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ABSTRACT
Ensemble analysis is a widely used meta-algorithm for many
data mining problems such as classification and clustering.
Numerous ensemble-based algorithms have been proposed in
the literature for these problems. Compared to the cluster-
ing and classification problems, ensemble analysis has been
studied in a limited way in the outlier detection literature.
In some cases, ensemble analysis techniques have been im-
plicitly used by many outlier analysis algorithms, but the
approach is often buried deep into the algorithm and not for-
mally recognized as a general-purpose meta-algorithm. This
is in spite of the fact that this problem is rather important
in the context of outlier analysis. This paper discusses the
various methods which are used in the literature for outlier
ensembles and the general principles by which such analysis
can be made more effective. A discussion is also provided
on how outlier ensembles relate to the ensemble-techniques
used commonly for other data mining problems.

1. INTRODUCTION
The outlier analysis problem has been widely studied by
database, data mining, machine learning and statistical com-
munities. Numerous algorithms have been proposed for this
problem in recent years [3; 5; 11; 12; 26; 27; 21; 22; 35; 36].
A detailed survey on the topic may be found in [10], and a
detailed book may be found in [1].

Data mining is often an inherently subjective process, where
the objective function or model defined for a particular prob-
lem depends upon an analyst’s understanding of the gener-
ative behavior of the data. Clearly, such assumptions are
very subjective, and a specific algorithm being used may
often model the underlying generative process in a limited
way. In such cases, effective results can be obtained on some
parts of the data which are modeled well, whereas the re-
sults on other parts of the data may not be very accurate.
Similarly, a given model may sometimes behave well on a
given data set, but may not behave well on other data sets.

Ensemble analysis is a method which is commonly used in
the literature in order to reduce the dependence of the model
on the specific data set or data locality. This greatly in-
creases the robustness of the data mining process. The en-
semble technique is used very commonly in problems such as
clustering and classification. Ensemble analysis is sometimes
understood rather narrowly and referred to as the combina-
tion of the outputs of several independently executed data

mining algorithms. A broader view of the term “ensemble
analysis” can include any approach which combines the re-
sults of either dependent or independent executions of data
mining algorithms. For example, the boosting technique in
classification, in which the different executions of the classi-
fication algorithm are clearly dependent on one another, can
also be considered an ensemble approach. The idea here is
that the final result is an ensemble score from the results
of different models, no matter how each of these models is
derived.

The problem of ensemble analysis has been widely studied in
the context of many data mining problems such as clustering
and classification, though the approaches are different in su-
pervised and unsupervised problems. In fact, each of these
areas of meta-algorithm analysis is considered an active and
vibrant subfield in its own right. To provide a specific ex-
ample, the seminal paper [16] on boosting in classification
has several thousand citations, and many different variants
of the basic boosting approach have been proposed in the
literature. The common methods used for ensemble analysis
in clustering and classification are as follows:

• In clustering, the areas of alternative clustering, mul-
tiview clustering, and ensemble clustering are closely
related subtopics of ensemble analysis. The idea in
each of these variants is that the clustering process is
inherently subjective, and a single clustering may not
reflect the complete insights about how the data may
cluster. Therefore, it is useful to examine the differ-
ent and alternative clusters [7; 31; 32] and combine
the results. Alternative clustering is also sometimes
referred to as multiview clustering. The goal here is to
determine clusterings which are significantly different
from one another in order to obtain different insights.
In some cases, the exploration of the clusters is per-
formed visually [20] in order to obtain the best results.

• In the context of the classification problem, a variety
of ensemble based methods have been proposed as as
bagging [9], boosting [16], stacking [14; 38; 37], ran-
dom forests [8], model averaging [15], and bucket of
models [39]. Ensemble analysis is considered partic-
ularly important in noisy and streaming scenarios in
which the quality of the results from individual classi-
fiers is not considered robust because of limitations in
data quality or processing time.

These different methods for ensemble analysis in clustering
and classification enjoy wide popularity, and have been ex-
plored extensively in the literature. Furthermore, the differ-
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ent sub-topics (eg. bagging, boosting, etc.) in the ensemble
analysis area are very well formalized.

This is remotely not true for outlier analysis, in which the
work on ensemble analysis is rather patchy, sporadic, and
not so well formalized. In many cases, useful meta-algorithms
are buried deep into the algorithm, and not formally recog-
nized as ensembles. Perhaps, one of the reasons why ensem-
ble analysis has not been well explored in outlier analysis
is that meta-algorithms require crisp evaluation criteria in
order to show their relative merits over the base algorithm.
Furthermore, evaluation criteria are often used in the in-
termediate steps of an ensemble algorithm (eg. boosting or
stacking), in order to make future decisions about the precise
construction of the ensemble. Among all core data mining
problems, outlier analysis is the hardest to evaluate (espe-
cially on real data sets) because of a combination of its small
sample space and unsupervised nature. The small sample
space issue refers to the fact that a given data set may con-
tain only a small number of outliers, and therefore the cor-
rectness of an approach is often hard to quantify in a statis-
tically robust way. This is also a problem for making robust
decisions about future steps of the algorithm, without caus-
ing over-fitting. The unsupervised nature of the problem
refers to the fact that no ground truth is available in order
to evaluate the quality of a component in the ensemble. This
necessitates the construction of simpler ensembles with fewer
qualitative decisions about the choice of the components in
the ensemble. These factors have been a significant imped-
iment in the development of effective meta-algorithms. On
the other hand, since the classification problem has the most
crisply defined criteria for evaluation, it also has the richest
meta-algorithm literature among all data mining problems.
This is because the problem of model evaluation is closely
related to quality-driven meta-algorithm development.

