
A Framework for Diagnosing Changes in Evolving Data
Streams

Charu C. Aggarwal
IBM T. J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

charu@us.ibm.com

ABSTRACT
In recent years, the progress in hardware technology has
made it possible for organizations to store and record large
streams of transactional data. This results in databases
which grow without limit at a rapid rate. This data can
often show important changes in trends over time. In such
cases, it is useful to understand, visualize and diagnose the
evolution of these trends. When the data streams are fast
and continuous, it becomes important to analyze and pre-
dict the trends quickly in online fashion. In this paper, we
discuss the concept of velocity density estimation, a tech-
nique used to understand, visualize and determine trends
in the evolution of fast data streams. We show how to use
velocity density estimation in order to create both temporal
velocity pro�les and spatial velocity pro�les at periodic in-
stants in time. These pro�les are then used in order to pre-
dict three kinds of data evolution: dissolution, coagulation
and shift. Methods are proposed to visualize the changing
data trends in a single online scan of the data stream, and
a computational requirement which is linear in the number
of data points. In addition, batch processing techniques are
proposed in order to identify combinations of dimensions
which show the greatest amount of global evolution. The
techniques discussed in this paper can be easily extended
to spatio-temporal data, changes in data snapshots at �xed
instances in time, or any other data which has a temporal
component during its evolution.

1. INTRODUCTION
With the large number of transactions which are recorded

and stored by many organizations, the importance of be-
ing able to analyze trends in fast data streams has become
very important in recent years. Typically, such databases
are created by continuous activity over long periods of time,
and are therefore databases which grow without limit. For
example, even simple transactions of everyday life, such as
paying by credit card or using the telephone are recorded

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD2003, June 9-12, 2003, San Diego, CA
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

in an automated way using current hardware technology.
The volume of such transactions may easily range in the
millions on a daily basis. Often, the data may show impor-
tant changes in the trends over time because of fundamental
changes in the underlying phenomena. This process is re-
ferred to as data evolution. By understanding the nature
of such changes, a user may be able to glean valuable in-
sights into emerging trends in the underlying transactional
or spatial activity. Therefore, it is useful to develop tools
and techniques which would provide a visual and diagnostic
overview of the key characteristics in the data which have
changed over time in a fast and user-friendly way.
The problem of mining high speed data streams has been

recognized to be an important one in recent years [1, 2, 6,
7, 18]. There is a considerable amount of work in the lit-
erature with a focus on incremental maintenance of models
in the context of evolving data [5, 8, 17]. Recent work [10,
11] has discussed a general framework for quantifying the
changes in evolving data characteristics in the context of
several data mining problems and algorithms. The focus of
our paper is di�erent from and orthogonal to the work in
[10, 11]. Speci�cally, the work in [10, 11] is focussed on the
e�ects of evolution on data mining models and algorithms.
This paper studies the problem of evolution in terms of un-
derstanding the nature of the data changes as opposed to
�nding whether a particular data mining model has become
stale or not because of the underlying change. As we shall
see, such a study of evolution provides the user with consid-
erable understanding of the changes more directly in terms
of the data attributes. Other recent work [1, 4, 12] discusses
the problem of change detection and visualization for par-
ticular domains of data.
Since a data stream typically contains a large volume of

high dimensional information, it is useful to to character-
ize the underlying changes in a fast and user-friendly way.
For example, what are the locations in the stream which
show the greatest amount of change? How can the change
be characterized in a way which is intuitively appealing to a
user? This paper provides the user a generic tool to under-
stand, visualize and diagnose the summary changes in data
characteristics. This includes methods to visualize how the
pattern of the data in various spatial locations has changed
over time, or which combinations of dimensions show the
greatest amount of change. We also discuss ways of pro-
viding speci�c diagnosis of localized phenomena in di�erent
spatial regions of the data. Such information can be used
in order to understand the nature of the emerging trends in

the data.
There are several interesting applications of change diag-

nosis in evolving data streams. For example, in a supermar-
ket or electronic commerce application, a stream of customer
requests may consist of demographic or customer buying be-
havior attributes. It may often be desirable to pick those
combinations of attributes in which there is large change in
the level of transactional activity. The ability to track such
information is a clear competitive advantage for a business,
which can use it in order to anticipate and adapt to po-
tential customers in the near future. For instance, if recent
data shows an increasing trend in the number of customers
with a certain combination of demographic characteristics,
then the supermarket can anticipate the increased demands
of the items usually bought by this group. Another exam-
ple is a GIS application in which the spatial coordinates of a
very large number of mobile objects are being tracked simul-
taneously. This can be modeled as a data stream in which
the attributes correspond to the spatial coordinates of the
objects. Even though the number of objects may be large,
their overall motion may show systematic trends in many
regions of the data. It is often useful to mine the (aggre-
gate) spatial trends of these objects by �nding the localized
nature of the data re-organization.
When the data stream shows a high level of evolution, it

is expected that the relative data concentrations at various
spatial locations may change over time. We will capture such
changes with the concept of velocity density which measures
the rate of change of data concentration at a given spatial
location over a user-de�ned time horizon. This density can
be used in order to create two kinds of visual pro�les of data
evolution: the temporal velocity pro�les and spatial velocity
pro�les. These pro�les provide di�erent perspectives on the
nature of the underlying change. Since the results of this
paper are relevant to high dimensional data mining problems
as well, it is important to provide diagnosis capability for
such cases. In order to deal with this class of problems
e�ectively, we use velocity density estimation in order to
pick the projections from high dimensional data in which the
greatest changes in data characteristics have occurred. Such
combinations of dimensions are very interesting, because it
may often happen that there may be very little evolution
in terms of either the entire set of dimensions or individual
dimensions; yet some particular combinations of dimensions
may show huge levels of evolution because of changes in the
correlation structure of the data. A closely related problem
is that of mining spatio-temporal or mobile data [14, 15,
16], for which it is useful to have the ability to diagnose
aggregate changes in spatial characteristics over time. The
results of this paper are equally valuable for providing such
understanding.
Since data streams are fast and continuous over long pe-

riods of time, the data may quickly become stale for time-
sensitive applications. In such cases, the usefulness of the
evolution monitoring process also becomes time-critical. In
order to achieve this goal, we mine the data streams in an
online fashion; therefore, most techniques discussed in the
paper need to examine a data point only once throughout
the entire computation. To this e�ect, we discuss algorithms
whose computational requirement per record in the stream
are constant, and which do not require any re-scanning of the
data. This is the most optimistic case that can be achieved
by any algorithm for mining data streams.

This paper is organized as follows. In the remainder of
this section, we formalize the contributions of this paper
and provide a brief overview of some concepts from kernel
density estimation which we will need in this paper. In
section 2, we will introduce the velocity density estimation
technique and show how to use it in order to construct the
temporal velocity pro�le. In section 3, we will discuss how
the temporal velocity pro�les can be used in order to gener-
ate the spatial velocity pro�les. These pro�les can be used
in order to provide a visual understanding of the spatial re-
organization of the data. Extensions to high dimensional
data are discussed in section 4. In section 5, we discuss how
the temporal and spatial pro�les may be used to provide a
more concrete diagnosis of the emerging trends in localized
regions. In section 6, we present the empirical results which
show interesting evolution behavior for di�erent data sets.
We also show the performance e�ciency of the technique.
The conclusion and summary is presented in section 7.

