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ABSTRACT

In this paper, we will explore the construction of wavelet
decompositions of uncertain data. Uncertain representa-
tions of data sets require significantly more space, and it
is therefore even more important to construct compressed
representations for such cases. We will use a hierarchical
optimization technique in order to construct the most effec-
tive partitioning for our wavelet representation. We explore
two different schemes which optimize the uncertainty in the
resulting representation. We will show that the incorpora-
tion of uncertainty into the design of the wavelet represen-
tations significantly improves the compression rate of the
representation. We present experimental results illustrating
the effectiveness of our approach.

Categories and Subject Descriptors
H.2.8 [Information Systems]|: Database Applications

General Terms
Algorithms

1. INTRODUCTION

With advances in hardware and software technology, many
new applications create data which is inherently uncertain.
Typically, uncertain data may be created as a result of many
different kinds of data collection or creation methods:

(1) When the data is collected because of imprecise instru-
ments, the error can be measured from the characteristics of
the instrumentation. In some cases, repeated measurements
can be used in order to estimate the probability distribution
of the underlying data. For example, in sensor networks, the
data can often be collected only approximately.

(2) In methods such as privacy-preserving data mining, un-
certainty is intentionally added to the data in order to pro-
tect sensitive information. In some cases [5], the data may
be explicitly modeled as uncertain data.
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(3) In many cases, the data is generated by artificial tech-
niques such as forecasting. Such data can be statistically
modeled as uncertain data.

The problem of uncertain data management has been stud-
ied in the traditional database literature [14], though the
issue has seen a revival in recent years [6, 7, 4, 5, 10, 11,
13]. The driving force behind this revival has been the evo-
lution of new techniques and technologies which result in
uncertain data collection. Data mining and management
techniques need to be carefully re-designed in order to work
effectively with the case of uncertain data. One such data
management application is that of synopsis construction. A
survey of synopsis construction algorithms may be found in
[3]. An important problem in synopsis construction is that
of wavelet decomposition [18]. Wavelet decomposition tech-
niques are widely used in a number of indexing and retrieval
applications. Since uncertain data has additional volume
(because of uncertainty information), the process of synop-
sis construction is especially important in order to compress
the corresponding representation. In this paper, we will de-
sign an effective technique for performing such a compression
and discuss its applicability to query estimation.

The particular form of the wavelet which we will examine
is the Haar Wavelet. Haar wavelets are particularly useful
because of their additive and multi-resolution representa-
tion of the underlying data. However, existing approaches
on one-dimensional and two-dimensional Haar wavelets [18]
are especially not effective for the case of uncertain time se-
ries data. We will design an uncertain representation of the
Haar decomposition and show its utility for representing the
data in compressed format. We will show that a carefully de-
signed decomposition can provide accurate representations
of the underlying time series, and is significantly superior to
more direct solutions for performing the decomposition.

This paper is organized as follows. We will discuss related
work in the remainder of this section. The next section dis-
cusses the details of the wavelet-based decomposition tech-
nique. We will examine the properties of this decomposition,
and its utility for accurate time series representation. In sec-
tion 3, we will present the experimental results illustrating
the effectiveness of the technique. Section 4 contains the
conclusions and summary.

1.1 Reated Work

The problem of uncertain data management and mining
has been explored extensively in recent years [1, 2]. Uncer-
tain data is created by numerous applications in data fore-
casting, privacy, bio-medical data and mobile applications
[2, 5]. Numerous algorithms have been developed recently
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Table 1: Example of Wavelet Computation

for data management and mining problems [4, 2, 13]. In par-
ticular, considerable effort has been devoted to the problem
query processing for uncertain data sets [2, 10]. For many
aggregate kinds of queries, it may be desirable to construct a
compact summary of the data in order to provide summary
responses to queries. Recently, summary techniques have
been developed for aggregate queries in probabilistic data.
A survey of these techniques may be found in [19)].

A well known technique for summarization of determin-
istic time series data sets is that of wavelet decomposition.
A survey of recent methods for one-dimensional and multi-
dimensional wavelet decomposition may be found in [3, 18].
The problem of wavelet decomposition was studied in the
context of database query processing in [8, 15, 16, 20]. Re-
cently, a number of sketching techniques have been devel-
oped for probabilistic data streams [12]. A recent tech-
nique [9] designs histograms and wavelets for probabilistic
data under certain classes of probabilistic models. However,
none of these techniques are applicable to wavelet decom-
position of arbitrary data-driven probability distributions.
In order to retain generality, this paper will use a general
probability density function in the form of data-driven dis-
tribution. In practice, precise probability models for data
are rarely available, and these can only be approximated in
a data driven way. Such probabilistic representations are of-
ten space-intensive; a characteristic which further increases
the need to have an efficient data reduction process.