Nevertheless, a number of examples do exist in the liter-
ature for outlier ensembles. These cases show that when
ensemble analysis is used properly, the potential for algo-
rithmic improvement is significant. Ensemble analysis has
been used particularly effectively in high-dimensional out-
lier detection [18; 24; 28; 30; 32; 33], in which multiple
subspaces of the data are often explored in order to discover
outliers. In fact, the earliest formalization [28] of outlier en-
semble analysis finds its origins in high dimensional outlier
detection, though informal methods for ensemble analysis
were proposed much earlier to this work. The high dimen-
sional scenario is an important one for ensemble analysis,
because the outlier behavior of a data point in high dimen-
sional space is often described by a subset of dimensions,
which are rather hard to discover in real settings. In fact,
most methods for localizing the subsets of dimensions can
be considered weak guesses to the true subsets of dimensions
which are relevant for outlier analysis. The use of multiple
models (corresponding to different subsets of dimensions)
reduces the uncertainty arising from an inherently difficult
subspace selection process, and provides greater robustness
for the approach. The feature bagging work discussed in [28]
may be considered a first formal description of outlier en-
semble analysis in a real setting. However, as we will see in
this article, numerous methods were proposed earlier to this
work which could be considered ensembles, but were never
formally recognized as ensembles in the literature. As noted
in [18], even the first high dimensional outlier detection ap-
proach [3] may be considered an ensemble method, though

it was not formally presented as an ensemble method in the
original paper. It should also be pointed out that while high
dimensional data is an important case for ensemble analysis,
the potential of ensemble analysis is much broader, and is
likely to apply to any scenario in which outliers are defined
from varying causes of rarity. Furthermore, many types of
ensembles such as sequential ensembles can be used in order
to successively refine data-centric insights.

This paper will discuss the different methods for outlier en-
semble analysis in the literature. We will provide a classifi-
cation of the different kinds of ensembles, and the key parts
of the algorithmic design of ensembles. The specific impor-
tance of different parts of algorithmic design will also be
discussed. Ensemble algorithms can be categorized in two
different ways:

• Categorization by Component Independence: Are the
different components of the ensemble independent of
one another or do they depend on one another? To
provide an analogy with the classification problem,
boosting can be considered a problem in which the
different components of the ensemble are not indepen-
dent of one another. This is because the execution of a
specific component depends upon the result from pre-
vious executions. On the other hand, many forms of
classification ensembles such as bagging are those in
which the classification models are independent of one
another.

• Categorization by Component Type: Each component
of an ensemble can be defined on the basis of either
data choice or model choice. The idea in the former
is to carefully pick a subset of the data or data di-
mensions (eg. boosting/bagging in classification) or
to pick a specific algorithm (eg. stacking or model-
ensembles). The categorization by component type is
related to categorization by component independence,
because data-centered ensembles are often sequential,
whereas model-centered ensembles are often indepen-
dent. However this is not always the case. For exam-
ple, independent data centered bagging methods [28]
are often used in outlier analysis.

It should be pointed out that the aforementioned categoriza-
tions of different kinds of ensembles are inherently incom-
plete, and it is impossible to fully describe every possibility.
For example, it is possible for the different components to
be heterogeneous, which are defined on the basis of different
aspects of the data and models [34]. However, such models
are less frequent in the outlier analysis literature, because
of the complexity of reasonably evaluating the importance
of different ensemble components.

A typical outlier ensemble contains a number of different
components, which are used to construct the final result.

• Model Creation: This is the individual methodology
or algorithm which is used to create the correspond-
ing component of the ensemble. In some cases, the
methodology may be simply that of random subspace
sampling.

• Normalization: Different methods may create outlier
scores which are on very different scales. In some cases,
the scores may be in ascending order, whereas in oth-
ers, they may be in descending order. In such cases,
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normalization is important in being able to combine
the scores meaningfully, so that the outlier scores from
different components are roughly comparable.

• Model Combination: This refers to the final combi-
nation function, which is used in order to create the
outlier score.

This paper is organized as follows. The next section will dis-
cuss the categorization of ensembles on the basis of compo-
nent independence. Section 3 will discuss the categorization
of ensembles on the basis of model type. Section 4 will study
the role of the combination function in different kinds of
ensemble analysis. Section 5 discusses meta-algorithms for
other data mining problems in the literature, and whether
such ideas can be adapted to the outlier analysis scenario.
Section 6 contains the conclusions and summary.

2. CATEGORIZATION BY COMPONENT IN­
DEPENDENCE

This categorization examines whether the components are
developed independently, or whether they depend on one
another. There are two primary kinds of ensembles, which
can be used in order to improve the quality of outlier detec-
tion algorithms:

• In sequential ensembles, a given algorithm or set of
algorithms are applied sequentially, so that future ap-
plications of the algorithms are impacted by previous
applications, in terms of either modifications of the
base data for analysis or in terms of the specific choices
of the algorithms. The final result is either a weighted
combination of, or the final result of the last appli-
cation of an outlier analysis algorithm. For example,
in the context of the classification problem, boosting
methods may be considered examples of sequential en-
sembles.