1.1 Contributions of this paper
This paper provides a framework for e�ective diagnosis

of multidimensional data streams with the use of a concept
called velocity density estimation. This de�nition is both
intuitively appealing and can be computed e�ciently for a
fast data stream. It is also possible to derive a good vi-
sual perspective of the nature of data evolution with the
use of two pro�les: a spatial velocity pro�le, and a temporal
velocity pro�le. These pro�les are also used in order to diag-
nose important trends in the data. For example, spatial re-
organizations in localized regions in the data can be detected
by the use of this method. For the case of high dimensional
data, we propose batch-processing methods in order to pick
projections from the data set in which the greatest amount
of evolution has occurred. This is especially useful in cases
when all dimensions do not show a similar amount of change
or when the underlying correlation structure of the data has
changed only over some particular subsets of dimensions.
All the methods of this paper can be directly extended in
order to diagnose changes between two snapshots of data (or
two static data sets). Most of the algorithms of this paper
are designed to work e�ciently with one scan of the data so
that the pro�les can be constructed in online fashion. Thus,
the technique is very scalable, a factor which is important
for mining very high speed data streams.

1.2 Kernel Density Estimation Overview
The idea in kernel density estimation [13] is to provide

a continuous estimate of the density of the data at a given
point. The value of the density at a given point is estimated
as the sum of the smoothed values of kernel functions K0

h(�)
associated with each point in the data set. Each kernel func-
tion is associated with a kernel width h which determines
the level of smoothing created by the function. The kernel
estimation f(x) based on n data points and kernel function
K0

h(�) is de�ned as follows:

f(x) = (1=n) �
nX
i=1

K0
h(x�Xi) (1)

Thus, each discrete point Xi in the data set is replaced by
a continuous function K0

h(�) which peaks at Xi and has a
variance which is determined by the smoothing parameter
h. An example of such a distribution would be a gaussian

−100
0

100
200

300
400

−100

0

100

200

300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Dimension 1Dimension 2

F
or

w
ar

d
T

im
e

S
lic

e
D

en
si

ty
 E

st
im

at
e

Figure 1: The Forward Time Slice Density Estimate

kernel with width h.

K0
h(x�Xi) = (1=

p
2� � h) � e�(x�Xi)

2=(2h2) (2)

The overall e�ect of kernel density estimation is to convert
the (discrete) data set into a continuous density estimate
by replacing each data point with a smoothed bump, whose
width is determined by h. The density distribution at a
given coordinate is equal to the sum of the contributions of
all the bumps represented by the data points. The result
is a continuous distribution in which the random artifacts
are suppressed and the density behavior provides a global
overview of the dense as well as sparsely populated regions
of the data. The estimation error depends upon the kernel
width h which is chosen in a data driven manner. It has
been shown [13] that for most smooth functions K0

h(�), when
the number of data points goes to in�nity, the estimator
f(x) asymptotically converges to the true density function
f(x), provided that the width h is chosen appropriately. For
the d-dimensional case, the kernel function is chosen to be
the product of d identical kernels Ki(�), each with its own
smoothing parameter hi.

2. VELOCITY DENSITY ESTIMATION
The idea in velocity density estimation is to estimate the

rate at which the changes in the data density are occurring
at each spatial location based on some user-de�ned temporal
window ht. In general, when a user is faced with a massive
data stream, there are several interesting questions which
arise: for example, what are the spatial locations at which
the data is increasing, reducing or shifting to? What is
the level of changes in the data characteristics occurring at
di�erent spatial locations? Intuitively, the temporal window
ht is associated with the time horizon over which the rate of
change is measured. Thus, if ht is chosen to be large then
the velocity density estimation technique provides long term
trends, whereas if ht is chosen to be small then the trends
are relatively short term. This provides the user
exibility in
analyzing the changes in the data over di�erent kinds of time
horizons. In addition, we have a spatial smoothing vector
hs whose function is quite similar to the standard spatial
smoothing vector which is used in kernel density estimation.
Let t be the current instant and S be the set of data

points which have arrived in the time window (t�ht; t). We
intend to estimate the rate of increase in density at spatial

−100
0

100
200

300
400

−100

0

100

200

300
0

0.005

0.01

0.015

0.02

0.025

Dimension 1
Dimension 2

R
ev

er
se

 T
im

e
S

lic
e

D
en

si
ty

 E
st

im
at

e

Figure 2: The Reverse Time Slice Density Estimate

−100
0

100
200

300
400

−100

0

100

200

300
−8

−6

−4

−2

0

2

4

6

8

10

x 10
−3

Dimension 1
Dimension 2

V
el

oc
ity

 D
en

si
ty

Figure 3: The Temporal Velocity Pro�le

−50 0 50 100 150 200 250 300

0

50

100

150

200

250

Dimension 1

D
im

en
si

on
 2

Data Coagulation

Data Coagulation

Shift Line
Data Dissolution

Figure 4: The Spatial Velocity Pro�le

location X and time t by using two sets of estimates: the
forward time slice density estimate and the reverse time slice
density estimate. Intuitively, the forward time slice estimate
measures the density function for all spatial locations at a
given time t based on the set of data points which have
arrived in the past time window (t � ht; t). Similarly, the
reverse time slice estimate measures the density function at
a given time t based on the set of data points which will
arrive in the future time window (t; t+ ht). Let us assume
that the ith data point in S is denoted by (Xi; ti), where i
varies from 1 to jSj. Then, the forward time slice estimate
F(hs;ht)(X; t) of the set S at the spatial location X and time
t is given by:

F(hs;ht)(X; t) = Cf �
jSjX
i=1

K(hs;ht)(X �Xi; t� ti) (3)

HereK(hs;ht)(�; �) is a spatio-temporal kernel smoothing func-
tion, hs is the spatial kernel vector, and ht is temporal ker-
nel width. The kernel function K(hs;ht)(X � Xi; t � ti) is
a smooth distribution which decreases with increasing value
of t� ti. The value of Cf is a suitably chosen normalization
constant, so that the entire density over the spatial plane is
one unit. This is done, because our purpose of calculating
the densities at the time slices is to compute the relative
variations in the density over the di�erent spatial locations.
Thus, Cf is chosen such that we have:

Z
All X

F(hs;ht)(X; t)�X = 1 (4)

The reverse time slice density estimate is also calculated
in a somewhat di�erent way to the forward time slice den-
sity estimate. We assume that the set of points which have
arrived in the time interval (t; t+ ht) is given by U . As be-
fore, the value of Cr is chosen as a normalization constant.
Correspondingly, we de�ne the value of the reverse time slice
density estimate R(hs;ht)(X; t) as follows:

R(hs;ht)(X; t) = Cr �
jUjX
i=1

K(hs;ht)(X �Xi; ti � t) (5)