2. UNCERTAIN WAVELETS

In this section, we present the algorithm for construct-
ing the wavelet decomposition of the underlying data rep-
resentation. The primary representation which we will use
for the underlying representation is the Haar Wavelet. Be-
fore discussing the decomposition method in further detail,
we will review the details of Haar wavelet construction.
This technique is particularly simple to implement, and is
widely used in the literature for hierarchical decomposition
and summarization. The basic idea in the wavelet technique
is to create a decomposition of the data characteristics into
a set of wavelet functions and basis functions. The property
of the wavelet method is that the higher order coefficients
of the decomposition illustrate the broad trends in the data,
whereas the more localized trends are captured by the lower
order coefficients.

We assume for ease in description that the length ¢ of the
series is a power of 2. This is without loss of generality,
because it is always possible to decompose a series into seg-
ments, each of which has a length that is a power of two.
The Haar Wavelet decomposition defines 27! coefficients
of order k. Each of these 2°7! coefficients corresponds to a
contiguous portion of the time series of length ¢/2*~. The
ith of these 2°~! coefficients corresponds to the segment in
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Figure 1: Illustration of Wavelet Decomposition

the series starting from position (i — 1) - ¢/2"~ + 1 to po-
sition i * ¢/2F 1. Let us denote this coefficient by %} and
the corresponding time series segment by Si. At the same
time, let us define the average value of the first half of the
St by ai and the second half by b.. Then, the value of
is given by (ai — b})/2. More formally, if ®% denote the
average value of the S, then the value of 1. can be defined
recursively as follows:

dr = (34 — €ih)/2 (1

The set of Haar coefficients is defined by the U% coeffi-
cients of order 1 to log,(g). In addition, the global aver-
age ®1 is required for the purpose of perfect reconstruction.
We note that the coefficients of different order provide an
understanding of the major trends in the data at a partic-
ular level of granularity. For example, the coefficient ¢ is
half the quantity by which the first half of the segment S
is larger than the second half of the same segment. Since
larger values of k correspond to geometrically reducing seg-
ment sizes, one can obtain an understanding of the basic
trends at different levels of granularity. We note that this
definition of the Haar wavelet makes it very easy to compute
by a sequence of averaging and differencing operations. In
Table 1, we have illustrated how the wavelet coefficients are
computed for the case of the sequence (8,6,2,3,4,6,6,5).
This decomposition is illustrated in graphical form in Fig-
ure 1. We also note that each value can be represented as
a sum of log,(8) = 3 linear decomposition components. In
general, the entire decomposition may be represented as a
tree of depth 3, which represents the hierarchical decompo-
sition of the entire series. This is also referred to as the
error tree. In Figure 2, we have illustrated the error tree
for the wavelet decomposition illustrated in Table 1. The
nodes in the tree contain the values of the wavelet coeffi-
cients, except for a special super-root node which contains
the series average. This super-root node is not necessary if
we are only considering the relative values in the series, or
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Figure 2: Error Tree from Wavelet Decomposition

the series values have been normalized so that the average
is already zero. We further note that the number of wavelet
coefficients in this series is 8, which is also the length of the
original series. The original series has been replicated just
below the error-tree in Figure 2, and it can be reconstructed
by adding or subtracting the values in the nodes along the
path leading to that value. We note that each coefficient in
a node should be added, if we use the left branch below it
to reach to the series values. Otherwise, it should be sub-
tracted. This natural decomposition means that an entire
contiguous range along the series can be reconstructed by
using only the portion of the error-tree which is relevant to
it. Furthermore, we only need to retain those coefficients
whose values are significantly large, and therefore affect the
values of the underlying series. In general, we would like to
minimize the reconstruction error by retaining only a fixed
number of coefficients, as defined by the space constraints.

2.1 Defining the Uncertain Case

In the case of uncertain data, the wavelet decomposition
algorithm is defined with the use of uncertain variables along
the time series. It is assumed that the time-series has a
length of N, and the ith element along the time series is
defined by the probability density function f;(-). We make
no assumption about the nature of the probability density
function f;(-). The function may not even be available in
the closed form, but may only be representable in the form
of bucket histograms. This may often be the case, when
the data point is obtained by observing multiple instantia-
tions of a particular event. The use of the bucketized his-
togram representation of the probability density function is
the most general representation, since it does not depend
upon any canonical form of the underlying representation.
Therefore, we will use it for our analysis. This assumption
is also useful for modeling the general case where each value
in the time series is defined by sampling over a large set
of data values. For example, consider the case in which we
are tracking the scores of a large number of games in the
NBA basketball league. Each time-stamp may correspond
to the games which occur in a particular period such as a
day or a week. A particular frequency statistic (eg. mar-
gin by which game was won or total points scored) of the

games in a given period may define the histogram for the
corresponding uncertain representation. In other applica-
tions such as surveys, the statistics collected during a par-
ticular period may represent the histogram for the uncertain
representation. Similarly, for many privacy-preserving data
mining applications, the data may be available only on an
aggregated basis.

