges. In most
cases, buckets were intersected by only one of the user spec-
i�ed constraints, in which case extrapolation was straight-
forward for 1- or 2-dimensional buckets. We included or

Similarly, for the sampling component of the ensemble, we
determine the total number of points s2 from the random
sample which lie in the user speci�ed ranges. Then, the ex-
pected number of points from the second component of the
ensemble was given by s2=rf . Therefore, the total selectivity
estimated by the ensemble is given by s1 + s2=rf . The his-
togram component can be signi�cantly improved with the
use of more sophisticated methods such as those in [10]
though our aim in this section is to only show the e�ective-
ness of the ensemble-based subspace decomposition princi-
ple. In the next section, we will show that this approach
achieves much greater accuracy over random sampling for
di�cult high dimensional cases.

5. EMPIRICAL RESULTS
The system was implemented on an AIX 4.1.4 system with
233 MHz and 100 MB of main memory. The data was
stored on a 2GB SCSI drive. We tested the subspace sam-
pling method for the following measures: (1) E�ectiveness
of data reduction. (2) E�ciency of data reduction. (3) Ef-
fectiveness of the subspace tree for nearest neighbor index-
ing. (4) E�ectiveness of the selectivity estimation proce-
dure. Unless otherwise mentioned, the parametric values
kmax = minthresh = 2, and sampfactor = 10 were used in
the implementation.

5.1 Performance of data reduction
For the purpose of testing, we used a combination of syn-
thetic and real data sets. The synthetic data sets each con-
tained nc = 20 clusters which were gaussian in nature. The
(relative) number of points in each cluster was determined
by generating a uniform random number between 0 and 1.
The centroids of the clusters were chosen randomly. The
axis system of each gaussian cluster was arbitrarily oriented
with respect to the original data set and the radius along
each axis was chosen as an exponential distribution with
1% of the average distance between the clusters along the
individual dimensions. We generated two data sets with di-
mensionalities 150 and 200 respectively. Each data set con-
tained 100,000 records. We denote them as synthetic data
sets 1 and 2 respectively. We also used a 64-dimensional
color-histogram data set for testing purposes. In Figures
7(a), (c), and (e), we have illustrated the e�ect of the error
tolerance threshold on the compression factor on each of the
three data sets. The compression factor was de�ned as the
fraction of the original data set size occupied by the reduced
representation (including the subspace tree itself.) In each
case, the compression was more e�ective at higher tolerance
levels. This is because of the natural tradeo� between re-
duction quality and compactness. In order to get a better
understanding of the e�ectiveness of the technique, we com-
pared it to the Singular Value Decomposition method. Since
the SVD technique does not provide worst-case bounds on
the error tolerance, we compared the reduction factor of the
two techniques using the average loss on the X-axis. The
average loss was de�ned as the average distance between
the original record and the projected record in the reduced
representation. In each case of Figures 7(b), (d), and (f),

omitted the entire count of buckets which were either greater
than two dimensional or intersected with more than one con-
straint. This was determined by whether or not the bucket
center lay inside the user speci�ed range.

2 4 6 8 10 12 14 16
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

MAXIMUM ERROR TOLERANCE
1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

AVERAGE ERROR (AVERAGE LOSS)

Hierarchical Subspace Sampling
SVD

2 4 6 8 10 12 14 16
0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

MAXIMUM ERROR TOLERANCE

(a) Error Tolerance (b) Average Loss (c) Error Tolerance
versus Reduction Factor versus Reduction Factor versus Reduction Factor
(Synthetic Data Set 1) (Comparison with SVD (Syn. 1)) (Synthetic Data Set 2)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

AVERAGE ERROR (AVERAGE LOSS)

Hierarchical Subspace Sampling
SVD

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
R

E
D

U
C

T
IO

N
 F

A
C

T
O

R

MAXIMUM ERROR TOLERANCE
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
E

D
U

C
T

IO
N

 F
A

C
T

O
R

AVERAGE ERROR (AVERAGE LOSS)

Hierarchical Subspace Sampling
SVD

(d) Average Loss (e) Error Tolerance (f) Average Loss
versus Reduction Factor versus Reduction Factor versus Reduction Factor

(Comparison with SVD (Syn. 2)) (64-d histogram data sets) (Comparison with SVD (64-d))