Note that in this case, we are using ti � t in the argument
instead of t� ti. Thus, the reverse time-slice density in the
interval (t; t+ht) would be exactly the same as the forward
time slice density if we assumed that time was reversed and
the data stream arrived in reverse order, starting at t + ht
and ending at t. Examples of the forward and reverse density
pro�les are illustrated in Figures 1 and 2 respectively.
For a given spatial location X and time T , let us examine

the nature of the functions F(hs;ht)(X;T) andR(hs;ht)(X;T�
ht). Note that both functions are almost exactly the same,
and use the same data points from the interval (T � ht; T),
except that one has been calculated assuming time runs
forward, whereas the other has been calculated assuming
that the time runs in reverse. Furthermore, the volumes
under each of these curves, when measured over all spatial
locations X is equal to one unit because of the normaliza-
tion. Correspondingly, the density pro�les at a given spatial
location X would be di�erent between the two depending
upon how the relative trends have changed in the interval
(T �ht; T). We de�ne the velocity density V(hs;ht)(X;T) at

spatial location X and time T as follows:

V(hs;ht)(X;T) =
F(hs;ht)(X;T)�R(hs;ht)(X;T � ht)

ht
(6)

Note that the velocity density is positive at a given spatial
location X, if in the interval (T � ht; T) a greater number
of points which are closer to X have arrived at the end of
the interval. On the other hand, when a greater number
of points which are closer to X are at the beginning of the
interval (T � ht; T), then the velocity density is negative at
the spatial location. If the trends have largely remained un-
changed over the interval, then the velocity density at the
location X will be almost zero. Thus, the velocity density
at a given point provides an intuitive understanding of the
rate of change of the density at that spatial location over
the time horizon (T � ht; T). A global overview of the rate
of changes of densities at di�erent points speci�c to the time
T is referred to as the temporal velocity pro�le. An example
of a temporal velocity pro�le (which will be discussed in a
greater detail in the empirical section) is illustrated in Figure
3. Note that the total volume which is trapped between the
temporal velocity pro�le curve and the spatial axis plane
is at most 2=ht, since the total volume under each of the
forward and reverse time slice density curves is exactly one
unit. The larger this volume, the greater the total amount
of evolution that has occurred. In a later section, we will
discuss how this volume may be used in order to provide
evolution rates for a data stream which are intuitively com-
prehensible to a user.

2.1 Choice of Kernel Function
The spatio-temporal kernel function is a time-factored

version of the spatial kernel. In other words, if hs be the
spatial smoothing vector, and ht be the temporal smoothing
parameter (de�ned by user time-horizon), then the spatio-
temporal kernel function is de�ned as follows:

K(hs;ht)(X; t) = (1� t=ht) �K0
hs(X) (7)

This kernel function is only de�ned for values of t in the
range (0; ht). The gaussian spatial kernel function K0

hs(�)
was used because of its well known e�ectiveness [13]. Specif-
ically, K0

hs(�) is the product of d identical gaussian kernel

functions, and hs = (h1s; : : : h
d
s), where h

i
s is the smoothing

parameter for dimension i.

2.2 Physical Significance of Velocity Density
The above choice of kernel function also leads to an inter-

esting physical signi�cance of the velocity density compu-
tation. Let us explore a prototypical data stream in which
the points arrive at a constant rate of � per second through-
out the time interval (T � ht; T). Further, let the spatial
density function of all points arriving in the time inter-
val (�; � + d�) 2 (T � ht; T) be given by g(X; �). Let us
also assume that for each speci�c value of X, @g(X; �)=@�
is constant over the interval (T � ht; T) and is equal to
�(X). Then, we can show that in the asymptotic case (when
� is arbitrarily high), the velocity density V(hs;ht)(X;T)
at the spatial location X and time T is proportional to
�(X) = @g(X; �)=@�.
For t 2 (0; ht), let us consider the small time-interval

(T � ht + t; T � ht + t + dt). Then, the number of data
points which have arrived in this interval is proportional to
� � dt which is constant over any interval of length dt in

(T � ht; T). We know that the contribution of the points
in this interval to V(hs;ht)(X;T) is proportional to the dif-
ference between the corresponding contributions to the for-
ward and reverse time slice densities. We further note that
the spatio-temporal kernel function is a time-factored ver-
sion of the spatial kernel function. Therefore, we can as-
sume that if we used only the points in the interval (T �
ht + t; T � ht + t + dt) to estimate the forward and re-
verse time slice densities, then the results of [13] would in-
dicate that these contributions asymptotically converge in
proportionality to g(X;T �ht+ t) � (t=ht) and g(X;T �ht+
t) � (1 � t=ht) respectively. This means that the contribu-
tion di�erence converges to a value which is proportional to
([g(X;T � ht + t)] � (t=ht)� [g(X;T � ht + t)](1� t=ht))�(��
dt). Therefore, the value of V(hs;ht)(X;T), when summed
over all the contributions of length dt in the interval (T �
ht; T) is given by:

V(hs;ht)(X;T) / R ht
t=0

f[g(X;T � ht + t)] � (t=ht)�R ht
t=0

[g(X;T � ht + t)] � (1� t=ht)gdt
On expanding the value of g(X;T �ht+ t) = g(X;T �ht)+
t � �(X) in the above result and regrouping, we get:

V(hs;ht)(X;T) / [g(X;T � ht)]
R ht
t=0

(2t=ht � 1)dt+

[�(X)]
R ht
t=0

(2t2=ht � t)dt

Note that the �rst term of the above expression is zero,
which means that the velocity density at spatial location
X is proportional to the value of �(X) during the interval
(T � ht; T). The above result is not true when the stream
rate � changes with time; this is because the velocity density
is supposed to measure relative changes of densities over the
di�erent spatial locations.

2.3 Special Case for Static Snapshots
An interesting special case of the method is when we

would like to detect the changes between two static snap-
shots of data at a time interval of ht. Thus, in this case we
assume that the �rst set of points all arrived at time T �ht,
whereas the second set arrived at time T . When the method
is applied to this special case, then the velocity density is
proportional to the di�erence in the spatial kernel densities
of the two data sets. It is clear how the magnitude and sign
of the corresponding density at a given point would provide
an insight into the changes which have occurred between the
two data sets.

2.4 Effective Implementation
In order to construct the velocity pro�les, we need a way

of picking a reasonable set of coordinates for plotting the
data. The discretized version of the velocity density is used
for this purpose. We pick a total of � coordinates along each
dimension. For a 2-dimensional system, this corresponds to
�2 spatial coordinates. The higher the value of �, the bet-
ter the resolution for the visualization system; on the other
hand, the computational requirements are greater. First,
the velocity density is calculated at each of these �2 points.
The temporal velocity pro�le can be calculated by a simple
O(�2) additive operations per data point.
Let us say that it has been decided to calculate the tempo-

ral velocity pro�le in the interval (t� ht; t). Then, for each
coordinate Xg in the grid, we maintain two sets of coun-
ters (corresponding to forward and reverse density counters)

which are updated as each point in the data stream is re-
ceived. When a data point Xi is received at time ti, then we
add the value K(hs;ht)(Xg�Xi; t�ti) to the forward density
counter, and the value K(hs;ht)(Xg�Xi; ti� (t�ht)) to the
reverse density counter for Xg.
At the end of time t, the values computed for each co-

ordinate at the grid need to be normalized. The process
of normalization is the same for either the forward or the
reverse density pro�les. In each case, we sum up the total
value in all the �2 counters, and divide each counter by this
total. Thus, for the normalized coordinates the sum of the
values over all the �2 coordinates will be equal to 1. This is
analogous1 to the requirement expressed in Equation 4.
Successive sets of temporal pro�les are generated at user-

de�ned time-intervals of of ht. In order to ensure online
computation, the smoothing parameter vector hs for the
time-interval (T � ht; T) must be available at time T � ht,
as soon as the �rst data point of that interval is scheduled
to arrive. Therefore, we need a way of estimating this vector
using the data from past intervals. In order to generate the
velocity density for the interval (T�ht; T), the spatial kernel
smoothing vector hs is determined using the Silverman's
approximation rule2 [13] for gaussian kernels on the set of
data points which arrived in the interval (T � 2ht; T � ht).