Let us assume that each of the functions f;(-) is repre-
sented in the form of frequency values along w buckets. For
ease of exposition, we will assume that w is a power of 2.
This assumption is useful for describing the wavelet decom-
position cleanly, though the general decomposition can be
constructed by expressing the number of buckets as the sums
of powers of two. We assume that the length of the time se-
ries is N. As in the previous case, we assume that N is a
power of 2 for ease in exposition. It is assumed that the
jth bucket corresponds to the range [I(j), u(j)]. We assume
that the relative frequencies along the buckets for f;(-) are
denoted by p(i,1)...p(¢,w). The value of p(i,j) denotes
the probability that the ith element of the time-series lies
in the range [I(j), u(j)]. Since, the values of p(i, j) over the
different buckets must sum to 1, we have:

Zp(i,j) =1 (2)

We note that a straightforward solution of the wavelet de-
composition problem is to independently decompose each
of the w components. However, this can be a poor solu-
tion when the correlation between adjacent buckets in the
wavelet decomposition is very high. This is often the case in
real applications. Furthermore, in such cases, it is more de-
sirable to incorporate the probabilistic component directly
in the decomposition. In the next section, we will describe
the method for performing the decomposition.

2.2 Wavelet Decomposition Algorithm

In the case of the decomposition of a deterministic time
series, we create the wavelet decomposition by cutting each
time interval at the middle of the corresponding range. How-
ever, in the case of uncertain data, this is not possible since,
we also have a probabilistic component to the data behavior.
This probabilistic component corresponds to the w different
buckets along which the frequencies are expressed. There-
fore, it is important to take the use the probabilistic behavior
of the data during the decomposition process.

In the case of deterministic wavelet decomposition, each
coefficient describes the behavior of the data along a par-
ticular range of time. Correspondingly, in the case of the
uncertain representation, each coefficient corresponds to the
behavior along a particular time series segment and proba-
bilistic range (contiguous group of histogram buckets). We
note that a division of a particular order may occur along
either the time component or the probabilistic component.
The information as to whether the cut occurs along the
time component or the probabilistic component is additional
overhead which needs to be stored independently. This over-
head can be substantial if it needs to be stored at each node
of the wavelet tree. One possibility for reducing the over-
head is to assume a single global ordering of the cuts along
the time dimension or the probabilistic dimension. Thus, all
cuts along a given level of the wavelet tree are either a cut
along the time component or a cut along the probabilistic
component. By adding this constraint, the only additional



overhead we need to store is the global ordering of cuts along
either the time or the probabilistic component. This over-
head has the same order as the height of the wavelet tree or
h = log,(N). Therefore, we can define the cut-order in the
form of a bit-string of length h, where a 0 at a particular po-
sition in the string corresponds to a probability cut, whereas
a 1 in a particular position corresponds to time cut. We de-
fine the global cut-order for a given wavelet decomposition
as follows:

DEFINITION 1. The cut-order for a given wavelet decom-
position is a 0-1 bit-string q1q2 . . . qn of length h, where h is
the height of the wavelet tree. The bit q, is 1, if all cuts of the
rth order are along the time-series component, and the bit
qr 18 0, if all cuts of the rth order are along the probabilistic
component.

We note that since some of the cuts are along the time com-
ponent, and other cuts are along the probability component,
we need to define the time-order and the probability-order
of the wavelet coefficients. We note that the use of a global-
ordering introduces some inflexibility into the decomposition
in order to save on overhead. If we had used a node-specific
cut-strategy, then we would have had to store this informa-
tion at each node. On the other hand, a node-specific cut-
strategy would also result in fewer number of nodes because
of better local optimization. Therefore, we will also examine
the methodology for the local-decomposition slightly later,
and compare the two methods in the experimental section.
For the time being, we will only discuss the case for defining
the global cut-order, since the broad framework can be eas-
ily extended to the local case. Next, we will establish some
further definitions on defining the time-order for a global
wavelet coefficient.

DEFINITION 2. The time-order for an rth order wavelet
coefficient with cut-order qi ...qr is given by > ., qi. This
simply represents the number of cuts along the time dimen-
sion. The time order for a wavelet coefficient of order r is
denoted by t(r).

Correspondingly, the probability-order for the cuts are de-
fined in terms of the number of cuts along the probability-
dimension.

DEFINITION 3. The probability-order for an rth order wavelet

coefficient is given by r — ., qi. The probability-order for
a wavelet coefficient of order r is denoted by s(r).

Since the number of cuts for a wavelet coefficient of order
r sum to r, it easily follows that the sum of ¢(r) and s(r)
must be 7.

We will first define the concept of associating an uncertain
wavelet coefficient with both the time-series and probability
space. This will also help in explaining how the (¢ + 1)th
order wavelet coefficients are generated from the ith order
coefficient.

