
Finding Generalized Projected Clusters in High Dimensional Spaces

Charu C. Aggarwal, Philip S. Yu

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

f charu, psyu g@watson.ibm.com

Abstract

High dimensional data has always been a challenge for

clustering algorithms because of the inherent sparsity of

the points. Recent research results indicate that in

high dimensional data, even the concept of proximity

or clustering may not be meaningful. We discuss very

general techniques for projected clustering which are able to

construct clusters in arbitrarily aligned subspaces of lower

dimensionality. The subspaces are speci�c to the clusters

themselves. This de�nition is substantially more general

and realistic than currently available techniques which limit

the method to only projections from the original set of

attributes. The generalized projected clustering technique

may also be viewed as a way of trying to rede�ne clustering

for high dimensional applications by searching for hidden

subspaces with clusters which are created by inter-attribute

correlations. We provide a new concept of using extended

cluster feature vectors in order to make the algorithm

scalable for very large databases. The running time and

space requirements of the algorithm are adjustable, and are

likely to tradeo� with better accuracy.

1 Introduction

The problem of clustering data points is de�ned as
follows: Given a set of points in multidimensional space,
�nd a partition of the points into clusters so that the
points within each cluster are similar to one another.
Various distance functions may be used in order to
make a quantitative determination of similarity. In
addition, an objective function may be de�ned with
respect to this distance function in order to measure
the overall quality of a partition. The method has been
studied in considerable detail [5, 8, 15, 11, 17, 18] by
both the statistics and database communities because
of its applicability to many practical problems such

as customer segmentation, pattern recognition, trend
analysis and classi�cation. An overview of clustering
methods may be found in [11].
A common class of methods in clustering are parti-

tioning methods in which a set of seeds (or representa-
tive objects) are used in order to partition the points
implicitly [11]. Several variations of this technique ex-
ist such as the k-means and k-medoid algorithms [11].
In medoid-based techniques, the points from the data-
base are used as seeds, as the algorithm tries to search
for the optimal set of k seeds which results in the best
clustering. An e�ective practical technique in this class
called CLARANS [15] uses a restricted search space in
order to improve e�ciency.
Another well known class of techniques are hierarchi-

cal clustering methods in which the database is decom-
posed into several levels of partitioning which are repre-
sented by a dendogram [11]. Such methods are qualita-
tively e�ective, but practically infeasible for large data-
bases since the performance is at least quadratic in the
number of database points.
In density-based clustering methods [5], the neigh-

borhood of a point is used in order to �nd dense re-
gions in which clusters exist. Other related techniques
for large databases include condensation and grid based
methods in conjunction with spatial and hierarchical
structures [8, 18]. The BIRCH method [18] uses a hi-
erarchical data structure called the CF-Tree in order to
incrementally build clusters. This is one of the most
e�cient approaches for low dimensional data, and it re-
quires only one scan over the database. Another hierar-
chical method called CURE [8] was recently proposed,
which tends to show excellent quality because it uses
robust methods in order to measure distances between
clusters. Therefore, it adjusts well to di�erent shapes
of clusters. An interesting grid-partitioning technique
called Optigrid [9] has recently been proposed which is
designed to perform well for high dimensional data.
In spite of these improved techniques, high dimen-

sional data continues to pose a challenge to clustering
algorithms at a very fundamental level. Most clustering
algorithms do not work e�ciently in higher dimensional

Cross Section on X-Y axis

(a)

P

Q

x
x

x
x

x
x

xx
x

xx
x x
x x

xx

xxx
x x

xxxxx
xx

x x
xxx

x x
x
xx

x x
xx
x

x
x

x

x
x

x

xx

Cross Section on X-Z axis

(b)

P

X

x x
x

x
x

x

x
xx

xx
x

x

x
x
x x

x x
x
x

x
x

x
x

(c)

R S

xx
xxx

xxx
xx

xx
x

x
x

x

x
xx
x
x

x
x

x

x

(d)

R

S

Q

Y

Y Z

Z

X X

X

Figure 1: Illustrations of projected clustering

spaces because of the inherent sparsity of the data. This
problem has been traditionally referred to as the dimen-
sionality curse and is the motivation for a signi�cant
amount of work in high-dimensional clustering and sim-
ilarity search [7, 9, 10, 13]. Recent theoretical results
[3] have shown that in high dimensional space, the dis-
tance between every pair of points is almost the same
for a wide variety of data distributions and distance
functions. Under such circumstances, even the mean-
ingfulness of proximity or clustering in high dimensional
data may be called into question. One solution to this
problem is to use feature selection in order to reduce the
dimensionality of the space [14], but the correlations in
the dimensions are often speci�c to data locality; in
other words, some points are correlated with respect to
a given set of features and others are correlated with
respect to di�erent features. Thus it may not always be
feasible to prune o� too many dimensions without at
the same time incurring a substantial loss of informa-
tion. We demonstrate this with the help of an example.