• In independent ensembles, different algorithms, or dif-
ferent instantiations of the same algorithm are ap-
plied to either the complete data or portions of the
data. The choices made about the data and algo-
rithms applied are independent of the results obtained
from these different algorithmic executions. The re-
sults from the different algorithm executions are com-
bined together in order to obtain more robust outliers.

In this section, both kinds of ensembles will be studied in
detail.

2.1 Sequential Ensembles
In sequential-ensembles, one or more outlier detection algo-
rithms are applied sequentially to either all or portions of
the data. The core principle of the approach is that each
application of the algorithms provides a better understand-
ing of the data, so as to enable a more refined execution
with either a modified algorithm or data set. Thus, depend-
ing upon the approach, either the data set or the algorithm
may be changed in sequential executions. If desired, this
approach can either be applied for a fixed number of times,
or be used in order to converge to a more robust solution.
The broad framework of a sequential-ensemble algorithm is
provided in Figure 1.

Algorithm SequentialEnsemble(Data Set: D
Base Algorithms: A1 . . .Ar)

begin
j = 1;
repeat
Pick an algorithm Aj based on results from

past executions;
Create a new data set fj(D) from D based

on results from past executions;
Apply Aj to fj(D);
j = j + 1;

until(termination);
report outliers based on combinations of results

from previous executions;
end

Figure 1: Sequential Ensemble Framework

In each iteration, a successively refined algorithm may be
used on a refined data, based on the results from previous
executions. The function fj(·) is used to create a refine-
ment of the data, which could correspond to data subset
selection, attribute-subset selection, or generic data trans-
formation methods. The description above is provided in a
very general form, and many special cases can be possibly
instantiated from this general framework. For example, in
practice, only a single algorithm may be used on successive
modifications of the data, as data is refined over time. Fur-
thermore, the sequential ensemble may be applied in only
a small number of constant passes, rather than a generic
convergence-based approach, as presented above. The broad
principle of sequential ensembles is that a greater knowledge
of data with successive algorithmic execution helps focus on
techniques and portions of the data which can provide fresh
insights.

Sequential ensembles have not been sufficiently explored in
the outlier analysis literature as general purpose meta-algorithms.
However, many specific techniques in the outlier literature
use methods, which can be recognized as special cases of
sequential ensembles. A classic example of this is the use
of two-phase algorithms for building a model of the normal
data. In the first-phase, an outlier detection algorithm is
used in order to remove the obvious outliers. In the sec-
ond phase, a more robust normal model is constructed after
removing these obvious outliers. Thus, the outlier analy-
sis in the second stage is much more refined and accurate.
Such approaches are commonly used for cluster-based out-
lier analysis (for constructing more robust clusters in later
stages) [6], or for more robust histogram construction and
density estimation. However, most of these methods are
presented in the outlier analysis literature as specific opti-
mizations of particular algorithms, rather than as general
meta-algorithms which can improve the effectiveness of an
arbitrary outlier detection algorithm. There is significant
scope for further research in the outlier analysis literature,
by recognizing these methods as general-purpose ensembles,
and using them to improve the effectiveness of outlier detec-
tion. In these models, the goal of the sequential ensemble is
data refinement. Therefore, the score returned by the last
stages of the ensemble is the most relevant outlier score.
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Algorithm IndependentEnsemble(Data Set: D
Base Algorithms: A1 . . .Ar)

begin
j = 1;
repeat
Pick an algorithm Aj ;
Create a new data set fj(D) from D;
Apply Aj to fj(D);
j = j + 1;

until(termination);
report outliers based on combinations of results

from previous executions;
end

Figure 2: Independent Ensemble Framework

Another example of a sequential ensemble is proposed in [30]
in which different subspaces of the data are recursively ex-
plored, on the basis of their discriminative behavior. A sub-
space is explored only if one of its predecessor1 subspaces
is also sufficiently discriminative. Thus, this approach is
sequential, since the construction of future models of the
ensemble is dependent on the previous models. The goal
of the sequential ensemble is the discovery of other related
subspaces which are also discriminative. Nevertheless, since
the sequential approach is combined with enumerative ex-
ploration of different subspace extensions, the combination
function in this case needs to include the scores from the
different subspaces in order to create an outlier score. The
work in [30] uses the product of the outlier scores of the
discriminative subspaces as the final result. This is equiv-
alent to using an aggregate on the logarithmic function of
the outlier score.

2.2 Independent Ensembles
In independent ensembles, different instantiations of the al-
gorithm or different portions of the data are used for outlier
analysis. Alternatively, the same algorithm may be applied,
but with either a different initialization, parameter set or
even random seed in the case of a randomized algorithms.
The results from these different algorithm executions can be
combined in order to obtain a more robust outlier score. A
general purpose description of independent ensemble algo-
rithms is provided in the pseudo-code description of Figure
2.

The broad principle of independent ensembles is that dif-
ferent ways of looking at the same problem provides more
robust results which are not dependent on specific artifacts
of a particular algorithm or data set. Independent ensem-
bles have been explored much more widely and formally in
the outlier analysis literature, as compared to sequential en-
sembles. Independent ensembles are particularly popular for
outlier analysis in high-dimensional data sets, because they
enable the exploration of different subspaces of the data in
which different kinds of deviants may be found.