DEFINITION 4. An uncertain wavelet coefficient of order
r is associated with the time-series domain range [a,b], and
probability domain range' [c,d]. The length of the range
[a,b] is given by N/22 =9 and the length of the range [c, d]

"We note that ¢ and d are expressed in terms of the index
of the histogram buckets, which may range between 1 and
w.

is given by w/QS(T)_H‘“. The magnitude of the wavelet co-
efficient is defined as follows:

(1) If gr is 0, then the value of the wavelet-coefficient is de-
fined by subtracting the average values of the probabilities in
[a,b] X [[(c+ d)/2],d] from the average values of the proba-
bilities in [a,b] X [c, d].

(2) If qr is 1, then the value of the wavelet-coefficient is de-
fined by subtracting the average values of the probabilities in
[[(a+b)/2],b] X [c,d] from the average values of the proba-
bilities in [a,b] X [c,d].

In addition, we have a special coefficient at the root of the
tree representation which corresponds to the average proba-
bility values across all N x w buckets. In the event that the
tree is built to full height, and no coefficients are discarded,
the total number of coefficients including this special coeffi-
cient is equal to N x w. We note that if the wavelet-tree is
constructed to completion, then its height will be given by
log,(N) + log,(w). In practice, it may not be necessary to
construct the tree to full height. The total number of passes
required over the database is given by this height over the
tree.

Each node at the leaf level of the tree corresponds to a pair
of adjacent buckets in the w x N histogram represented by
the wavelet, and the coefficient value corresponds to half the
difference in the probability values of these two buckets. The
exact value of any bucket may be reconstructed by summing
the wavelet coefficients along the height of the entire tree,
where a left branch corresponds to an addition and a right
branch corresponds to a subtraction.

OBSERVATION 1. The probability value along a given bucket
may be reconstructed by summing the wavelet-coefficients
along the height of the entire tree.

In general, it is possible to obtain a fairly accurate recon-
struction by storing only the largest wavelet coefficients.
Ideally, for a given wavelet tree, we would like to pick the
wavelet coefficients in such a way that the error of the rep-
resentation is optimized. We define the error as the mean-
square error of the uncertain data representation:

DEFINITION 5. Let the original probabilities of represen-
tation be denoted by p(i,7), for the jth bucket of data point
i. Let the probabilities obtained from the wavelet decomposi-
tion (after removing the smaller coefficients) be denoted by
p'(i,7). Then, the mean square error E is defined as follows:

E= ZZ@W —p'(i,4)) (3)

We would like to pick the wavelet coefficients, so that the
error of representation is minimized. First we define the
representation vector of each wavelet coefficient.

DEFINITION 6. The representation vector of a wavelet co-
efficient of order r for region [a,b] X [c,d] is defined as fol-
lows:

(a) The vector has length N X w, with one element for each
position in the time series.

(b) All positions outside the positions corresponding to [a, b] X
[c,d] are set to 0.

() if gr is 0, then all positions in [a,b] x [[(c+d)/2], d] are
set to -1, and all positions in [a,b] X [c, |(c + d)/2]] are set
to 1.



Algorithm CutOrder(Database: D, Lookahead: r);
begin
while entire tree is not constructed
m = 0;
begin
Try different combinations for ¢msr+1 - -« Gmxr4r
in order to construct the next m levels optimally;
m=m-+1;
end
end

Figure 3: Determination of Cut Order

(d) if g is 1, then all positions in [a, [(a+b)/2]] X [¢,d] are
set to 1, and all positions in [[(a + b)/2],b] X [c,d] are set
to -1.

We can construct a representation vector €; for each node
of the wavelet tree. Thus, there are a total of M = N x
w representation vectors along with corresponding wavelet
coefficients. Let the wavelet coefficient (as computed above)
for the representation vector €; be denoted by w;. Then, we
make the following observation:

OBSERVATION 2. The probability histogram for the uncer-
tain time series can be computed as the wavelet weighted sum
of the representation vectors, which is denoted Efvil Wi - €.
We further note that the vectors er .. .ex are orthogonal to
one another because they represent hierarchically organized
nodes of the wavelet tree.

OBSERVATION 3. The vectors er/|e1| ... ear/|€rz| form an

orthonormal basis system of the probability space of size w *
N.

Therefore, the normalized representation of the wavelet de-
composition of the time series T" is denoted as follows:

M _
— €4

T:Zwi'|ei|'ﬁ (4)
i=1 B

The normalized representation simply divides each vector by
its corresponding modulus. Thus, the normalized wavelet
coefficients are ws - [€1]...wn - [€ar]| respectively. Clearly,
the normalization factor |€;] is greater for higher level nodes
in the tree, since a greater number of entries are non-zero
in these cases. Since the wavelet coefficients provide an or-
thonormal basis system, we can obtain an analogous result
to the deterministic case of wavelet decomposition.

LEMMA 1. The total square error on discarding the subset
of wavelet coefficients i1 .. .1 is given by Zle wi. . |§|2
Therefore, the mean square error is minimized by selecting
the largest (normalized) wavelet coefficients.