3. SPATIAL VELOCITY PROFILES
In the previous section, we discussed how to calculate the

temporal velocity pro�les which illustrate the rate of change
of density at each �xed spatial location. Even better insight
can be obtained by examining the nature of the spatial ve-
locity pro�les, which provide an insight into how the data is
shifting. For each spatial point, we would like to compute
the directions of movements of the data at a given instant.
The motivation in developing a spatial velocity pro�le is
to give a user a spatial overview of the re-organizations in
relative data density at di�erent points. This brings to us
the following interesting problem: given the temporal veloc-
ity pro�le, how do we calculate the directions in which the
data is shifting? In order to understand this, we observe
that when data is shifting from one point to another, the
source of the shift shows a reduction in the density, whereas
the destination of the shift shows an increase in the density.
Therefore, there is an increasing density gradient from the
source to the destination. The exact direction of the (aggre-
gate) shift is determined by �nding the direction in which
the gradient is the largest.
Let us de�ne an �-perturbation along the ith dimension

by �i = � �ei, where ei is the unit vector along the ith dimen-
sion. For a given spatial location X, we �rst compute the
velocity gradient along each of the i dimensions. We denote
the velocity gradient along the ith dimension by �vi(X; t)
for spatial location X and time t. This value is computed
by subtracting the density at spatial location X from the
density at X + �i (�-perturbation along the ith dimension),
and dividing the result by �. The smaller the value of �, the

1To be precise, we assume (without loss of generality) that
the area of each elementary grid rectangle is one unit.
2According to Silverman's approximation rule, the smooth-
ing parameter for a data set with n points and standard de-
viation � is given by 1:06 � � � n�1=5. For the d-dimensional
case, the smoothing parameter along each dimension is de-
termined independently using the corresponding dimension-
speci�c standard deviation.

better the approximation. Therefore, we have:

�vi(X; t) = lim�)0

V(hs;ht)(X + �i; t)� V(hs;ht)(X; t)

�
(8)

The value of �vi(X; t) is negative when the velocity den-
sity decreases with increasing value of the ith coordinate
of spatial location X. The gradient �v(X; t) is given by
(�v1(X; t) : : :�vd(X; t)). This vector gives the spatial gra-
dient at a given grid point both in terms of direction and
magnitude. The spatial velocity pro�le is illustrated by cre-
ating a spatial plot which illustrates the directions of the
data shifts at di�erent grid points by directed markers which
mirror these gradients both in terms of directions and mag-
nitude. An example of a spatial velocity pro�le is illustrated
in Figure 4. More details about this plot will be discussed
in the empirical section.

3.1 Effective Implementation
In order to provide visualization capability, we determine

the spatial pro�les at a speci�c set of grid points. Let Xg be
such a grid point. Then the value of �vi(Xg ; t) is calculated
using the perturbed velocity densities along the ith dimen-
sion. Therefore, for each grid point, we maintain an addi-
tional d perturbed values, one for each dimension. Specif-
ically, for a grid point Xg , the ith perturbed value is the
velocity density at the point Xg + �i. Thus, during the on-
line scan of the data, we need to maintain an additional
d counters for each grid point at which these densities are
stored. At the end of the scan, the spatial pro�les can be
computed by calculating each of the d components of the
spatial velocity as illustrated in Equation 8. Note that this
extra e�ort at the end of the velocity density calculation is
(asymptotically) small for a rapid data stream, since it is
independent of the number of records in the stream. The
actual value of the perturbation � should be chosen as small
as possible subject to the numerical rounding errors created
by choosing � near the computer numerical precision. For a
practical implementation, we consistently chose � to be 1%
of the distance between two adjacent grid points.

4. EXTENSION TO HIGH DIMENSIONAL
CASE

Although the velocity density can be calculated for arbi-
trary dimensions, the visualization of the spatial and tem-
poral pro�les is inherently 2-dimensional. In this section,
we discuss how to utilize the results of the velocity density
estimation techniques in order to make signi�cant diagno-
sis about higher dimensional problems. An important fact
to be noted about high dimensional problems is that the
data may not show change on all the sets of the dimen-
sions, but on some particular combinations; therefore a sig-
ni�cant amount of useful information is hidden in �nding the
combinations of dimensions in which the greatest amount of
change has occurred. It is clear that that if the change is
measured over the entire set of dimensions simultaneously,
its rate may be signi�cantly diluted by those combinations of
dimensions in which the evolution rate is insigni�cant. Fur-
thermore, since high dimensional data is sparse, it is not very
interesting to measure evolution rates of sparse data concen-
trations. In fact, is not even possible to estimate densities
accurately with increasing dimensionality [13]. Therefore,
we will show how to use the concept of velocity density in

order to pick interesting sets of features which show consid-
erable evolution.
Note that the temporal velocity pro�le gives the rate of

change at a given spatial location X. Therefore, by integrat-
ing the value of the velocity density over the entire spatial
area, we can obtain the total rate of change over the en-
tire spatial area. In other words, if E(hs;ht)(t) be the total
evolution in the period (t� ht; t), then we have:
E(hs;ht)(t) = ht

R
all X jV(hs;ht)(X; t)j�X

We shall henceforth refer to the above value as the global
evolution coe�cient of the data set. It is important to note
that we have to use the modulus of the velocity, since we
are looking at the total volume of change, rather than the
positivity or the negativity of the change. (If we did not use
the modulus, this integral would be equal to zero.) Note
that the evolution coe�cient is equal to the (scaled) volume
between the velocity density curve and spatial axis plane.
Because of the way in which the forward and reverse time
slice densities are de�ned, this value always lies in the range
(0; 2). Intuitively, the evolution coe�cient measures the to-
tal volume of the evolution in the time horizon (t� ht; t).
Since we have consistently computed the velocity densi-

ties at grid-discretized coordinate points, the corresponding
grid-discretized approximation value of E(hs;ht)(t) is given
by multiplying ht with the sum of absolute values at all the
di�erent grid-coordinates.
It is also easy to see that it is possible to calculate the

evolution coe�cients of particular projections of the data by
using only the corresponding sets of dimensions in the den-
sity calculations. Now consider a d-dimensional data mining
problem in which we wish to �nd visual representations of
a small number l of 2-dimensional projections in which the
greatest change in data characteristics has occurred. Let