Examples exist of both picking different algorithms and data
sets, in order to combine the results from different execu-
tions. For example, the methods in [28; 29] sample sub-

1A predecessor is defined as a subspace with one dimension
removed.

spaces from the underlying data in order to determine out-
liers from each of these executions independently. Then, the
results from these different executions are combined in or-
der to determine the outliers. The idea in these methods is
that results from different subsets of sampled features may
be bagged in order to provide more robust results. Some of
the recent methods for subspace outlier ranking and outlier
evaluation can be considered independent ensembles which
combine the outliers discovered in different subspaces in or-
der to provide more robust insights.

3. CATEGORIZATION BY CONSTITUENT
COMPONENTS

In general, a particular component of the model may use
a different model, and a different subset or subspace of the
data [34]. However, this is rarely done in practice. Typically,
each component of the model is either defined as a specific
model, or as a specific part of the data. The former type of
ensemble is referred to as model-centered, whereas the latter
type is referred to as data-centered. Each of these specific
types will be discussed in detail in this section.

3.1 Model­centered Ensembles
Model centered ensembles attempt to combine the outlier
scores from different models built on the same data set. The
major challenge of this model is that the scores from differ-
ent models are often not directly comparable to one another.
For example, the outlier score from a k-nearest neighbor ap-
proach is very different from the outlier score provided by a
PCA-based detection model. This causes issues in combin-
ing the scores from these different outlier models. Therefore,
it is critical to be able to convert the different outlier scores
into normalized values which are directly comparable, and
also preferably interpretable, such as a probability [17]. This
issue will be discussed in the next section on defining combi-
nation functions for outlier analysis. Another key challenge
is in terms of the specific definition of the combination func-
tion for outliers. Should we use model averaging, best fit or
worst fit? This problem is of course not specific to model-
centered ensembles.

A particular form of model-centered ensembles which are
commonly used in outlier analysis, but not formally recog-
nized as ensembles is the issue of using the same model over
different choices of the underlying model parameters, and
then combining the scores. This is done quite frequently in
many classical outlier analysis algorithms such as LOCI [35]
and LOF [12]. However, since the approach is interpreted as
a question of parameter tuning, it is not recognized formally
as an ensemble. In reality, any systematic approach for pa-
rameter tuning, which is dependent on the output scores and
directly combines or uses the outputs of the different execu-
tions should be interpreted as an ensemblar approach. This
is the case with the LOF and LOCI methods. Specifically,
the following ensemblar approach is used in the two meth-
ods.

• In the LOF method, the model is run over a range
of values of k, which defines the neighborhood of the
data points. The work in [12] examines the use of
different combination functions such as the minimum,
average or the maximum of the LOF values as the
outlier score. It is argued in [12], that the appropriate
combination function is to use the maximum value in
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order to prevent dilution of the outlier scores by in-
appropriate parameter choices in the model. In other
words, the specific model which best enhances the out-
lier behavior for a data point is used.

• The LOCI method uses a multi-granularity approach,
which uses a sampling neighborhood in order to de-
termine the level of granularity in which to compute
the outlier score. Different sampling neighborhoods
are used, and a point is declared as an outlier based
on the neighborhood in which its outlier behavior is
most enhanced. It is interesting to note that the LOCI
method uses a very similar combination function as the
LOF method in terms of picking the component of the
ensemble which most enhances the outlier behavior.

It should be pointed out that when the different components
of the ensemble create comparable scores (eg. different runs
of a particular algorithm such as LOF or LOCI), then the
combination process is greatly simplified, since the scores
across different components are comparable. However, this
is not the case, when the different components create scores
which are not directly comparable to one another. This issue
will be discussed in a later section on defining combination
functions.

3.2 Data­centered Ensembles
In data-centered ensembles, different parts, samples or func-
tions of the data are explored in order to perform the anal-
ysis. It should be pointed out that a function of the data
could include either a sample of the data (horizontal sam-
ple) or a relevant subspace (vertical sample). More general
functions of the data are also possible, though have rarely
been explored in the literature. The core idea is that each
part of the data provides a specific kind of insight, and by
using an ensemble over different portions of the data, it is
possible to obtain different insights.

One of the earliest data-centered ensembles was discussed
in [28]. In this approach, random subspaces of the data are
sampled, and the outliers are determined in these projected
subspaces. The final outliers are declared as a combination
function of the outliers from the different subspaces. This
technique is also referred to as the feature bagging or subspace
ensemble method. The core algorithm discussed in [28] is as
follows:

Algorithm FeatureBagging(Data Set D);
begin

repeat
Sample a subspace between d/2 and d dimensions;
find LOF score for each point in projected representation;
until n iterations;
Report combined scores from different subspaces;

end

Two different methods are used for combining scores. The
first uses the best rank of a data point in any projection
in order to create the ordering. A variety of methods can
be used for tie breaking. The second method averages the
scores over the different executions. Another method dis-
cussed in [17] converts the outlier scores into probabilities
before performing the bagging. This normalizes the scores,
and improves the quality of the final combination.