PrOOF. This result directly follows from the orthonor-
mality of the corresponding vectors. The representation er-
ror in vector form is given by E;?:l w;; - ;. By taking the
modulus of this vector, we get the desired result. [

2.3 Determining the Cut Order

We have described the entire construction of the wavelet
decomposition, except for how the cut order is determined.
Clearly, the effectiveness of the wavelet decomposition is de-
fined by the global cut-order ¢ ...¢q-. We would like to pick

the cut-order in such a way that only a small number of the
wavelet coefficients have large values. We note that since g;
is a global cut-order, all nodes at level of r of the tree have a
cut which is defined by g,. Therefore, the natural strategy is
to construct the wavelet tree level by level, and to choose ¢;
at each level such that our objective of keeping large wavelet
coefficients at higher levels of the tree is achieved.

In order to achieve this goal, we first pick ¢ = 0 and
compute the coefficients fi ... f; at a given level of the tree.
Then, we pick ¢; = 1, and compute the coefficients g1 ... g
for the same level of the tree. If the value of Zi:l f2is
greater, then we pick ¢; = 0, otherwise we pick ¢; = 1. This
approach is used in top-down fashion in order to build the
tree level by level. We note that this procedure determines
the cut-order by using a level-lookahead of 1. This approach
does not have significant asymptotic overhead over picking
a random value of g;, since only two possibilities need to be
tested at a given time. We can construct the same algo-
rithm by using a level-lookahead of 2, by constructing the 4
possible combinations of successive levels by picking ¢; and
@i+1 in different ways. The construction of two levels at one
time creates a superior wavelet decomposition, but at higher
cost. By increasing the lookahead to the entire height of the
tree, it is possible to construct the optimal tree, but the cost
of exploring so many combinations would be computation-
ally prohibitive. In practice, the use of a small lookahead
provides an effective decomposition. The procedure for cut-
order determination is illustrated in Figure 3.

2.4 Local Optimization of Wavelet Coefficients

Instead of using a global cut-order qi ...q,, it is possi-
ble to locally optimize the cut-order at each node. In this
case, we test different kinds of cuts at each node to deter-
mine whether to cut along the temporal dimension, or to cut
along the probabilistic dimension. As in the previous case,
we pick the choice for which the sum of the squares of the
corresponding wavelet coefficients for a given node are opti-
mized. We note that the possible choices wavelet coefficients
for a given level of the tree can be computed simultaneously
in a single scan over the database. Subsequently, the wavelet
coefficients can be picked optimally for each node. The main
difference from the global approach is that a different deci-
sion on choice of coefficients is made for each node depend-
ing upon the magnitude of the corresponding coefficients.
We note that the wavelet basis continues to maintain the
orthonormality property. Since Lemma 1 is dependent on
the orthonormality property, it follows that it continues to
hold even in the case of the locally optimized wavelet tree.
Therefore, once the wavelet-tree is constructed, it suffices to
pick the largest wavelet coefficients.

We also need to store additional information about the
local cut-order. We store an additional bit corresponding to
each node. This bit takes on the value of 0 or 1 depend-
ing upon the choice of the direction along which the cut is
made. Since only an additional bit needs to be stored at
each node, this results in modest storage overhead. As we
will see in the experimental section, this overhead is more
than compensated for by the better optimization of the cuts
at different levels of the tree.

2.5 Application to Query Resolution

Since the wavelet representation provides a compressed
representation of the underlying time-series, it can be used



50

50 b |/

-100 |

Value

-150

0 200 400 600 800 1000
Time

Figure 4: Illustration of Synthetic Time Series

for effective query resolution. Some examples of queries in
which the wavelet representation can be used are as follows:
(1) Given a target series S, determine its expected distance
to T. (2)Given a target series S, determine the expected
number of points which lie within a threshold € to 7. (3)
Given a target series S, determine the number of points
for which the probability of lying within the threshold ¢ is
greater than §.

We note that S need not be of the length of the entire
series T', but may comprise only a small contiguous portion
of the series T'. In each of these cases, it is possible to use
the wavelet tree in order to efficiently respond to the cor-
responding queries. While most of the coefficients in the
wavelet tree may already have been pruned, it is possible to
improve the efficiency of query answering further by care-
fully selecting which branches are explored. In each case,
the query can be efficiently answered by using the following
approach on the wavelet tree:

e Only those portions of the wavelet tree which intersect
with the query segment S are explored. Since it is assumed
that S comprises only a small portion of the entire series, it
follows that this helps in pruning off a large portion of the
tree.

e For queries which have a threshold distance ¢, only those
buckets need to be explored which lie within this threshold
distance of e. Therefore, portions of the wavelet tree which
correspond to irrelevant buckets can be pruned. If desired,
the wavelet tree can be explored hierarchically in order to
prune off large portions of the tree at higher levels.

By using this approach, the efficiency of query process-
ing can be significantly improved. Thus, the wavelet repre-
sentation provides an effective representation which can be
leveraged for efficient query processing.