In Figure 1, we have illustrated four �gures. The
top two Figures 1(a) and 1(b) correspond to one set
of points, while the bottom two Figures 1(c) and 1(d)
correspond to another set. Figure 1(a) represents the
X-Y cross-section of the �rst set of points, whereas
Figure 1(b) represents the X-Z cross-section. There
are two patterns of points labeled P and Q. The
pattern P corresponds to a set of points which are
close to one another in the X-Z plane. The second
pattern Q corresponds to a set of points which are

very close in the X-Y plane. Note that traditional
feature selection does not work in this case, as each
dimension is relevant to at least one of the clusters. At
the same time, clustering in the full dimensional space
will not discover the two patterns, since each of them
is spread out along one of the dimensions. Figures 1(a)
and (b) illustrate a simple case when the clusters are
aligned along a particular axis system. Methods for
�nding such projected clusters have been discussed in
[1]. Related methods for �nding locally dense subspaces
have also been discussed in [2, 4]. These are not really
clustering methods, since they return dense rectangular
projections with huge point overlaps. In reality, none
of the above methods may be general enough in order
to �nd the true clusters. The clusters could exist in
arbitrarily oriented subspaces of lower dimensionality.
The examples in Figures 1(c) and (d) illustrate these
cases wherein the projected clusters could exist in
arbitrarily oriented subspaces. The two such patterns
are labeled by R and S. In this case, the planes on
which the projection should take place are the normals
to the arrows illustrated in the Figures 1(c) and 1(d).
Often the examination of real data shows that points
may tend to get aligned along arbitrarily skewed and
elongated shapes in lower dimensional space because
of correlations in the data. Clearly, the choice of axis
parallel projections cannot �nd such clusters e�ectively.

In this context, we shall now de�ne what we call a
generalized projected cluster. A generalized projected
cluster is a set E of vectors together with a set C
of data points such that the points in C are closely
clustered in the subspace de�ned by the vectors E .
The subspace de�ned by the vectors in E may have
much lower dimensionality than the full dimensional
space. The Figures 1(c) and (d) contain two clusters
in arbitrarily oriented subspaces.

In this paper we focus on an algorithm to �nd clusters
in lower dimensional projected subspaces for data of
high dimensionality. We assume that the number k of
clusters to be found is an input parameter. In addition
to the number of clusters k the algorithm will take as
input the dimensionality l of the subspace in which each
cluster is reported. The output of the algorithm will be
twofold:
� A (k+1)-way partition fC1; :::; Ck;Og of the data, such
that the points in each partition element except the last
form a cluster. (The points in the last partition element
are the outliers, which by de�nition do not cluster well.)
� A possibly di�erent orthogonal set Ei of vectors for
each cluster Ci, 1 � i � k, such that the points in Ci
cluster well in the subspace de�ned by these vectors.
(The vectors for the outlier set O can be assumed to
be the empty set.) For each cluster Ci, the cardinality
of the corresponding set Ei is equal to the user de�ned
parameter l.

In order to describe our algorithm we shall introduce
a few notations and de�nitions. Let N denote the total
number of data points. Assume that the dimensionality
of the overall space is d. Let C = fx1; x2; : : : ; xtg
be the set of points in a cluster. The centroid of a
cluster is the algebraic average of all the points in the
cluster. Thus, the centroid of the cluster C is given
by X(C) =

Pt
i=1 xi=t. We will denote the distance

between two points x1 and x2 by dist(x1; x2). In this
paper, we will work with the euclidean distance metric.

Let y = (y1; : : : yd) be a point in the d-dimensional
space, and let E = fe1 : : : elg be a set of l � d
orthonormal vectors in this d-dimensional space. These
orthonormal vectors de�ne a subspace. The projection
P(y; E) of point y in subspace E is an l-dimensional
point given by (y � e1; : : : ; y � el). Here y � ei denotes the
dot-product of y and ei.

Let y1 and y2 be two points in the original d-
dimensional space. Then, the projected distance be-
tween the points y1 and y2 in subspace E is denoted
by Pdist(y1; y2; E) and is equal to the euclidean dis-
tance between the projections P(y1; E) and P(y2; E) in
the l-dimensional space represented by E . The projected
energy of the cluster C = fx1; x2; : : : ; xtg in subspace E
is denoted by R(C; E) and is given by the mean square
distance of the points to the centroid of the cluster,
when all points in C are projected to the subspace E .
Thus, we have:
R(C; E) =

Pt
i=1fPdist(xi; X(C); E)g2=t

Note that the projected energy1 of a cluster in a
subspace is always less than that in the full dimensional
space. For certain good choices of subspaces the
projected energy is likely to be signi�cantly smaller than
that in full dimensional space. For example, for the case
of Figures 1(c) and (d), the 2-dimensional subspaces
in which the projected energy is likely to be small for
clusters R and S are the planes normal to the arrows
illustrated. It is the aim of the algorithm to discover
clusters with small projected energy in subspaces of
user-speci�ed dimensionality l, where the subspace for
each cluster could be di�erent. Providing l as an
input parameter gives the user considerable
exibility
in discovering clusters in di�erent dimensionalities.
We will also discuss methods for providing the user
guidance in �nding a good value of l for which
meaningful clusters may be found.