A number of techniques have also been proposed for statisti-
cal selection of relevant subspaces for ensemble analysis [24;
30]. The work in [30] determines subspaces which are rele-
vant to each data point. The approach is designed in such
a way, that For the discriminative subspaces found by the
method, the approach uses the product of (or the addition
of the logarithm of) the outlier scores in the different dis-
criminative subspaces. This can be viewed as a combination
of model averaging and selection of the most discriminative
subspaces, when the scores are scaled by the logarithmic
function. The work in [24] is much closer to the feature
bagging method of [28], except that statistical selection of
relevant subspaces is used for the outlier analysis process.
The final score is computed as the average of the scores over
different components of the ensemble. Recently, a method
called OutRank [33] has been proposed, which can combine
the results of multiple rankings based on the relationship of
data points to their nearest subspace clusters. It has been
shown that even traditional subspace clustering algorithms
[4] can provide good results for outlier analysis, when the en-
semble method is used. This, the work in [33] conclusively
shown the power of ensemble analysis for high dimensional
data.

A different data-centered ensemble which is commonly used
in the literature, but often not recognized as an ensemblar
approach is that of using initial phases of removing outliers
from a data set, in order to create a more refined model
for outlier analysis. An example of such an approach in the
context of intrusion detection is discussed in [6]. In these
cases, the combination function can be simply defined as
the result from the very last step of the execution. This is
because the data quality is improved significantly from the
early components of the ensemble, and the results in the last
phase reflect the outliers most accurately. This is because
this is also a sequential ensemble with a specific goal of data
refinement.

It should be pointed out that the distinction in this section
between model-centered and data-centered ensembles is a
somewhat semantic one, since a data-centered ensemble can
also be considered a specific type of model-centered ensem-
ble. Nevertheless, this categorization is useful, because the
exploration of different segments of the data requires inher-
ently different kinds of techniques than the exploration of
different models which are data-independent. The choices
in picking different functions of the data for exploration re-
quires data-centric insights, which are analogous to classifi-
cation methods such as boosting, especially in the sequential
case. Therefore, we view this categorization as a convenient
way to stimulate different lines of research on the topic.

3.3 Discussion of Categorization Schemes
The two different categorization schemes are clearly not ex-
haustive, though they represent a significant fraction of the
ensemble functions used in the literature. In fact, these two
categorization schemes can be combined in order to create
four different possibilities. This is summarized in Table 1.
We have also illustrated how many of the current ensem-
blar schemes map to these different possibilities. Interest-
ingly, we were unable to find an example of a sequential
model-based ensemble in the literature, though it is possi-
ble that the results from the execution of a particular model
can provide hints about future directions of model construc-
tion for an outlier analysis algorithm. Therefore, it has
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Data Centered Model Centered
Indep. Feature Bagging [28] LOF Tuning [12]

HICS [24] LOCI Tuning [35]
Multiple Proclus [17] Isolation For. [29]

OutRank [33]
Nguyen et al [34]

Converting scores into probabilities [25]
Calibrated Bagging [17]

Seq. Intrusion Bootstrap [6] Open
OUTRES [30]

Table 1: Categorization of Ensemble Techniques

been classified as an open problem in our categorization,
and would be an interesting avenue for future exploration.
The work by Nguyen et al [34] cannot be classified as ei-
ther a data-centered or a model-centered scheme, since it
uses some aspects of both. Furthermore, the work in [17;
25] convert outlier scores into probabilities as a general pre-
processing method for normalization, and are not dependent
on whether the individual components are data-centered or
model-centered. The issue of model combination is a criti-
cally tricky one both in terms of how the individual scores
are normalized, and in terms of how they are combined.
This issue will be discussed in detail in the next section.

4. DEFINING COMBINATION FUNCTIONS
A crucial issue in outlier analysis is the definition of combi-
nation functions which can combine the outlier scores from
different models. There are several challenges which arise in
the combination process:

• Normalization Issues: The different models may out-
put scores which are not easily comparable with one
another. For example, a k-nearest neighbor classifier
may output a distance score, which is different from an
LOF score, and the latter is also quite different from
the MDEF score returned by the LOCI method. Even
a feature bagging approach, which is defined with the
use of the same base algorithm (LOF) on different fea-
ture subsets, may sometimes have calibration issues in
the scores [17]. Therefore, if a combination function
such as the average or the max is applied to the con-
stituent scores, then one or more the models may be
inadvertently favored.

• Combination Issues: The second issue is the choice of
the combination function. Given a set of normalized
outlier scores, how do we decide the specific choice of
the combination function to be used? Should the min-
imum of the scores be used, the average of the scores
be used, or the maximum of the scores be used. It
turns out that the answer to this question may some-
times depend on the specific constituent components
of the model, though it would seem that some choices
are more common than others in the literature.

In the following section, we will discuss some of these issues
in detail.

4.1 Normalization Issues
The major factor in normalization is that the different algo-
rithms do not use the same scales of reference and cannot
be reasonably compared with one another. In fact, in some

cases, high outlier scores may correspond to larger outlier
tendency, whereas in other cases, low scores may correspond
to greater outlier tendency. This causes problems during the
combination process, since one or more components may be
inadvertently favored. One simple approach for perform-
ing the normalization is to use the ranks from the different
outlier analysis algorithms from greatest outlier tendency to
least outlier tendency. These ranks can then be combined
in order to create a unified outlier score. One of the earliest
methods for feature bagging [28] uses such an approach in
one of its combination functions.