3. EXPERIMENTAL RESULTS

In the experimental section, we will examine the effec-
tiveness and efficiency of the wavelet decomposition tech-
nique. In order to have fairness in comparison, we fixed the
amount of space required by each technique. As a baseline,
we use the standard decomposition of two-dimensional Haar
wavelet transform as proposed in [18]. In the subsequent
plots, we denote this technique as the standard decomposi-
tion approach. In order to illustrate the effectiveness of our
approach, we can use either the global or the local approach
for wavelet decomposition. In addition, the amount of looka-
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Figure 5: Accuracy on Synthetic Data Set

head can be varied in order to explore the effectiveness of
various scenarios. Therefore, we will test the following four
variations: (1) The global approach using a level-lookahead
of 1. (2) The global approach using a level-lookahead of 2.
(3) The local approach using a level-lookahead of 1. (4)
The local approach using a level-lookahead of 2.

In addition, we compare the natural technique of using the
standard decomposable approach to these four approaches.
In all our tests, we used w = 512 in order to represent the
buckets for the different histograms.

All experiments were done on an Intel Core 2 Duo pro-
cessor, 2.1GHz, 3G memory), running Windows Vista. All
approaches were implemented in C++ using Visual Studio
2005.

3.1 Evaluation Measures

All methods were compared with the assumption of a fixed
budget B on the storage space. The use of a fixed amount
B of storage space on any of the approaches creates a dif-
ferent reconstruction of the underlying data. It is desirable
to compare the accuracy of the different reconstructions as
compared to the original data. Let the reconstructed value
of p(i,7) be denoted by p’(i,5). Then, we use the mean
square error in order to compute the accuracy of the rep-
resentation. As discussed in Equation 3, the mean square
error F is defined as follows:

N w
E=3 % (pi.j) —'(i5)
i=1j=1
Clearly, the error increases when the value of B is reduced
for any method. This baseline error is an intuitive way of
measuring the effectiveness of different kinds of applications
on the underlying data, since it reflects the core represen-
tational error. In the experimental section, we will express
B as the compression ratio between the original and the
compressed data.

3.2 Uncertain Data Generation

As baseline, we used both real and synthetic data sets.
First, we will describe the base data sets, and then we will
discuss how noise was added to each of these data sets. The
synthetic data set was a time-series is generated using the
following canonical form:

tit+1 = t; + pole x rand (5)
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Figure 6: Accuracy on Chlorine Data

The quantity ¢; represents the value of tick ¢ in the time
series. The parameter pole could be either 1 or -1, which
changes periodically. The period of pole is randomly selected
from 10 to 50. The value of rand is the gap between two
adjacent ticks (¢; and t;4+1), and it is random number which
is randomly selected from 0 to 5. The time series of synthetic
data set is shown in Figure 4. We note that this time series
does not have any noise added to it. We will discuss the
methodology for adding the noise slightly later.

Next, we describe the real data sets. The data set was con-
structed from sensors deployed in Intel Berkeley Research
Labs [17, 22]. These data sets correspond to light, tem-
perature, and humidity readings from the sensors. We will
pick some of the streams from these data sets to test with
our approach. The second data set was the Chlorine Data
Set, and was generated by EPANET 2.0 [21]. This data
stream contained 166 different sensor streams corresponding
to chlorine readings at different junctions. As in the case of
the synthetic data sets, artificial noise was added to the time
series data stream. For all data sets, the methodology used
to inject noise was the same.

We inject noise into the time series which is of a similar
order as the variance of the values. The noise is modeled as
a mixture modeling distribution, though we store it in the
form of a histogram with w buckets, where w is fairly fine
grained, e.g., w=>512. In order to model the noise in the
time series, we use a cluster scenario to generate the offset
from the true time series value. For each time position, we
generate an instantiation of the offset from the true value by
picking one of the clusters. This may provide a positive or
negative offset. We add this offset to the time series value,
and this provides one possible sample of the uncertain value
at that point. We generate k cluster centers to represent a
k-modal distribution. Each cluster center was drawn from
a normal distribution with mean equal to zero and variance
v. The value of v is picked of the same order as the time
series variance. Each cluster itself has a variance of v2 and
the distribution of the points in it is also modeled as a nor-
mal distribution with variance v2. In our tests, vz is set
to 2 percent of v. For each time series position, we create
the histograms with the use of random sampling. In order
to represent this sample, we increment the corresponding
bucket in the histogram by 1. We use 4000 samples for each
time series position in order to fill up the large number of
possible buckets (w buckets) in a reasonable way.
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Figure 7: Accuracy on Sensor Data (Humidity)