In this paper, we will examine this very general
concept of using arbitrarily projected subspaces for
�nding clusters. Since dense full dimensional clusters
cannot be found in very high dimensional data sets,
this method searches for hidden subspaces in which
points cluster well because of correlations among the

1We have chosen the term energy, since this is a metric which
is invariant on rotation of the axis system, and can be expressed
as the sum of the energies of the individual axis directions.

dimensions. This technique can also be considered a
meaningful re-de�nition of the clustering problem for
very high dimensional data mining applications. We
also propose an e�cient algorithm for the projected
clustering problem and make it scalable for vary large
databases.

A very simpli�ed version of this problem has been
addressed in [1]. In this paper, a projected cluster
is de�ned in terms of sets of points together with
subsets of dimensions from the original data set. Such
a framework may not necessarily be able to tackle the
sparsity problem of high dimensional data because of
the fact that real data often contains inter-attribute
correlations. This naturally leads to projections which
are not parallel to the original axis system. In
fact, it is possible for data to continue to be very
sparse in all possible projected subsets of attributes
of the original data, yet have very dense projections
in arbitrary directions. Our empirical results show
that in such cases, axis-parallel projections are counter-
productive since they lead to loss of information. Our
paper provides a much more general framework and
algorithms in which clusters can be represented in any
arbitrarily projected space.

This paper is organized as follows. Section 2 describes
our clustering algorithm in detail. The algorithm is
known as ORCLUS (arbitrarily ORiented projected
CLUSter generation). We discuss several improvements
to the basic algorithm, and introduce the concept of
extended cluster feature vectors (ECF) which are used
to make the algorithm scale to very large databases. We
also show how to use a progressive random sampling
approach in order to improve the scalability with
database size. In Section 3, we discuss the empirical
results, whereas Section 4 discusses the conclusions and
summary.

1.1 Projected Clusters and Skews

Most real data contains di�erent kinds of skews in
the data in which some subsets of dimensions are
related to one another. Furthermore, these subsets
of correlated dimensions may be di�erent in di�erent
localities of the data. Correlated sets of dimensions
lead to points getting aligned along arbitrary shapes
in lower dimensional space. Such distributions of
points which are far from the uniform distribution
are referred to as skews. Projected clusters in lower
dimensional subspaces are closely connected to the
problem of �nding skews in the data. Each orthogonal
set of vectors which de�nes a subspace for a projected
cluster provides a very good idea of the nature of
skews and correlations in the data. For example, in
the Figures 1(c) and (d), the arrows represent the
directions of sparsity (greatest elongations because of
correlated sets of dimensions). Coincidentally, the

direction of projection in which the points in the
clusters are most similar are the normal planes to
these arrows. In general, the subspace in which the
maximum sparsity of point distribution occurs is the
complementary subspace to the one in which the points
are most similar to one another. For such distributions
of points in very high dimensional space, the data is
likely to continue to be very sparse in full dimensionality
(thereby ruling out the use of full dimensional clustering
algorithms such as those discussed in [17]), whereas
the only realistic way of detecting regions of similarity
would be to use lower dimensional projections for each
cluster.

1.2 A Related Method

Singular Value Decomposition (SVD) [6, 16] is a well
known technique in order to represent the data in
a lower dimensional subspace by pruning away those
dimensions which result in the least loss of information.
Since the projected clustering method also projects the
data into a lower dimensional subspace, it is interesting
to examine the relationship between the two techniques.
We will �rst give a brief overview of the methodology of
singular value decomposition. The idea is to transform
the data into a new coordinate system in which the
(second order) correlations in the data are minimized.
This transformation is done by using a two step process.

In the �rst step, the d � d covariance matrix is con-
structed for the data set. Speci�cally, the entry (i; j)
in the matrix is equal to the covariance between the di-
mensions i and j. The diagonal entries correspond to
the variances of the individual dimension attributes. In
the second step, the eigenvectors of this positive semi-
de�nite matrix are found. These eigenvectors de�ne
an orthonormal system along which the second order
correlations in the data are removed. The correspond-
ing eigenvalues denote the spread (or variance) along
each such newly de�ned dimension in this orthonormal
system. Therefore, the eigenvectors for which the cor-
responding eigenvalues are the largest can be chosen as
the subspace in which the data is represented. This re-
sults in only a small loss of information, since the data
does not show much variance along the remaining di-
mensions.