 = �2 be the number of coordinates in each grid which are
maintained at any given instant of time. Then, for each of
the

�
d
2

�
2-dimensional combinations of attributes, we main-

tain separate sets of
 counters. For each of these sets,
the velocity density is calculated by using the computation
only in the corresponding projection of the data. Once the
velocity density has been calculated at all the grid-points,
we can calculate the grid-discretized approximation of the
global evolution coe�cient for a given projection. The l
projections which have the highest evolution coe�cient are
the ones in which visual representations of the spatial and
temporal pro�les can be provided.
It is also of value to examine the rate of change in projec-

tions with dimensionality larger than 2. We have discussed
earlier that it may often not be interesting to measure evo-
lution behavior on the entire set of dimensions at one time.
The reverse is also true; even though the data stream may
not evolve much when projected onto one or two dimen-
sions, there may be signi�cant changes in particular sets
of k-dimensional combinations. These sets of k-dimensional
combinations provide useful information in terms of how the
nature of the correlations have changed over time. (For ex-
ample, the beginning of the data stream could correspond to
records in which older people earn more than younger peo-
ple, whereas the end of the data stream could correspond
to the reverse.) Such information about lower dimensional
projections is useful in order to obtain an idea of the exact
nature of the trends in the data.
In order to �nd the sets of k-dimensional combinations in

which the greatest change has occurred, we set a threshold

Procedure FindEvolvingProjections(Coe�cient: min-evol,
MaxDimensionality: maxdim);

begin
C1 = S = f1; : : : ; dg; F = null; i = 1;
while (i <= maxdim) and (Ci is non-empty) do
begin
Ci+1 = Ci(pairwise concatenate)S;
Prune any projection from Ci+1, if any of its
subsets are not present in Ci;
Set up grid counters for each projection in the set

Ci+1 by discretizing each dimension into � ranges;
Scan the data set once in order to compute the velocity
densities at the corresponding grid-points of each
projection in Ci+1;
Compute glob. evol. coe�. of each projection in Ci+1;
Determine projections Q in Ci+1 which have a global
global evolution coe�cient greater than min-evol;

F = F [Q; Ci+1 = Ci+1 �Q; i = i+ 1;
end;

end;

Figure 5: Determining Evolving Projections

which we refer to as min-evol. The global evolution coef-
�cient must be greater than this threshold for a projection
to be considered signi�cant. Such a projection is said to be
highly evolving. From the perspective of a user, it is much
easier to understand and assimilate the combination of a
small number of dimensions. Therefore, we concentrate on
�nding the sets of lowest dimensional projections in which
are highly evolving. A projection is said to be a minimal
evolving projection, when its global evolution coe�cient is
greater than min-evol and no lower dimensional subspace
of that projection is highly evolving. Although there may
be a large number of highly evolving projections, the set of
minimal evolving projections is likely to be small and easily
presentable to a user. We will see that it is also computa-
tionally more e�cient to �nd the set of minimal evolving
projections by using pruning techniques. Note that any al-
gorithm which tries to �nd all sets of projections in a single
online scan of the data cannot prune any of the 2d projec-
tions apriori, since it is not possible to make any evolution-
coe�cient estimates for any projection without scanning the
data at least once. Such an algorithm may be feasible for
reasonably small values of the dimensionality d, but becomes
rapidly unwieldy with increasing dimensionality. Therefore,
for the particular case of �nding k-dimensional projections,
we deviate from our general emphasis on developing only
online algorithms. This is the only feature of this paper
which requires o�ine computation and is done as a neces-
sity because the computational requirements in one scan are
untenable for any algorithm. We include this o�ine feature,
since it may still be useful for many spatio-temporal data
sets which can be loaded onto the disk for more detailed
examination and analysis.
The algorithm for determination of minimum evolving

projections derives its overall framework from the Apriori

algorithm [3]. In Figure 5, we have outlined the basic al-
gorithm for �nding all the set of minimal evolving projec-
tions. For a d-dimensional data set, the method requires
at most d � 1 scans over the data. The algorithm uses the
minimality property in order to e�ectively prune many of
the combinations of dimensions. The input to the algorithm
consists of a minimum evolution threshold (denoted by min-

evol), and the maximum dimensionality of the projections
(denoted bymaxdim). A roll-up technique is employed in or-
der to generate the combination of dimensions in which the
set Ci represents a set of i-dimensional non-minimal candi-
date projections. A projection P is said to be a non-minimal
candidate, if and only if no subspace of P is highly evolv-
ing. At the beginning of the ith iteration, the set Ci+1 is
de�ned as the set of non-minimal candidates; i.e. it is the
set of all (i + 1)-dimensional projections so that for each
projection in it, no proper subspace3 of any projection in
it has an evolution coe�cient greater than min-evol. At
the end of the iteration, the set of highly evolving (i + 1)-
dimensional projections are also removed from Ci+1, so that
Ci+1 is the set of all (i + 1)-dimensional projections such
that no subspace of any projection in it (including itself) is
highly evolving. In each iteration, the candidate set Ci+1 is
generated using the previous set Ci, and the 1-dimensional
singletons S. More speci�cally, each element in Ci+1 is cre-
ated by concatenating a projection in Ci with a singleton in
S. The (pairwise concatenate) symbol in Figure 5 denotes
this operation. Note that as the value of i increases a ran-
domly chosen i-dimensional projection becomes increasingly
unlikely to be a member of Ci, since it is quite likely that at
least one of its lower dimensional subspaces may be a highly
evolving combination. How to (e�ciently) check whether a
given projection is non-minimal?
To do so, we use the non-minimality of Ci inductively. If

Ci contains only non-minimal projections, then a projection
in Ci+1 is non-minimal if and only if all of its i-dimensional
subspaces are in Ci. This is because if any proper subspace
of a projection in Ci satis�es the evolutionary threshold re-
quirement, then such a projection would not itself be present
in Ci. Thus, we only need to check whether a 1-dimensional
reduction from a projection in Ci+1 is present in Ci, but we
do not need to check lower dimensional subspaces. Thus, the
pruning condition is similar to that discussed in [3] for asso-
ciation rule mining. The set of projections in Ci+1 are then
validated by a scan over the data in order to check whether
the evolution coe�cient of each projection P 2 Ci+1 is higher
than the threshold min-evol. Those projections Q with evo-
lution coe�cient which is greater than min-evol are retained
in each iteration and added to set of minimal evolving pro-
jections F . Subsequently, Q is removed from Ci+1 in order
to ensure that the set of candidates Ci+2 generated in the
next iteration do not contain any supersets of highly evolv-
ing projections from Ci+1. The process is continued until
either the candidate set is empty or projections of maxi-
mum dimensionality maxdim have been found. The set F is
returned at termination of the algorithm.

5. CHARACTERIZING THE DATA EVOLU-
TION

So far, we have discussed methods for e�ective visual-
ization of the changes occurring in the data stream. An
additional useful ability is to be able to concisely diagnose
speci�c trends in given spatial locations. For example, a
user may wish to know particular spatial locations in the
data at which the data is being reduced, those at which the
data is increasing, and those from where the data is shifting
to other locations. In order to provide further insight, we
introduce the following de�nitions:

3A proper subspace of X is any subspace except X.