3.3 Reaults

We first present the results for the synthetic data set. We
set the value of v to be 5, which is of the same order as
the time series variance. The accuracy of each approach
is shown in Figure 5. The compression ratio is illustrated
on the X-axis, and the square error is illustrated on the
Y-axis. We further note that the Y-axis is drawn on the
logarithmic scale. Therefore, the difference between the dif-
ferent approaches is much greater than might appear visu-
ally. In each of the different methods, the error reduces
as the compression ratio increases. This is natural, since a
higher number of coefficients can be retained with increased
compression ratio. We note that all the four variations of
our uncertain wavelet decomposition approach significantly
outperform the approach which treats the different wavelet
coefficients separately. Among the four approaches using the
wavelet decomposition technique, the local approach with a
level-lookahead 2 achieves the highest accuracy, followed by
the local approach with a level-lookahead 1, and then the two
global approaches, which get the same cut order. We note
that the local approach provides higher accuracy because of
the better optimization in individual nodes. Even though
each coefficient requires more space to store, the number of
coefficients required for the same accuracy is far fewer.

We test the approaches on the Chlorine data set [21],
which was generated using EPANET. As in the previous
case, we set the value of v to be of the same order as the
time-series variance, which in this case happened to be 2.0.
The accuracies of each approach are shown in Figure 6. As
in the previous case, the compression ratio is illustrated on
the X-axis, whereas the accuracy is illustrated on a logarith-
mic scale on the Y-axis. From Figure 6, one can see that
the local approach with a level-lookahead 2 is most accurate,
while the accuracy of the standard approach is much lower
than the others. Since the Y-axis is on a logarithmic scale,
the differences are actually much greater than might appear
visually in Figure 6.

We also tested the accuracy of each approach on sensor
motes data set [22]. We first test on the time-series stream
containing the humidity data. We set the value of v to be
0.1. The accuracy of each approach is shown in Figure 7.
The accuracy of the standard approach is significantly lower
than other approaches using the wavelet decomposition tech-
nique. As in the previous case, the Y-axis is set on a log-
arithmic scale. As in other cases, the local approach with
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Figure 9: Accuracy on Sensor Data (Light)

a level-lookahead of 2 is still the most accurate. One inter-
esting observation is that the global approach with a level-
lookahead 1 achieves almost the same accuracy as the global
approach with a level-lookahead 2; but by local approach,
increasing the lookahead notably provides higher effective
decomposition. We also note that the global technique pro-
vides fairly respectable accuracy across the different data
streams.

We also tested the results on the Humid Temp streams.
We set the value of v to be 0.1. As in the previous case,
we illustrate results with logarithmic scaling on the Y-axis.
The accuracies of all five approaches are illustrated in Figure
8. As in the previous case, all of our wavelet decomposition
approaches were significantly superior to the standard de-
composition approach. Omne can see that the approaches
using the two proposed techniques show the same trends as
we mentioned above.

Finally we test our approach on the light stream from the
sensor data set. We set the value of v to be 1. We report the
accuracy of each approach in Figure 9. As in the previous
cases, the X-axis illustrates the compression ratio, whereas
the Y-axis contains the behavior of the different techniques.
Again, the local approach with a level-lookahead of 2 is most
accurate. In this case, both the local approaches were sig-
nificantly superior to the global approach to wavelet decom-
position. Thus, the local approach with look-ahead of 1, is
competitive with the global approach with look-ahead 2 in
the sense that the relative ordering between these two ap-

[ Method || Synth. | Chlor. | Hum. | HumTemp [ Light
Stand. 0.421 ] 1.966 [ 2.933 3.105 3.057
Glo(1) 0.297 1.045 | 1.981 1.840 1.685

Glo(2) 0.577 | 1.888 | 4.134 3.588 3.354
Loc(1) 0.296 1.451 | 2.543 2.653 2.512
Loc(2) 0.499 | 2.620 | 3.556 3.416 3.651

Table 2: Running Time on Different Data Sets

proaches varies over the different data sets. As in all the
previous cases, our wavelet decomposition technique signif-
icantly outperforms the standard decomposition technique.
Thus, the proposed approach maintains its effectiveness over
a wide variety of real and synthetic data sets.

We also tested the efficiency of the different techniques.
We note that the approach with standard decomposition is
extremely simple because it requires no optimization. There-
fore, this approach serves as a baseline in order to test the
efficiency of the other approaches. The running times in
seconds for each approach are presented in Table 2. We
notice that the standard decomposition approach consumes
more time than level-lookahead 1 techniques, but less than
level-lookahead 2 techniques. The reason is that although
the standard decomposition is a quite simple and direct ex-
tension of the Haar decomposition, it generates more coeffi-
cients than our proposed techniques by cutting on each rows
and columns, which offsets the benefit of no optimization.
For our proposed four approaches, in each case, it is clear
that the local approaches are competitive with the global
approaches in terms of running time. Therefore, the local
method is much more desirable since it provides greater ef-
fectiveness at competitive efficiency. On the other hand,
the level-lookahead 2 approaches are more time consuming
than the level-lookahead 1 approaches. The running time of
level-lookahead 2 techniques are about two times the run-
ning times of level-lookahead 1 approaches. One can also
observe that the use of a global or local approach does not
affect running time as much as the lookahead level. Whether
we cut the nodes globally or locally, we need to compute the
coefficients of each node in both cases, and the running time
for a particular coefficient computation is not very different.
But approaches with a level-lookahead 2 need to compute
the coefficients of level i + 1 while we are working on level
i, and there are four possible combinations which need to
be computed. That is why a level-lookahead 2 approach is
more time consuming than a level-lookahead 1 approach. In
spite of these additional computations, our proposed meth-
ods are more efficient than the standard method. The addi-
tional cost is well within practical limits as a tradeoff for the
tremendous advantages of the more sophisticated tree-based
techniques in terms of effectiveness.