The problem of dimensionality reduction is concerned
with removing the dimensions in the entire data set so
that the least amount of information is lost. On the
other hand, the focus here is to �nd the best projection
for each cluster in such a way that the greatest
amount of similarity among the points in that cluster
can be detected. Therefore, in the dimensionality
reduction problem one chooses the eigenvectors with
the maximum spread in order to retain the most
information which distinguishes the points from one
another. On the other hand, in the novel approach

discussed in this paper, we pick the directions with
the least spread for each speci�c cluster, so as to retain
the information about the similarity of the points with
one another in that cluster. Obviously, the directions
with least spread are di�erent for di�erent clusters.
The subspace which is complementary to the projection
subspace for a given cluster is not useless information,
since it may be used in order to retain the maximum
information which distinguishes the points within that
cluster from one another, if our technique is to be used
for applications such as indexing.
The projected clustering problem is much more

complex than the dimensionality reduction problem,
because we are faced with the simultaneous problem of
partitioning the data set as well as �nding the directions
with most similarity in each partition.

1.3 Covariance Matrix Diagonalization

In this section, we will discuss some properties of
covariance matrix diagonalization which are useful for
our clustering algorithm. We mention all the below
properties as fact, which may be veri�ed from [12]. Let
C be the covariance matrix for the set of points C. The
matrix C is positive semide�nate and can be expressed
in the format C = P�PT .
Here � is a diagonal matrix with non-negative

entries. The columns in P are the (orthonormal)
eigenvectors of C. The diagonal entries �1 : : : �d
of � are the eigenvalues of C. The orthonormal
eigenvectors de�ne a new axis system and the matrix
� is the covariance matrix of the original set of
points when represented in this system. Since all non-
diagonal entries are zero, it means that all second-
order correlations have been removed. This also means
that the eigenvalues correspond to the variances along
each of the new set of axes. The trace

Pd
i=1 �i is

invariant under the axis-transformation de�ned by the
eigensystem P and is equal to the trace of the original
covariance matrix C. This is also equal to the energy
of the cluster C in full dimensional space. It can also
be shown that picking the l � d smallest eigenvalues
results in the l-dimensional subspace E of eigenvectors,
in which sum of the variances along the l-directions is
the least among all possible transformations. This is the
same as the projected energy of the cluster C in subspace
E . Thus, the diagonalization of the covariance matrix
provides information about the projection subspace of a
cluster which minimizes the corresponding energy.

2 Generalized Projected Clustering

We decided on a variant of hierarchical merging meth-
ods for our algorithm. Unfortunately, the class of hi-
erarchical methods is prohibitively expensive for very
large databases, since the algorithms scale at least qua-
dratically with the number of points. One solution is to

run the method on only a random sample of points, but
this can lead to a loss of accuracy. Consequently, we de-
cided on the compromise solution of applying the tech-
nique to a small number k0 of initial points, but using
techniques from partitional clustering in order to always
associate a current cluster with each of the points. The
current clusters are then used in order to make more
robust merging decisions. In e�ect, information from
the entire database is used in the hierarchical merging
process, even though the number of merges is greatly
reduced. We will refer to the initial set of points as the
seeds. At each stage of the algorithm, the following are
associated with each seed si:
(1) Current Cluster Ci: This is the set of points from
the database which are closest to seed si in some sub-
space Ei associated with cluster Ci. We assume that at
each stage of the algorithm, the number of current clus-
ters is denoted by kc.
(2) Current Subspace Ei: This is the subspace in
which the points from Ci cluster well. The dimension-
ality lc of Ei is at least equal to the user-speci�ed di-
mensionality l. Initially, lc is equal to the full dimen-
sionality, and the value of lc is reduced gradually to the
user-speci�ed dimensionality l. The idea behind this
gradual reduction is that in the �rst few iterations the
clusters may not necessarily correspond very well to the
natural lower-dimensional subspace clusters in the data;
and so a larger subspace is retained in order to avoid
loss of information. (Only the most noisy subspaces
are excluded.) In later iterations, the clusters are much
more re�ned, and therefore subspaces of lower rank may
be extracted.

The overall algorithm consists of a number of itera-
tions, in each of which we apply a sequence of merg-
ing operations in order to reduce the number of cur-
rent clusters by the factor � < 1. We also reduce
the dimensionality of current cluster Ci by � < 1 in
a given iteration. Thus, the signi�cance of dividing
up the merging process over di�erent iterations, is that
each iteration corresponds to a certain dimensionality of
the subspace in which the clusters are discovered. The
�rst few iterations correspond to a higher dimensional-
ity, and each successive iteration continues to peel o�
more and more noisy subspaces for the di�erent clus-
ters. The values of � and � need to be related in such
a way that the reduction from k0 to k clusters occurs
in the same number of iterations as the reduction from
l0 = jDj to l dimensions. Therefore, the relationship
log(1=�)(k0=k) = log(1=�)(l0=l) must be satis�ed.