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.05

0.1

0.15

0.2

0.25

C
O

M
P

R
E

S
S

IO
N

 F
A

C
T

O
R

ORIGINAL DATABASE SIZE (Number Of Records)
2 4 6 8 10 12 14 16

x 10
6

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

C
O

M
P

R
E

S
S

IO
N

 F
A

C
T

O
R

ORIGINAL DATABASE SIZE (Megabytes)
0 100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

250

R
E

LA
T

IV
E

 R
U

N
N

IN
G

 T
IM

E

DATA DIMENSIONALITY

HIERARCHICAL SUBSPACE SAMPLING
SINGULAR VALUE DECOMPOSITION

(g) Reduction Factor Improvement (h) Reduction Factor Improvement (i) Reduction E�ciency
with data size (synthetic) with data size (64-d histograms) (Increasing Dimensionality)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

10

20

30

40

50

60

R
E

LA
T

IV
E

 R
U

N
N

IN
G

 T
IM

E

DATA SIZE (Number Of Records)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

P
E

R
C

E
N

T
A

G
E

 O
F

 D
A

T
A

 A
C

C
E

S
S

E
D

MAXIMUM ERROR TOLERANCE
40 60 80 100 120 140 160 180 200 220

0

10

20

30

40

50

60

70

80

RESPONSE QUERY SIZE

P
E

R
C

E
N

T
A

G
E

 E
S

T
IM

A
T

IO
N

 E
R

R
O

R

SIMPLE RANDOM SAMPLING
ENSEMBLE BASED APPROACH

(j) Reduction E�ciency (k) Nearest Neighbor Pruning Performance (l) Selectivity Estimate Accuracy
(Increasing Database Size) (64-d color histograms) (64-d color histograms)

Figure 7: E�ectiveness of Hierarchical Subspace Sampling and its Applications

we have plotted the average compression factor versus the
average loss of each record for both methods. It is clear
that the subspace sampling technique is signi�cantly more
e�ective than the standard dimensionality reduction tech-
nique. Another interesting observation from the charts is
that the relative compression performance of the subspace
sampling technique improves with reduced error tolerances.
This is because for very relaxed (high) loss rates, it suf-
�ces to represent the data in 1- or 2-dimensional format for
either of the two methods. As the error tolerances are tight-
ened, the advantages of localized subspace sampling begin
to show up, and the method is able to represent the data
in a much smaller number of dimensions. As a result, the
overall space required by the subspace tree representation
is signi�cantly lower than the standard dimensionality re-
duction method. Furthermore, we note that these improved
results are in spite of the fact that the subspace sampling
method provides hard guarantees on the error tolerances,
whereas this is not achieved by the standard dimensionality
reduction method. It is evident by comparing5 the di�erent
charts in Figure 7 that in each case the average loss was
about 50% of the error tolerance for the subspace sampling
method.

We also tested the performance of the hierarchical subspace
sampling technique with increasing database size. In Figure
7(g), we have illustrated the behavior of the reduction factor
with database generations of di�erent sizes for the parame-
ters of the �rst synthetic data set (Syn. 1). On the X-axis,
we have illustrated the database size in records whereas the
reduction factor is illustrated on the Y-axis. The maximum
error tolerance was kept constant at 2% of the standard de-
viation of the data. It is clear that the reduction factor
improves with increasing database size. In Figure 7(h), we
have illustrated the same results by sampling an increasing
number of records from the 64-dimensional color histogram
data set. In this case, the error tolerance was set at � = 0:3.
The results show a similar trend as the synthetic data set.
It was our experience over a number of data sets that the
reduction factor always improved with increasing database
size. This is a very useful property of the subspace sampling
technique, since the data reduction problem is motivated by
the large size of data sets. There are two reasons for this
behavior:

(1) The size of the subspace tree itself scales sublinearly with
database size. In fact, for most data sets that we tested, the
subspace tree size increased only marginally for database
sizes above 100,000 points. At this point, all the major sub-
space patterns are already signi�cantly represented in the
tree structure as well as the database. In all cases, the total
number of nodes in the subspace tree was only about 0:5-
10% of the maximum limit L = 10; 000 nodes.
(2) For larger data sets, the local subspaces determined
by the sampling technique are more re�ned. These re�ned
nodes are re
ected in the lower levels of the subspace tree.
As a result, a large number of points which would otherwise
get classi�ed as outliers are re
ected in some lower dimen-
sional projection in the subspace tree. The basic intuition is

5For example, by matching the common axis value (reduc-
tion factor) of Figure 7(a) and (b), one can obtain the rela-
tionship between the error tolerance and average loss. Ex-
plicit charts were omitted for lack of space.

that in larger data sets, all the natural local data patterns
can be re
ected in a re�ned way, which leads to a more
optimized representation.