3.4 Senditivity Analysis

In the previous experiments, we fixed the uncertainty vari-
ance for each data set in order to evaluate the efficiency and
effectiveness of different approaches. In this section, we will
first conduct a sensitivity analysis on different uncertainty
levels for wavelet decomposition. We used the Sensor data
(Light Stream) for the purpose of sensitivity analysis.

As we have mentioned, the normalized representation of
the wavelet decomposition of the time series T is defined
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Figure 10: Sensitivity to Variance (Light)

according to Equation 4 as follows:

L'
i=1 B

The total square error E on discarding all the wavelet
coefficients is given by E = S°M w? - |&|?. While the vari-
ance increases, the total absolute square error F decreases.
In this case, the use of the absolute value of square error
might not be appropriate for sensitivity analysis. In order
to measure fairly, we use the relative value of square error
to measure the performance. The relative square error R
on discarding the subset of wavelet coefficients ;... %k is
defined as follows:

S wi el
R==F— (©)

Figure 10 illustrates the sensitivity analysis of different
approaches with increasing variance v of the probability
distribution function. The compression ratio was fixed at
0.488%. The variance v is illustrated on the X-axis, and
the relative square error is illustrated on the Y-axis. Higher
values of v correspond to probability density functions with
greater uncertainty. As the variance increases, the relative
square errors of all approaches increase. However, the local
approaches increase only slightly whereas the square error
trends of global approaches are more sensitive. The local ap-
proaches are less likely to be influenced by the fluctuations
in the variance than the global approaches. This is because
local approaches are much more flexible in optimizing dif-
ferent localities of the data irrespective of the underlying
uncertainty level.

Since this paper addresses the problem of arbitrary prob-
ability distributions which are represented as histograms,
the number of buckets defines the accuracy of representa-
tion. Clearly, greater granularity of representation results in
greater computational constraints. Therefore, it is useful to
test the effectiveness of the technique with increasing num-
ber of buckets. We note that the use of a larger number of
buckets can represent the probability density function more
accurately. However, larger number of buckets also tends
to consume more time since it results in a larger wavelet
tree. In order to understand the influence of the number
of buckets on the efficiency, we test the execution time of
all techniques with increasing number of buckets. The re-
sults for the light stream data are illustrated in Figure 11.
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We have illustrated the number of buckets on the X-axis,
whereas the execution time is illustrated on the Y-axis. All
techniques scale linearly with increasing number of buckets
since the size of the constructed wavelet tree scales linearly
with increasing number of buckets.

It is also valuable to test the effectiveness of different tech-
niques on other probability distributions. In all the exper-
iments presented here, the noise injected in the data was
generated by a mixture of normal distributions. In this part,
we will test the sensitivity by modeling the noise as a mix-
ture of other kinds of distributions. The broad data of the
generation technique remains the same, except that a dif-
ferent method is used to model the noise. In particular, we
will test the effectiveness of the method on (1) a mixture of
exponential distributions, and (2) a mixture of uniform dis-
tributions. In Figure 12, we have illustrated the accuracy of
the method on a mixture of exponential distributions on sen-
sor data (light stream). We set the exponential distribution
rate parameter A for each of the exponential distributions
to be 1.5. We also illustrate the accuracy of the methods
on a mixture of uniform distributions on the same data set
in Figure 13. The uniform distributions are drawn from
[-2.5,2.5] in each case. In both figures, the X-axis illus-
trates the compression ratio, and the Y-axis represents the
accuracy on a logarithmic scale. The results are quite simi-
lar to the case of the normal distribution. In each case, our
proposed wavelet techniques maintained an order of mag-
nitude advantage over the baseline technique. Therefore,
the proposed approaches are extremely robust and capable
of maintaining their effectiveness and efficiency over a wide
range of parameter settings and probability distributions.

4. CONCLUSIONSAND SUMMARY

In this paper, we discussed a new method for wavelet de-
composition of uncertain data. We construct a method for
wavelet decomposition on both the temporal and probabilis-
tic aspects of the data, and design a strategy for optimizing
the relative effect of both components. We show that such
an approach is much more effective than direct applications
of wavelet decomposition. This is because of a choice of
careful optimization strategy which uses both the temporal
and uncertain aspects carefully. We show that the approach
is effective and efficient on real and synthetic data sets.
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