In the description of the algorithmORCLUS, we have
chosen � = 0:5 and calculated the value of � according
to the above relationship. The overall description of
the algorithm is illustrated in Figure 2, and consists of
a number of iterations in which each of the following
three steps are applied:

Algorithm ORCLUS(Number of Clusters: k,
Number of Dimensions: l)

f Ci is the current cluster i g
f Ei is the set of vectors de�ning subspace for cluster Ci g
f kc) current number of seeds; lc) current

dimensionality associated with each seed g
f S = fs1, s2 : : : skcg is the current set of seeds g
f k0 is the number of seeds that we begin with g
begin

Pick k0 > k points from the database and denote by
S; fS = (s1; : : : skc) g

kc = k0; lc = d;
for each i set Ei = D;
f Initially, Ei is the original axis-system g

� = 0:5; � = e�log(d=l)�log(1=�)=log(k0=k);
while (kc > k) do
begin

f Find partitioning induced by the seeds g
(s1; : : : skc ; C1; : : :Ckc) =Assign(s1; : : : skc ; E1; : : : Ekc);
f Determine current subspace associated with

each cluster Ci g
for i = 1 to knew do Ei = FindV ectors(Ci; lnew);
f Reduce number of seeds and dimensionality

associated with each seed g
knew = maxfk; kc � �g; lnew = maxfl; lc � �g;
(s1 : : : sknew ;C1; : : : Cknew ; E1 : : : Eknew) =

Merge(C1; : : : Ckc ; knew ; lnew);
kc = knew; lc = lnew ;

end;
(s1; : : : sk ;C1; : : : Ck) =Assign(s1; : : : sk; E1; : : :Ek);
return(C1 : : :Ckc);

end;

Figure 2: The Clustering Algorithm

Algorithm Assign(s1; : : : skc , E1 : : : Ekc)
begin

for each i 2 f1; : : : ; kcg do Ci = �;
for each data point p do begin

Determine Pdist(p; si;Ei) for each i 2 f1; : : : ; kcg
f Distance of point p to si in subspace Eig;
Determine the seed si with the least value of
Pdist(p; si;Ei) and add p to Ci;
end

for each i 2 f1; : : : ; kcg do si = X(Ci);
return(s1; : : : skc , C1 : : : Ckc);

end

Figure 3: Creating the Cluster Partitions

Algorithm FindVectors(Cluster of points:C,
Dimensionality of projection:q)

begin

Determine the d � d covariance matrixM for C;
Determine the eigenvectors of matrixM;
E = Set of eigenvectors corresponding to

smallest q eigenvalues;
return(E);

end

Figure 4: Finding the Best Subspace for a Cluster

Algorithm Merge(s1 : : : skc ; knew; lnew)
begin

for each pair i; j 2 f1; : : : kcg satisfying i < j do begin

E 0ij = FindV ectors(Ci [Cj, lnew);

f De�ned by eigenvectors for lnew smallest eigenvalues g
s0ij = X(Ci [Cj) f Centroid of Ci [Cj g;

rij = R(Ci [Cj; E 0ij)

f Projected energy of Ci [Cj in subspace E 0ij g

end

while (kc > knew) do begin

Find the smallest value of ri0j0 among
all pairs i; j 2 f1; : : : kcg satisfying i < j;

f Merge the corresponding clusters Ci0 and Cj0 ; g
si0 = s0

i0j0
; Ci0 = Ci0 [Cj0 ; Ei0 = E 0

i0j0
;

Discard seed sj0 and Cj0 and renumber the
seeds/clusters indexed larger than j0 by subtracting 1;

Renumber the values s0ij , Eij, rij correspondingly

for any i; j � j0;
f Since cluster i0 is new, the pairwise recomputation
for ri0j for di�erent j needs to be done g

for each j 6= i0 2 f1; : : : kc � 1g do begin

Recompute E 0
i0j

= FindV ectors(Ci0 [Cj; lnew);

s0
i0j

= X(Ci0 [Cj); f Centroid of Ci0 [Cj g

ri0j = R(Ci0 [Cj; E
0

i0j
) f Proj. En. of Ci0 [Cj in E

0

i0j
; g

end

kc = kc � 1;
end

return(s1; : : : sknew ; C1; : : : Cknew ; E1; : : : Eknew)
end

Figure 5: The Merging Algorithm

(1) Assign: The database is partitioned into kc current
clusters by assigning each point to its closest seed. In
the process of partitioning, the distance of a database
point to seed si is measured in the subspace Ei. In
other words, for each database point p, the value of
Pdist(p; si; Ei) is computed, and the point p is assigned
to the current cluster Ci for which this value is the least.
At the end of this procedure each seed is replaced by
the centroid of the cluster which was just created. The
procedure serves to re�ne both the set of clusters in
a given iteration and the set of seeds associated with
these clusters. This method is illustrated in Figure 3.
(2) FindVectors: In this procedure we �nd the
subspace Ei of dimensionality lc for each current cluster
Ci. This is done by computing the covariance matrix
for the cluster Ci and picking the lc orthonormal
eigenvectors with the least spread (eigenvalues). This
�nds the least energy subspace of rank lc for cluster Ci.
The value of lc reduces from iteration to iteration. The
overall process is illustrated in Figure 4.
(3) Merge: During a given iteration, the Merge phase
reduces the number of clusters from kc to knew =
(1 � �) � kc. In order to do so, closest pairs of current
clusters need to be merged successively. This is easy to
do in full dimensional algorithms, since the goodness of
the merge can be easily quanti�ed in full dimensionality.