The major issue with such an approach is that it does lose a
lot of information about the relative differences between the
outlier scores. For example, consider the cases where the
top outlier scores for components A and B of the ensem-
ble are {1.71, 1.71, 1.70 . . .} and {1.72, 1.03, 1.01 . . .} respec-
tively, and each component uses (some variation of) the LOF
algorithm. It is clear that in component A, the top three
outlier scores are almost equivalent, and in component B,
the top outlier score is the most relevant one. However, a
ranking approach will not distinguish between these scenar-
ios, and provide them the same rank values. Clearly, this
loss of information is not desirable for creating an effective
combination from the different scores.

The previous example suggests that it is important to exam-
ine both the ordering of the values and the distribution of the
values during the normalization process. Ideally, it is desir-
able to somehow convert the outlier scores into probabilities,
so that they can be reasonably used in an effective way. An
approach was proposed in [17] which uses mixture modeling
in conjunction with the EM-framework in order to convert
the scores into probabilities. Two methods are proposed in
this work. Both of these techniques use parametric modeling
methods. The first method assumes that the posterior prob-
abilities follow a logistic sigmoid function. The underlying
parameters are then learned from the EM framework from
the distribution of outlier scores. The second approach rec-
ognizes the fact that the outlier scores of data points in the
outlier component of the mixture is likely to show a differ-
ent distribution (Gaussian distribution), than the scores of
data points in the normal class (Exponential distribution).
Therefore, this approach models the score distributions as a
mixture of exponential and Gaussian probability functions.
As before, the parameters are learned with the use of the
EM-framework. The posterior probabilities are calculated
with the use of the Bayes rule. This approach has been
shown to be effective in improving the quality of the ensem-
ble approach proposed in [28]. A second method has also
been proposed recently [25], which improves upon this base
method for converting the outlier scores, and converting the
scores into probabilities.

4.2 Combining Scores from Different Models
The second issue is the choice of the function which needs
to be used in order to combine the scores. Given a set of r
(normalized) outlier scores Scorei(X) for the data point X,
should we use the model average, maximum, or minimum?
For ease in discussion in this section, we will assume the con-
vention without loss of generality that greater outlier scores
correspond to greater outlier tendency. Therefore the max-
imum function picks the worst fit, whereas the minimum
function picks the best fit.

The earliest work on ensemble-based outlier analysis (not
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formally recognized as ensemble analysis) was performed in
the context of model parameter tuning [12; 35]. Most outlier
analysis methods typically have a parameter, which controls
the granularity of the underlying model. The outliers may
often be visible to the algorithm only at a specific level of
granularity. For example, the value of k in the k-nearest
neighbor approach or LOF approach, the sampling neigh-
borhood size in the LOCI approach, the number of clus-
ters in a clustering approach all control the granularity of
the analysis. What is the optimal granularity to be used?
While this is often viewed as an issue of parameter tuning,
it can also be viewed as an issue of ensemble analysis, when
addressed in a certain way.

In particular, the methods in [12; 35] run the algorithms
over a range of values of the granularity parameter, and pick
the parameter choice which best enhances the outlier score
(maximum function for our convention on score ordering)
for a given data point. In other words, we have:

Ensemble(X) = MAXi{Scorei(X)} (1)

This reason for this has been discussed in some detail in the
original LOF paper. In particular, it has been suggested that
the use of other combination function such as the average or
the minimum leads to a dilution in the outlier scores from
the irrelevant models. This seems to be a reasonable choice
at least from an intuitive perspective.

Some other common functions which are used in the litera-
ture are as follows:

• Maximum Function: This is one of the most common
functions used for combining ensemblar scores both in
implicit (LOF and LOCI parameter tuning) and ex-
plicit ensemblar models. One variation on this model
is to use the ranks instead of the scores in the com-
bination process. Such an approach was also used in
feature bagging [28]. An important aspect of the pro-
cess is that the different data points need to have the
same number of components in the ensemble in order
to be compared meaningfully.

• Averaging Function: In this case, the model scores are
averaged over the different components of the ensem-
ble. The risk factor here is that if the individual com-
ponents of the ensemble are poorly derived models,
then the irrelevant scores from many different compo-
nents will dilute the overall outlier score. Nevertheless,
such an approach has been used extensively. Examples
of methods which use this method are one of the mod-
els in feature bagging [28], the HICS method [30], and
a recent approach described in [25].

• Damped Averaging: In this model, a damping func-
tion is applied to the outlier scores before averaging,
in order to prevent it from being dominated by a few
components. Examples of a damping function could be
the square root or the logarithm. It should be pointed
out that the use of the product of the outlier scores or
geometric averaging could be interpreted as the aver-
aging of the logarithm of outlier scores.

• Pruned Averaging and Aggregates: In this case, the low
scores are pruned and the outlier scores are either av-
eraged or aggregated (summed up) over the relevant
ensembles. The goal here is to prune the irrelevant

models for each data point before computing the com-
bination score. The pruning can be performed by ei-
ther using an absolute threshold on the outlier score,
or by picking the top k models for each data point,
and averaging them. The risk factor in using abso-
lute thresholds are the normalization issues which arise
from different data points having different ensemblar
components. Both the average and aggregate scores
can no longer be meaningfully compared across dif-
ferent data points. Aggregates are more appropriate
than averages, since they implicitly count the number
of ensemble components in which a data point is rele-
vant. A data point will be more relevant in a greater
number of ensemble components, when it has a greater
tendency to be an outlier.