5.2 Efficiency of Data Reduction
We tested the e�ciency of the scheme for dimensionality re-
duction. In order to test the e�ciency, we need a data set
in which the dimensionality can be varied e�ectively, while
retaining the basic structure of the data. To this e�ect, we
found the market basket data generator of [3] useful. This
data set was derived6 from the set T20.I20.D100K by using
random projections of varying dimensionality. The error tol-
erance was �xed at 5% of the standard deviation. In Figure
7(i), we have illustrated the scalability of the approach with
increasing data dimensionality. It is clear that for lower di-
mensionalities, the standard SVD approach performs more
e�ectively, but for dimensionalities 80 and higher, the hi-
erarchical subspace sampling technique performed more ef-
fectively. This is because of the (almost) linear scalability
of the subspace sampling technique with respect to data
dimensionality, whereas the SVD method had worse than
quadratic scalability with increasing dimensionality. We
have also illustrated the scalability of the subspace sampling
technique with increasing data set size in Figure 7(j). In this
case, we used a 100-dimensional projection of the data set
T20.I20.D\x". Here the value of x was varied in order to
control the database size. It is clear that the subspace sam-
pling technique scales almost linearly with database size.
The straightforward sampling approach is the key to the
tremendous e�ciency of subspace sampling.

5.3 Application Performance
We applied the subspace sampling method for approximate
nearest neighbor search on the 64-dimensional color his-
togram data set. A direct application of the branch and
bound method [16] on the R�-Tree structure leads to 100%
of the data being accessed. When we modi�ed the branch
and bound method to allow pruning even within prede�ned
error bounds, the R�-Tree structure continued to access the
entire data set for error bounds ranging between 0:2 and 1:0.
Then, we tried to use the R�-Tree structure to index a data
set which was reduced using SVD, but with similar average
error as the reduced data created by the subspace sampling
technique with error guarantees between 0:2 and 1:0. This
results in loss of error guarantees. In this case, the perfor-
mance improved only because of the reduced data set size,
whereas 100% of the index continued to be accessed. Since
the results of Figure 7(f) indicate that the SVD method does
not reduce the data as e�ciently as the subspace sampling
technique anyway, it is clear that the dimensionality reduc-
tion method cannot hope to qualitatively compete with the
subspace sampling method even with the loss in error guar-
antees. In Figure 7(k), we have illustrated the performance
of the hierarchical subspace sampling index for the same
error ranges. It is clear that for all ranges tested, the hi-
erarchical subspace index tree accessed between 1% to 3%
of the original data set size. This improvement was both
because of more e�ective pruning and the advantages of a
reduced representation. Typically, between 60� 90% of the
(reduced) data was pruned during the branch and bound

6We are using notations from [3].

search. Unlike the R�-Tree which used axis-parallel rectan-
gles in characterizing the nodes of the partitions, the arbi-
trary hyperplanes of the subspace sampling technique pro-
vided tight bounds which helped in e�ective pruning during
the nearest neighbor search procedure.

We also tested the ensemble-based approach for selectiv-
ity estimation on the 64-d color histogram data set. The
queries were all range queries in which we intersected 10%
on the ranges on two randomly picked dimensions. For the
64-dimensional case, simple random sampling is the most
realistic alternative [10] for e�ective selectivity estimation.
In Figure 7(l), we have illustrated the performance of the
ensemble-based approach on the color histogram data set.
We used a representation factor of 3% and a maximum di-
mensionality of qmax = 2 for the ensemble-based estimator.
Both approaches were implemented so that they required
the same amount of storage space. In Figure 7(l), we have
illustrated the estimation accuracy on the same queries for
both methods. It is clear that the ensemble-based approach
performs signi�cantly more e�ectively than the simple ran-
dom sampling procedure, especially for queries with small
responses. Since the estimation of queries with small re-
sponses is the most inaccurate for most selectivity estima-
tors, the overall robustness of the ensemble system was sig-
ni�cantly better. The reason for this improvement was two-
fold: (1) Since the histogram component of the ensemble
was built in a lower dimensional space, it was more com-
pact. Therefore, a greater amount of selectivity information
could be stored in the same amount of space. (2) The pri-
mary reason for the e�ectiveness of the ensemble approach
was its ability to decompose the data depending upon its
natural degree of di�culty and use suitably optimized ap-
proaches for each of the portions. This generic approach can
be leveraged to good use in a number of other high dimen-
sional problems. We are currently exploring the use of this
technique for high dimensional classi�cation.