This case is somewhat more complex. Since each
current cluster Ci exists in its own (possibly di�erent)
subspace Ei, how do we decide the suitability of merging
\closest" pairs? Since, the aim of the algorithm is to
discover clusters with small projected energy, we design
a measure for testing the suitability of merging two
clusters by examining the projected energy of the union
of the two clusters in the corresponding least spread
subspace. The quantitative measure for the suitability
of merging each pair of seeds [i; j] is calculated using a
two step process.

In the �rst step, use singular value decomposition
on the points in Ci [Cj and �nd the eigenvectors
corresponding to the smallest lnew eigenvalues. (lnew is
the projected dimensionality in that iteration.) These
eigenvectors de�ne the least spread subspace for the
points in the union of the two segmentations. Let us
denote this subspace by E 0ij. In the second step, we
�nd the centroid s0ij of Ci [Cj and use the energy
rij = R(C; E 0ij) of this cluster in the subspace E 0ij as
the indicator of how well the points for the two clusters
combine into a single cluster. Note that the points for
the two clusters are likely to combine well using this
method, if the least spread directions for the individual
clusters were similar to begin with. In this case, E 0ij, Ei,
and Ej are all likely to be similarly oriented subspaces
with small (projected) energies. The overall idea here
is to measure how well the two current clusters can be
�t into a single pattern of behavior. For example, in
the Figure 1(c), two current clusters Ci and Cj which
consist of points from the same data pattern (say R)
are likely to result in similar planes of 2-dimensional
projection (normal plane to the direction of the arrows
for R). Consequently, the points in Ci [Cj are likely to
be projected to a similar plane. The value of the energy
rij when measured in this plane is likely to be small.

The above two-step process is repeated for each pair
of seeds, and the pair of seeds [i0; j0] is found for which
ri0j0 is the least. If the seeds are merged, then the
centroid s0i0j0 of the combined cluster is added to the
set of seeds, whereas seeds si0 and sj0 are removed.
The current cluster associated with this new seed si0j0

is Ci0 [Cj0 , and the current subspace is E 0ij. This
agglomeration procedure is repeated multiple times, so
that the number of clusters is reduced by a factor of �.
The overall merging procedure is described in Figure 5.

The algorithm terminates when the merging process
over all the iterations has reduced the number of
clusters to k. At this point, the dimensionality lc
of the subspace Ei associated with each cluster Ci is
also equal to l. The algorithm performs one �nal
pass over the database in which it uses the Assign
procedure in order to partition the database. If desired,
the FindVectors() procedure may be used in order to
determine the optimum subspace associated with each

cluster at termination.
One of the aspects of this merging technique is that it

needs to work explicitly with the set of current clusters
C1 : : :Ckc . Since the database size may be very large,
it would be extremely cumbersome to maintain the sets
C1 : : :Ckc explicitly. Furthermore, the covariance matrix
calculation is also likely to be very I/O intensive, since
each set of covariance matrix calculations is likely to
require a pass over the database. Since the covariance
matrix may be calculated O(k20) times by the Merge
operation (see analysis later), this translates to O(k20)
passes over the database. The value of k0 is likely to be
several times the number of clusters k to be determined.
This level of I/O is unacceptable. We introduce the
concept of extended cluster feature vectors, so that all
of the above operations can be performed by always
maintaining certain summary information about the
clusters. This provides considerable ease in calculation
of the covariance matrices. Details of this technique will
be provided in a later section.

2.1 Picking the Projected Dimensionality

An important input parameter to the algorithm is the
projected dimensionality l. To give some guidance to
the user in picking this parameter, we design a measure
which is motivated by the reason we have de�ned the
concept of generalized projected clustering in the �rst
place. It has been proved in [3], that with increasing
dimensionality the distance between every pair of points
is almost the same under certain conditions on the data
distributions. This means that if a cluster of points C is
compared to the universal set of points U in very high

dimensional space D, then we have R(C;D)
R(U ;D)

� 1.