Definition 5.1. A data coagulation for time slice t and
user de�ned threshold min-coag is de�ned to be a connected
region R in the data space, so that for each point X 2 R,
we have V(hs;ht)(X; t) > min-coag > 0.

Thus, a data coagulation is a connected region in the data
which has velocity density larger than a user-de�ned noise
threshold of min-coag. In terms of the temporal velocity
pro�le, these are the connected regions in the data with
elevations larger than min-coag. Note that there may be
multiple such elevated regions in the data, each of which
may be disconnected from one another. Each such region
is a separate area of data coagulation, since they cannot be
connected by a continuous path above the noise threshold.
For each such elevated region, we would also have a local
peak, which represents the highest density in that locality.

Definition 5.2. The epicenter of a data coagulation R
at time slice t is de�ned to be a spatial location X� such
that X� 2 R and for any X 2 R, we have V(hs;ht)(X; t) �
V(hs;ht)(X

�; t).

As with the other results of this paper, we use the grid dis-
cretization to provide a good approximation of the di�erent
shift regions and epicenters. We shall call the smallest rect-
angular grid area created by the grid discretization to be an
elementary bounding rectangle. In the �rst step, we �nd all
the elementary bounding rectangles so that all four corners
of this bounding rectangle have a velocity density which is
is larger than min-coag. In the next step, we create con-
nected components out of all such rectangles found. Two
rectangles are said to be connected, if they share at least
one common boundary. The entire region thus found is said
to be a region of coagulation.
Once the regions of coagulation have been determined,

the epicenter is found in a straightforward way by �nding
the grid point inside the coagulation region whose density is
the highest. This is used as the approximation to the local
peak of the temporal velocity pro�le within that region. The
concept of data dissolution and its epicenter are similarly
de�ned as follows:

Definition 5.3. A data dissolution for time slice t and
user de�ned threshold min-dissol is de�ned to be a connected
region R in the data space, so that for each point X 2 R,
we have V(hs;ht)(X; t) < �min-dissol < 0.

Just as a data coagulation refers to a connected elevation
in the temporal velocity pro�le, a data dissolution refers to
a connected valley in the temporal velocity pro�le. Corre-
spondingly, we de�ne the epicenter of a data dissolution as
follows:

Definition 5.4. The epicenter of a data dissolution R
at time slice t is de�ned to be a spatial location X� such
that X� 2 R and for any X 2 R, we have V(hs;ht)(X; t) �
V(hs;ht)(X

�; t).

A region of data dissolution and its epicenter is calculated in
an exactly analogous way to the epicenter of a data coagula-
tion. It now remains to discuss how signi�cant shifts in the
data can be detected. Many of the epicenters of coagulation
and dissolution are connected in a way which results in a
funneling of the data from the epicenters of dissolution to
the epicenters of coagulation. When this happens, it is clear
that the two phenomena of dissolution and coagulation are

connected to one another. We refer to such a phenomenon
as a global data shift. The detection of such shifts can be
useful in many problems involving mobile objects. How to
�nd whether a pair of epicenters are connected in this way?
In order to detect such a phenomenon we use the intuition

derived from the use of the spatial velocity pro�les. Let us
consider a directed line drawn from an epicenter to data
dissolution to an epicenter of data coagulation. In order for
this directed line to be indicative of a global data shift, the
spatial velocity pro�le should be such that the directions of
a localized shifts along each of the points in this directed
line should be in roughly in the same direction as the line
itself. If at any point on this directed line, the direction
of the localized shift is in an opposite direction, then it is
clear that the these two epicenters are disconnected from
one another. In order to facilitate further discussion, we
will refer to the line connecting two epicenters as a potential
shift line.
Recall that the spatial velocity pro�les provide an idea

of the spatial movements of the data over time. In order
to calculate the nature of the data shift, we would need to
calculate the projection of the spatial velocity pro�les along
this potential shift line. In order to do so without scanning
the data again, we use the grid points which are closest to
this shift line in order to obtain an approximation of the shift
velocities at various points along this line. The �rst step is
to �nd all the elementary rectangles which are intersected
by the shift line. Once these rectangles have been found
we determine the grid points corresponding to the corners
of these rectangles. These are the grid points at which the
spatial velocity pro�les are examined.
Let the set of n grid points thus discovered be denoted

by Y1 : : : Yn. Then the corresponding spatial velocities at
these grid points at time slice t are �v(Y1; t) : : :�v(Yn; t).
Let L be the unit vector in the direction of the shift line.
We assume that this vector is directed from the region of
dissolution to the area of coagulation. Then the projections
of the spatial velocities in the direction of the shift line are
given by L��v(Y1; t) : : :L��v(Yn; t). We shall refer to these
values as p1 : : : pn respectively. For a shift line to expose an
actual movement of the data, the values of p1 : : : pn must all
be substantially positive. In order to quantify this notion,
we introduce a user-de�ned parameter called min-vel. A
potential shift line is said to be a valid shift when each of
values p1 : : : pn is larger than min-vel.
Thus, in order to determine the all the possible data shifts,

we �rst �nd all coagulation and dissolution epicenters for
user-de�ned parametersmin-coag andmin-dissol respectively.
Then we �nd all the potential shift lines by connecting each
dissolution epicenter to a coagulation epicenter. For each
such shift line, we �nd the grid points which are closest to it
using the criteria discussed above. Finally, for each of these
grid points, we determine the projection of the correspond-
ing shift velocities along this line and check whether each of
them is at least min-vel. If so, then this direction is reported
as a valid shift line.

6. EMPIRICAL RESULTS
In order to test the methods discussed in this paper, we

used a combination of real and synthetic data sets. The
speci�c measures on which we tested the method were the
following: (1) Examples of interesting spatial velocity and
temporal velocity pro�les created by the algorithm. (2) The

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.5

0

0.5

1

1.5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 6: The Temporal Velocity Pro�le (S-Stream)

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

Dissolution

Coagulation

Figure 7: The Spatial Velocity Pro�le (S-Stream)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8: The Spatial Velocity Pro�le (C-Stream)

4
5

6
7

8
9

−10

0

10

20

30

40
−0.01

−0.005

0

0.005

0.01

0.015

RMLSTAT

V
el

oc
ity

 D
en

si
ty

Figure 9: Velocity Density for a highly evolving 2-
dimensional Projection (Housing Data Set)

0
1000

2000
3000

4000
5000

6000

65

70

75

80

85

90
−0.01

−0.005

0

0.005

0.01

0.015

HorsepowerModel Year

V
el

oc
ity

 D
en

si
ty

Figure 10: Velocity Density for a highly evolving
2-dimensional Projection (Auto-mpg Data Set)

10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
x 10

4

GRID DISCRETIZATION PARAMETER

N
U

M
B

E
R

 O
F

 D
A

T
A

 P
O

IN
T

S
/S

E
C

O
N

D

THROUGHPUT RATE FOR DIFFERENT LEVELS OF RESOLUTION

Figure 11: Computational Scalability with Resolu-
tion Level

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3
x 10

4

DIMENSIONALITY

N
U

M
B

E
R

 O
F

 D
A

T
A

 P
O

IN
T

S
 P

R
O

C
E

S
S

E
D

 P
E

R
 S

E
C

O
N

D

THROUGHPUT RATE (ALL 2−DIMENSIONAL COMBINATIONS)