6. CONCLUSIONS AND SUMMARY
In this paper, we discussed the novel technique of hierar-
chical subspace sampling, a method for e�ective high di-
mensional data reduction. As indicated by the empirical re-
sults, the hierarchical subspace sampling technique is both
e�ective and e�cient and can achieve a clear advantage
over widely used dimensionality reduction techniques such
as SVD, while providing worst-case bounds on the error of
each record. The technique shows the interesting behavior
of improved reduction ratios with increasing database size.
In addition, the technique shows almost linear scalability of
running time with increasing database size and dimensional-
ity. This results in an approach which is signi�cantly more
e�cient than SVD for data sets of higher dimensionality.
The reason for the e�ciency is rooted in its straightforward
sampling approach, while retaining the power of �nding lo-
cal subspaces of appropriate dimensionality. Since the hier-
archical subspace sampling method reveals important local
subspace properties of the data, these can also be utilized for
decomposable solutions to problems such as nearest neigh-
bor search and selectivity estimation.

7. REFERENCES
[1] D. Achlioptas. Database-friendly Random Projections.
ACM PODS Conference, 2001.

[2] C. C. Aggarwal, P. S. Yu. Finding Generalized
Projected Clusters in High Dimensional Spaces.
SIGMOD Conference, 2000.

[3] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. VLDB
Conference, 1994.

[4] S. Babu, M. Garofalakis, R. Rastogi. SPARTAN: A
Model-Based Semantic Compression for Massive Data
Tables. ACM SIGMOD Conference, 2001.

[5] N. Beckman, H.-P. Kriegel, R. Schneider, B. Seeger.
The R*-Tree: An E�cient and Robust Method for
Points and Rectangles. SIGMOD Conference, 1990.

[6] C. B�ohm, S. Berchtold, D. Keim. Searching in High
Dimensional Spaces- Index Structures for Improving the
Performance of Multimedia Databases. ACM Computing
Surveys, 2001.

[7] K. Chakrabarti, S. Mehrotra. Local Dimensionality
Reduction: A New Approach to Indexing High
Dimensional Spaces. VLDB Conference, 2000.

[8] A. Deshpande, M. Garofalakis, R. Rastogi.
Independence is Good: Dependency-Based Histogram
Synopses for High-Dimensional Data. SIGMOD
Conference, 2001.

[9] C. Faloutsos, K.-I. Lin. FastMap: A Fast Algorithm for
Indexing, Data-Mining and Visualization of Traditional
and Multimedia Datasets. SIGMOD Conference, 1995.

[10] D. Gunopulos et al. Approximating Multi-Dimensional
Aggregate Range Queries over Real Attributes.
SIGMOD Conference, 2000.

[11] K. Ho�man, R. Kunze. Linear Algebra, Prentice Hall,
NJ, 1998.

[12] H. V. Jagadish, J. Madar, R. Ng. Semantic
Compression and Pattern Extraction with Fascicles.
VLDB Conference, 1999.

[13] H. V. Jagadish et al. Optimal Histograms with
Quality Guarantees. VLDB Conference, 1998.

[14] W. Johnson, J. Lindenstrauss. Extensions of Lipschitz
mapping into a Hilbert space. Conference in modern
analysis and probability, pages 189-206, 1984.

[15] I. T. Jolli�ee. Principal Component Analysis,
Springer-Verlag, New York, 1986.

[16] N. Roussopoulos, S. Kelley, F. Vincent. Nearest
Neighbor Queries. SIGMOD Conference, 1995.

[17] Y. Matias, J. Vitter, M. Wang. Wavelet-Based
Histograms for Selectivity Estimation. SIGMOD
Conference, 1998.

[18] V. Poosala, Y. Ioannidis. Selectivity Estimation
without the Attribute Value Independence Assumption.
VLDB Conference, 1997.

[19] J. Ziv. A. Lempel. A Universal Algorithm for
Sequential Data Compression. IEEE Transaction on
Information Theory, 23(3):337-343, 1977.