This is a very undesirable situation because it indi-
cates that the average spread (energy) for a cluster is
almost the same as the average spread for the points in
the entire database in full dimensional space. This is
also the reason for the instability of randomized clus-
tering algorithms in high dimensional space: di�erent
runs lead to di�erent clusters, all of which are almost
equally good according to this or other measures.
However, in subspaces of D, this ratio may be much

smaller than 1. In general a ratio which is signi�cantly
smaller than 1 is desirable, because it indicates a tightly
knit cluster in the corresponding projected subspace.
We de�ne the following quality measure called cluster
sparsity coe�cient: S(C1 : : :Ck; E1 : : :Ek) = (1=k) �
Pk

i=1
R(Ci;Ei)
R(U ;Ei)

. The lower the value of l, the smaller

the fraction is likely to be, because Ei may be picked
in a more optimum way in lower dimensionality so
as to reduce the energy R(Ci; Ei) for the particular
distribution of points in Ci, whereas the aggregate
set of points in U may continue to have high energy
R(U ; Ei). At termination, the algorithm may return
the cluster sparsity coe�cient. If this value is almost 1,

then it is clear that a smaller value of the projected
dimensionality needs to be picked. In fact the user
may de�ne a minimum threshold for this (intuitively
interpretable) quality measure and pick the largest
value of l at which the cluster sparsity coe�cient
returned at termination is less than the threshold.

2.2 Outlier Handling

In order to take into account the fact that some of
the points are outliers, we may need to make some
modi�cations to the algorithm. Let �i be the projected
distance of the nearest other seed to the seed si in
subspace Ei for each i 2 f1; : : :kcg. Consider an
arbitrary point P in the database during the assignment
phase. Let sr be the seed to which the database point
P is assigned during the assignment phase. The point
P is an outlier, if its projected distance to seed sr in
subspace Er is larger than �r .
In addition, some of the seeds which were initially

chosen may also be outliers. These need to be removed
during the execution of the algorithm. A simple
modi�cation which turns out to be quite e�ective is the
discarding of a certain percentage of the seeds in each
iteration, for which the corresponding clusters contain
very few points. When the outlier handling option is
implemented, the value of the seed reduction factor �
is de�ned by the percentage reduction in each iteration
due to either merges or discards.

2.3 Scalability for Very Large Databases

As discussed above, the times for calculating covari-
ance matrices can potentially be disastrously large (es-
pecially in terms of I/O times), if the covariance matrix
is calculated from scratch for each FindV ectors(�) op-
eration. Therefore, we use a concept similar to the use
of the Cluster Feature vector (CF-vector) [18] in order
to �nd the covariance matrix e�ciently. We shall refer
to this as the extended CF-vector (or ECF-vector).
The ECF-vector is speci�c to a given cluster C, and

contains d2 + d + 1 entries. These entries are of three
kinds:
(1) There are d2 entries corresponding to each pair of
dimensions (i; j). For each pair of dimensions (i; j), we
sum the products of the ith and jth components for
each point in the cluster. In other words, of xki denotes
the ith component of the kth point in the cluster, then
for a cluster C and pair of dimensions (i; j), we maintain
the entry

P
k2C x

k
i �x

k
j . Thus there are d

2 entries of this
type. For a cluster C, we will refer to this entry as
ECF1Cij for each pair of dimensions i and j. We will

refer to the entire set of such entries as ECF1C.
(2) There are d entries corresponding to each dimension
i. We sum the ith components for each point in the
cluster. Thus, we maintain the entry

P
k2C x

k
i . For a

cluster C, we shall refer to this entry as ECF2Ci . The

corresponding set of entries is referred to as ECF2C.
(3) The number of points in the cluster C is denoted by
ECF3C.
Note that the �rst set of d2 entries are not included

in the standard de�nition of CF-vector as introduced
in [18]. The entire cluster feature vector is denoted by

ECF C = (ECF1C; ECF2C; ECF3C). Two important
features of the ECF-vector are as follows:

Observation 2.1 The covariance matrix can be de-
rived directly from the ECF-vector. Speci�cally, the
covariance between the dimensions i and j for a set
of points C is equal to ECF1Cij=ECF3

C � ECF2Ci �

ECF2Cj =(ECF3
C)2.

Proof: The average of the product of the ith and
jth attribute is given by ECF1Cij=ECF3

C, whereas the

average of the ith attribute is given byECF2Ci =ECF3
C.

Since the covariance between the ith and jth attributes
is given by the subtraction of the product of averages
from the average product, the result follows.
It has been established by Zhang et. al. [18] that
the CF-vector may be used in order to calculate the
centroid, and radius of a cluster. Since the ECF-vector
is a superset of the CF-vector, these measures may also
be calculated from the ECF-vector. Our use of the
extended CF-vector provides the ability to calculate the
covariance matrix as well. The usefulness of the above
result is that the covariance matrix can be calculated
very e�ciently from the ECF-vector. The use of the
summary characteristics of a cluster is so useful because
of the fact that it satis�es the additive property.

Observation 2.2 The ECF-vector satis�es the addi-
tive property. The ECF-vector for the union of two sets
of points is equal to the sum of the corresponding ECF-
vectors.