• Result from Last Component Executed: This approach
is sometimes used in sequential ensembles [6], in which
each component of the ensemble successively refines
the data set, and removes the obvious outliers. As
a result, the normal model is constructed on a data
set from which outliers are removed and the model is
more robust. In such cases, the goal of each component
of the sequential ensemble is to successively refine the
data set. Therefore, the score from the last component
is the most appropriate one to be used.

Which combination function provides the best insights for
ensemble analysis? Clearly, the combination function may
be dependent on the structure of the ensemble in the general
case, especially if the function of each component of the
ensemble is to either refine the data set, or understand the
behavior of only a very local segment of the data set.

However, for the general case, in which the function of each
component of the ensemble is to provide a reasonable and
comparable outlier score for each data point, the two most
commonly used functions are the Maximum and the Av-
eraging functions. While pruned averaging combines these
aspects, it is rarely used in ensemble analysis. Which com-
bination function is best? Are there any other combination
functions which could conceivably provide better results?
These are open questions, the answer to which is not com-
pletely known because of the sparse literature on outlier en-
semble analysis. It is this author’s personal opinion, that the
intuitive argument provided in the LOF paper [12] on using
the maximum function for avoiding dilution from irrelevant
models is the correct one in many scenarios. However, the
issue is certainly not settled in the general case, and many
variants such as pruned averaging may also provide robust
results, while avoiding most of the irrelevant models.

5. POSSIBLE AVENUES OF EXPLORATION:
LEARNING FROM OTHER DATA MIN­
ING PROBLEMS

The area of outlier ensemble analysis is still in its infancy,
though it is rapidly emerging as an important area of re-
search in its own right. Currently, the diversity of algo-
rithms available for outlier ensemble analysis is limited, and
is nowhere close to many other data mining problems such
as clustering and classification. Therefore, it may be in-
structive to examine some of the key techniques for other
data mining problems such as clustering or classification,

Latest Results on outlier ensembles available at  http://www.charuaggarwal.net/theory.pdf (Clickable Link)



and whether it makes sense or is even feasible to design
analogous methods for the outlier analysis problem.

As discussed earlier, a major challenge for ensemble develop-
ment in unsupervised problems is that the evaluation pro-
cess is highly subjective, and therefore the quality of the
intermediate results cannot be fully evaluated in many sce-
narios. One of the constraints is that the intermediate deci-
sions must be made with the use of outlier scores only, rather
than with the use of concrete evaluation criteria on hold-out
sets (as in the case of the classification problem). Therefore,
in this context, we believe that the major similarities and
differences in supervised and unsupervised methods are as
follows:

• Intermediate Evaluation: In unsupervised meth-
ods, ground truth is typically not available. While one
can use measures such as classification accuracy in su-
pervised methods, this is not the case with unsuper-
vised methods. Intermediate evaluation is particularly
important for sequential methods. This is one of the
reasons that sequential methods are much rarer than
independent methods in outlier ensemble analysis.

• Diversity and Consensus Issues: Both supervised
and unsupervised methods seek greater diversity with
the use of an ensemble in terms of the methodology
used for creating the model. In many cases, this is done
by selecting models which are different from one an-
other. For example, in clustering, diversity is achieved
by using either randomized clustering or explicitly pick-
ing orthogonal clusterings [2]. However, in the case of
supervised methods, the level of consensus is also mea-
sured at the end in terms of the ground truth. This is
not the case in unsupervised methods, since no ground
truth is available.

Some of the properties in supervised learning (eg. presence
of class labels) cannot obviously be transferred to outlier
analysis. In other cases, analogous methods can be designed
for the problem of outlier analysis. In the below, we discuss
some common methods used for different supervised and
unsupervised problems, and whether they can be transferred
to the problem of outlier analysis:

• Boosting: Boosting [16] is a common technique used
in classification. The idea is to focus on successively
difficult portions of the data set in order to create mod-
els which can classify the data points in these portions
more accurately, and then use the ensemble scores over
all the components. A hold-out approach is used in
order to determine the incorrectly classified instances
for each portion of the data set. Such an approach
clearly does not seem to be applicable to the unsuper-
vised version of the problem because of the difficulty in
computing the accuracy of the model on different data
points in the absence of ground truth. On the other
hand, since the supervised version of the problem (rare
class detection) is a skewed classification problem, the
boosting approach is applicable almost directly. A
number of learners [13; 23] have been proposed for
the supervised version of the outlier analysis problem.
These classifiers have been shown to achieve signifi-
cantly superior results because of the use of boost-
ing. However, it is unlikely that an analogue for this

method can be developed for a problem such as outlier
analysis.

• Bagging: Bagging [9] is an approach which works with
samples of the data, and combines the results from the
different samples. The well known feature bagging ap-
proach for outlier analysis [17; 28] performs this step
in a different way by bagging the features rather than
bagging the points. Nevertheless, the approach is also
applicable to the use of samples of data points (rather
than dimensions) in order to perform the prediction.
The key challenge in this case may arise from differ-
ent data points being a part of different numbers of
ensembles in the different cases. For many ensemble
scores such as the Maximum, this can cause inadver-
tent bias in favoring data points which are sampled a
larger number of times. This bias cannot be corrected,
unless specific kinds of combination functions such as
the Average are used.