Figure 12: Computational Scalability with number
of dimensions

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

R
U

N
N

IN
G

 T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF DIMENSIONS

DIMENSIONAL SCALABILITY (BATCH PROCESSING)

Figure 13: Computational Scalability of Batch Pro-
cessing Algorithm (Varying Dimensionality)

use of such pro�les in order to identify interesting phenom-
ena such as coagulations, dissolutions and shifts. (3) In-
teresting combinations of dimensions in which the greatest
amount of data evolution occurs. (4) Computational Re-
sults illustrating the e�ciency of the method.
In our description in the earlier sections we set the values

of min-coag, min-dissol and min-vel to be user-de�ned in
the interest of greater
exibility. It is also possible to pro-
vide some system guidance in picking them e�ectively. Let
E(hs;ht)(t) be the evolution coe�cient computed using the

grid coordinates. Then the average velocity density at any
grid point in the data set is given by E(hs;ht)(t)=
 � ht. For
the purpose of our empirical tests, we chose this to be the
value of min-coag and min-dissol. The value of min-vel was
conservatively set at zero.
First, we used some simple cases with synthetic data sets

in order to illustrate the intuitive nature of the results. The
�rst data set consisted of a shifting cluster embedded in a
uniformly distributed 2-dimensional data stream. The uni-
form distribution was spread over the unit square. Each
dimension of the cluster was distributed around the center
of the cluster with a uniform distribution of total range 0:2.
This center shifted in a straight line at an angle of 45 degrees
to each axis. We refer to this stream as S-Stream. We have
illustrated in temporal and spatial velocity pro�les in Fig-
ures 6 and 7 respectively. As evident from the charts, there
was one region of coagulation and one region of dissolution.
This also resulted in one valid shift line. It is also clear from
Figure 7 that there was a data shift along the true direction
of cluster shifting. We also note that while the static part
of the data was uniformly distributed, its nature did not
a�ect the pro�les substantially. For example, when the uni-
formly distributed part of the stream was replaced by static
clusters, the temporal and spatial pro�les continued to be
similar. Thus, the approach measures only the changing
part of the data, as opposed to the base distribution.
A second stream was generated in which a cluster materi-

alized in the data at a given location. Thus, the center of the
cluster was �xed, whereas the probability of a point belong-
ing to the cluster increased with time. For every 1000 data
points, the probability of a point belonging to this cluster
increased by 0:005. As in the previous case, the base data
was uniformly distributed in the unit square. The cluster
had a range of 0:2. We refer to this stream by C-Stream.
The spatial pro�le for this case is illustrated in Figure 8. It is
clear that in this case, there was a single area of coagulation
corresponding to the cluster of increasing size. A similar
result can also be demonstrated for a stream in which the
cluster size reduces. The only di�erence is that in this case,
it creates a region of dissolution as opposed to a coagulation.
We also tested the evolution detection system with a num-

ber of real data sets. An important feature provided by this
framework is to �nd those combinations of dimensions which
show the greatest amount of global evolution. How do we
empirically show that the combinations of dimensions found
by the algorithm are interesting and meaningful? In order to
do so, we generated a data stream from a (real) static data
set by using a feature ordering technique. We removed one
of the attributes from the data, and generated the remaining
data set in the order of the value of this particular attribute.
Since the attributes in most real data sets are correlated, the
observation of the most highly evolving projections provides
an insight into those combinations of attributes which in
u-

ence the stripped attribute the most. We emphasize that
the only purpose of generating the data in this biased way
is to establish the meaningfulness of the projections which
show the greatest amount of evolution.
We tested the evolution algorithm using the housing data

set of the UCI machine learning repository.4 The data was
sorted in the order of increasing housing price in order to
test which projections of the data which had the greatest
amount of evolution. On examining the projections which
showed the greatest amount of change, we found some in-
teresting trends. For example, the 2-dimensional projection
with the largest evolution coe�cient was (RM, LSTAT).
Here \RM" stands for the average number of rooms per
dwelling, and \LSTAT" stands for the percentage lower sta-
tus of the population. Clearly both of these attributes have
a high relationship to the price of the houses in a given lo-
cality, as the price of the houses in a given locality increases
with the number of rooms per dwelling and it reduces with
increasing percentage lower status of the population. The
corresponding temporal velocity pro�le (see Figure 9) clearly
shows this trend. To make a reverse argument, if we had an
application in which the data stream showed the kind of
trend illustrated in Figure 9, then even without having ac-
cess to the variable on housing price, one could infer that
the stream was gradually getting biased towards more and
more expensive housing localities. The provision of algo-
rithmic and visual aid in order to make such diagnosis and
understanding can be critical for many commercial applica-
tions. One of the interesting aspects that we noted in the
data stream was that the variable LSTAT tended to be quite
important since it occurred in a number of combinations of
dimensions showing high evolution rates. This is because
LSTAT directly re
ected the �nancial status of the popula-
tion; a factor which is closely related to the biased way in
which the stream was generated. Other interesting combina-
tions of dimensions which showed high evolution rates were
(NOX, DIS) and (NOX, RAD). Here \NOX" corresponds
to the nitric oxides concentration, \DIS" corresponds to the
weighted distance to �ve Boston employment centers and
\RAD" corresponds to the index of accessibility to radial
highways. Again, these combinations of dimensions have
high in
uence on the housing price, which was used to bias
the data stream.
Another data set on which we tested the algorithm was the

Auto-Mpg data set from the UCI machine learning repos-
itory. This data set contained a set of records of di�erent
cars along with their mileage (mpg) rates. The numeric
attributes contained features such as displacement, horse-
power, acceleration, weight and model year of a car. We
again intentionally biased the data stream using the mpg
attribute so that the records were in increasing order of
mpg. Then, we tested the evolution of di�erent combina-
tions of the remaining dimensions. We found that the most
highly evolving projection was the combination (horsepower,
model year). The corresponding temporal velocity pro�le
is illustrated in Figure 10. An interesting trend from the
graph is that the later arrivals correspond to lower horse-
power but increasing model year. Again, this seems to reveal
the fact that the data was biased in increasing order of the
mileage/gallon. Thus, in both cases, by mining the most
highly evolving projections it was possible to make infer-