• Random Forests: Random forests [8] are a method
which use sets of decision trees on the training data,
and compute the score as a function of these different
components. While decision trees were not originally
designed for the outlier analysis problem, it has been
shown in [29] that the broad concept of decision trees
can also be extended to outlier analysis by examin-
ing those paths with unusually short length, since the
outlier regions tend to get isolated rather quickly. An
ensemble of such trees is referred to as an isolation
forest [29], and has been used effectively for making
robust predictions about outliers.

• Model Averaging and Combination: This is one of the
most common models used in ensemble analysis and
is used both for the clustering and classification prob-
lems. In fact, the random forest method discussed
above is a special case of this idea. In the context
of the classification problem, many Bayesian methods
[15] exist for the model combination process. Many of
the recent models [25; 34] have focussed on creating a
bucket of models from which the scores are combined
through either averaging or using the maximum value.
Even the parameter tuning methods used in many out-
lier analysis algorithms such as LOF and LOCI can
be viewed to be drawn from this category. A related
model is stacking [14; 38], in which the combination is
performed in conjunction with model evaluation. This
can sometimes be more difficult for unsupervised prob-
lems such as classification. Nevertheless, since stacking
has been used for some unsupervised problems such as
density estimation [37], it is possible that some of the
techniques may be generalizable to outlier analysis, as
long as an appropriate model for quantifying perfor-
mance can be found.

• Bucket of Models: In this approach [39] a “hold-out”
portion of the data set is used in order to decide the
most appropriate model. The most appropriate model
is one in which the highest accuracy is achieved in the
held out data set. In essence, this approach can be
viewed as a competition or bake-off contest between
the different models. While this is easy to perform in
supervised problems such as classification, it is much
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Method Model-Centered Sequential Combination Normalization
or Data-Centered or Independent Function

LOF Tuning [12] Model Independent Max Not Needed
LOCI Tuning [35] Model Independent Max Not Needed

Feature Bagging [28] Data Independent Max/Avg No
HICS [24] Data Independent Selective Avg No

Calib. Bagging [17] Both Independent Max/Avg Yes
OutRank [33] Data Independent Harmonic Mean No

Multiple Proclus [33] Data Independent Harmonic Mean No
Converting scores Both Independent Max/Avg Yes
to probabilities [25]

Intrusion Bootstrap [6] Data Sequential Last Component Not Needed
OUTRES [30] Data Sequential Product No

Nguyen et al [34] Both Independent Weighted Avg. No
Isolation Forest [29] Model Independent Expon. Avg. Yes

Table 2: Characteristics of Outlier Ensemble Methods

more difficult for small-sample and unsupervised prob-
lems. No ground truth is available for evaluation in
unsupervised problems. It is unlikely that a precise
analogue of the method can be created for outlier anal-
ysis, since exact ground truth is not available for the
evaluation process.

To summarize, we create a table of the different methods,
and the different characteristics such as the type of en-
semble, combination technique, or whether normalization
is present. This is provided in Table 2.

6. CONCLUSIONS AND DISCUSSION
This paper provides an overview of the emerging area of out-
lier ensemble analysis, which has seen increasing attention
in the literature in recent years. Many ensemble analysis
methods in the outlier analysis literature are not recognized
as such in a formal way. This paper provides an under-
standing of how these methods relate to other techniques
used explicitly as ensembles in the literature. We provided
different ways of categorizing the outlier analysis problems
in the literature, such as independent or sequential ensem-
bles, and data- or model-centered ensembles. We discussed
the impact of different kinds of combination functions, and
how these combination functions relate to different kinds
of ensembles. The issue of choosing the right combination
function is an important one, though it may depend upon
the structure of the ensemble in the general case. We also
provided a mapping of many current techniques in the liter-
ature to different kinds of ensembles. Finally, a discussion
was provided on the feasibility of adapting ensemblar tech-
niques from other data mining problems to outlier analysis.

The area of ensemble analysis is poorly developed in the
context of the outlier detection problem, as compared to
other data mining problems such as clustering and classifi-
cation. The reason for this is rooted in the greater difficulty
of judging the quality of a component of the ensemble, as
compared to other data mining problems such as classifica-
tion. Many models such as stacking and boosting in other
data mining problems require a crisply defined judgement
of different ensemblar components on hold-out sets, which
are not readily available in data mining problems such as
outlier analysis. The outlier analysis problem suffers from
the problem of small sample space as well as lack of ground

truth (as in all unsupervised problems). The lack of ground
truth implies that it is necessary to use the intermediate out-
puts of the algorithm (rather than concrete quality measures
on hold-out sets), for making the combination decisions and
ensemblar choices. These intermediate outputs may some-
times represent poor estimations of outlier scores. When
combination decisions and ensemblar choices are made in
an unsupervised way on an inherently small sample space
problem such as outlier analysis, the likelihood and conse-
quences of inappropriate choices can be high as compared
to another unsupervised problem such as clustering, which
does not have the small sample space issues.

While outlier detection is a challenging problem for ensem-
ble analysis, the problems are not unsurmountable. It has
become clear, from the results of numerous recent ensemble
methods that such methods can lead to significant quali-
tative improvements. Therefore, ensemble analysis seems
to be an emerging area, which can be a fruitful research
direction for improving the quality of outlier detection algo-
rithms.
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