4The real data sets used in this paper are available at
http://www.cs.uci.edu/~mlearn

ences about the nature of the bias in the stream generation.
In order to test the computational scalability, we gener-

ated a data set in a similar way as S-Stream, except that
the data was generated in 20 dimensions. We refer to this
new stream as SM-stream. The process of velocity density
calculation requires us to maintain the forward and reverse
time slice densities. This is a simple additive process and
is also the only process which is dependent on the stream
arrival rate. Any additional computation in order to cal-
culate the spatial and temporal velocity pro�les from these
values needs to be done only once for each temporal window
used. This is an (asymptotically) negligible overhead for a
fast data stream. In order that the technique can work ef-
fectively, the amount of time required in order to calculate
the contribution for a given data point to the forward and
reverse time slice densities cannot be higher than the rate
at which the stream arrives. This ensures that a user can
avail himself of the online trends in the data as soon as the
temporal window has passed. First, we present the com-
putational requirements of a technique in which the user is
presented with the non-overlapping velocity density pro�les
at periodic intervals of ht = 60 seconds.
In order to calculate the viability of the technique, we

computed the throughput rate which could be supported by
the stream. The throughput rate is the number of data
points processed per second for a given value of the grid
discretization parameter. We assumed that the time win-
dow ht in which the trends were processed is signi�cantly
larger than the interarrival rate between two data points.
Successive pro�les were generated at times ht; 2 �ht : : : k �ht.
Since ht is signi�cantly larger than the interarrival rate, the
amount of time required by the �nal postprocessing proce-
dure at time i � ht in order to compute the pro�les from the
densities is (asymptotically) small compared to the time re-
quired to process the data points. Therefore, we used the
throughput rate as the inverse of the time required in order
to process each data point for the velocity density calcu-
lation. This is sensitive to the level of discretization used.
The higher the value of the discretization parameter, the
fewer the number of data points per second which can be
processed, but the greater the level of accuracy and re�ne-
ment. The trends for S-Stream are indicated in Figure 11.
The algorithm scales quadratically with the grid discretiza-
tion parameter. Note that because of the simplicity of the
techniques used, thousands of data points can be processed
per second at modest values (such as 10 or 15) of the grid
discretization parameter. When the rate of arrival of a data
stream is higher than the rate that can be supported by the
computational resources available, one may choose to either
sample selectively in order to maintain the density values, or
may choose to reduce the level of re�nement level at which
the velocity densities are maintained.
Note that the results of Figure 11 are for a single projec-

tion of the dimensions in the data. In order to provide visual
insights into the most highly evolving 2-dimensional projec-
tions of a high dimensional application we need to main-
tain the velocity density pro�les of all pairs of 2-dimensional
combinations. In Figure 12, we have shown the scalability
of the velocity density estimation technique to increasing
data dimensionality, when the grid discretization parameter
� is �xed at 10. In order to create data streams of di�er-
ent dimensionalities, projections of di�erent dimensionalities
were picked from SM-Stream. Since a total of

�
d
2

�
combina-

tions of projections need to be maintained, the running time
per data point scales quadratically with data dimensionality.
Again thousands of data points per second can be supported
for modest applications.
We also tested the batch processing component of the al-

gorithm in order to �nd how the computational requirements
varied with data dimensionality. In this case, a �xed set of
1000 data points from SM-Stream was used for the computa-
tion. We have illustrated the corresponding computational
results in Figure 13. Note that even though the number
of evolving combinations of dimensions increases exponen-
tially with dimensionality, we are only interested in minimal
evolving projections. In practice, only a small subset of the
relevant combinations of dimensions are explored. As a re-
sult, the rate of increase of the computational time with di-
mensionality is signi�cantly lower. This behavior is re
ected
in Figure 13.

7. CONCLUSIONS AND SUMMARY
In this paper we discussed novel techniques for diagnosing

di�erent kinds of trends in evolving data streams. The veloc-
ity density estimation technique is used in order to generate
two kinds of pro�les: spatial velocity pro�les and temporal
velocity pro�les, each of which provide a di�erent kind of in-
sight into the nature of the changes in the underlying data
characteristics. We proposed techniques for �nding useful
trends in higher dimensional problems by �nding speci�c
combinations of dimensions in which the greatest change has
occurred. Finally, the techniques are used in order to pro-
vide an e�ective diagnosis of the regions of coagulations, dis-
solutions and shifts in the data. With a few exceptions, most
of the results of this paper can be computed in a single online
scan of the data. The results of this paper have consider-
able implications for the increasingly important problem of
understanding trends in data streams and spatio-temporal
data.

8. REFERENCES
[1] N. Andrienko, G. Andrienko, P. Gatalsky. Towards
Exploratory Visualization of Spatio-Temporal Data.
Third AGILE Conference on Geographical Information
Science, pages 137-142, May 25-27, 2000.

[2] D. Bonachea, K. Fisher, A. Rogers, F. Smith. Hancock:
A language for processing very large data. In USENIX
2nd Conference on Domain-Speci�c Languages, pages
163-176, October 1999.

[3] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. VLDB
Conference Proceedings, 1994.

[4] S. Chawathe, H. Garcia-Molina. Meaningful Change
Detection in Structured Data. ACM SIGMOD
Conference Proceedings, 1997.

[5] D. Cheung, J. Han, V. Ng, C. Y. Wong. Maintenance of
Discovered Association Rules in Large Databases: An
Incremental Updating Technique. IEEE ICDE
Conference Proceedings, 1996.

[6] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, F. Smith.
Hancock: A Language for Extracting Signatures from
Data Streams. ACM KDD Conference Proceedings, 2000.

[7] P. Domingos, G. Hulten. Mining High-Speed Data
Streams. ACM KDD Conference Proceedings, 2000.

[8] D. Donjerkovic, Y. E. Ioannidis, R. Ramakrishnan.
Dynamic Histograms: Capturing Evolving Data Sets.
IEEE ICDE Conference Proceedings, 2000.

[9] R. Feldman, Y. Aumann, A. Amir, H. Mannila.
E�cient Algorithms for Discovering Frequent Sets in
Incremental Databases. DMKD Workshop Proceedings,
1997.

[10] V. Ganti, J. Gehrke, R. Ramakrishnan. Mining Data
Streams under Block Evolution. ACM SIGKDD
Explorations, 3(2), 2002.

[11] V. Ganti, J. Gehrke, R. Ramakrishnan, W.-Y. Loh. A
Framework for Measuring Di�erences in Data
Characteristics. ACM PODS Conference Proceedings,
1999.

[12] W. Labio, H. Garcia-Molina. E�cient Snapshot
Di�erential Algorithms for Data Warehousing. VLDB
Conference Proceedings, 1996.

[13] B. W. Silverman. Density Estimation for Statistics
and Data Analysis. Chapman and Hall, 1986.

[14] J. F. Roddick et al. Evolution and Change in Data
Management: Issues and Directions. ACM SIGMOD
Record, 29(1): 21-25, 2000.

[15] J. F. Roddick, M. Spiliopoulou. A Bibliography of
Temporal, Spatial, and Spatio-Temporal Data Mining
Research. ACM SIGKDD Explorations, 1(1), June 1999.

[16] T. Sellis. Research Issues in Spatio-temporal Database
Systems. Symposium on Spatial Databases Proceedings,
1999.

[17] S. Thomas, S. Bodagala, K. Alsabti, S. Ranka. An
E�cient Algorithm for the Incremental Updating of
Association Rules in Large Databases. ACM KDD
Conference Proceedings, 1997.

[18] B.-K. Yi , N. Sidiropoulos, T. Johnson, H. V.
Jagadish, C. Faloutsos, A. Bilris. Online Data Mining
for Co-Evolving Time Sequences. IEEE ICDE
Conference Proceedings, 2000.