The proof of the above trivially follows from the fact
that the ECF-vector for a set of points can be expressed
as the sum of the ECF-vectors of the individual points.
The additive property ensures that while constructing
a ECF-vector for the union of two clusters, it is not
necessary to recalculate everything from scratch, but
that it is su�cient to add the ECF-vectors of the two
clusters.
The ECF-vectors are used in order to modify OR-

CLUS in the following way. During the entire operation
of the algorithm, the current clusters C1 : : :Ckc associ-
ated with each seed are not maintained explicitly. In-
stead, the extended CF-vectors for the seeds are main-
tained. The ECF-vector for a cluster is su�cient to
calculate the radius, centroid [18], and covariance ma-
trix for each cluster. In each iteration, the seeds are
de�ned by the centroids of the current clusters for the
last iteration. In addition, the additive property of the
ECF-vectors ensures that during aMerge operation, the

ECF-vector for the merged cluster may be calculated
easily. The ECF-vectors need to be recalculated in each
iteration only during the Assign(�) phase; a simple ad-
ditive process which does not a�ect the overall time-
complexity of the algorithm.

2.4 Running Time Requirements

The running time of the algorithm depends upon the
initial number of seeds k0 chosen by the algorithm. The
skeletal structure for the algorithm contains the two
basic process of merging and assignment of points to
seeds. (The addition of the outlier handling option only
reduces the running time of the algorithm since merges
are replaced by simple discards. Therefore the analysis
presented below is an overestimate on the running time
of the algorithm.) The running time for the various
procedures of the algorithm are as below:

(1) Merge: The time for merging is asymptotically
controlled by the time required in the �rst iteration of
reducing the value of the number of current clusters
from k0 to � � k0. To start o�, the eigenvectors for each
of the k20 pairs of current clusters are calculated. This
requires a running time of O(d3) for each pair. Further-
more, for each of the subsequent (at most) (1��)�k0�k
merges, the eigenvectors for O(k0) pairs of clusters need
to be re-calculated. Since, each eigenvector calcula-
tion is O(d3), it follows that the total time for eigen-
vector calculations during the merge operation of the
algorithm is given by O(k20 � d

3). Furthermore, for each
merge operation, O(k20) time is required in order to pick
the cluster with the least energy. Therefore, the total
running time for all merges is given by O(k20(k0 + d3)).
(2) Assign: The running time for assignment of the N
points in d-dimensional space to the k0 clusters in the
�rst iteration is given by O(k0 � N � d). In the second
iteration, the time is given by O((k0 ��) �N � d), and so
on. Therefore the overall running time for the assign-
ment process is given by O(k0 �N � d=(1� �)).
(3) Subspace Determination: The time for eigen-
vector calculations (or subspace determinations) dur-
ing the Merge phase has already been included in the
analysis above. It now only remains to calculate the
time for subspace determinations during each iterative
phase (the FindV ectors procedure after the Assign)
of the algorithm. During the �rst iteration of the al-
gorithm, there are k0 subspace determinations, during
the second iteration, there are k0�� subspace determina-
tions and so on. Therefore, during the entire algorithm,
there are at most k0=(1� �) subspace determinations.
This running time is strictly dominated by the subspace
determinations during the Merge phase, and can hence
be ignored asymptotically.

Upon summing up the various components of the
running time, the total time required is given by O(k30+
k0 � N � d + k20 � d

3). Note that this running time is

dependent upon the choice of the initial parameter k0.
A choice of a larger value of k0 is likely to increase the
running time, but also improve the quality of clustering.

2.5 Space Requirements

The use of the ECF vector cuts down the space
requirements of the algorithm considerably, since the
current clusters associated with each seed need not be
maintained. During each iteration of the algorithm, at
most kc extended CF-vectors need to be maintained.
The space requirement for this is given by kc�(d

2+d+1).
Since kc � k0, the overall space requirement of the
algorithm is O(k0 �d2). This is independent of database
size, and may very easily �t in main memory for
reasonable values of k0 and d.

2.6 Progressive Sampling Techniques

It is possible to speed up the assignment phase of the
algorithm substantially by using a progressive type of
random sampling. Note that the component in the
running time which is dependent on N is caused by the
Assign(�) procedure of the algorithm. This component
of the running time can be the bottleneck when the
database is very large. Another observation is that
the CPU time for performing the Assign(�) procedure
reduces by the factor � in each iteration, as the number
of seeds reduces by the same factor. The purpose of
the Assign(�) procedure is to keep correcting the seeds
in each iteration so that each seed is a more central
point of the current cluster that is associated with it.
It is possible to achieve the same results by using a
progressive kind of random sampling. Thus, only a
randomly sampled subset of the points are assigned to
the seeds in each iteration. This random sample can
be di�erent over multiple iterations and can change in
size. (If the size of the random sample increases by
a factor of � in each iteration, then the time for the
assignment phase is the same in each iteration.) Thus,
one possibility is to start o� with a random sample
of size N � k=k0 and increase by a factor of � in each
iteration, so that in the �nal iteration all the database
points are used. Thus, the time for the assignment
phase in each iteration would be N � k � d, and over
all iterations would be N � k � d � log�(k0=k). This
kind of progressive sampling can provide considerable
savings in CPU time in the �rst few iterations, if k0 is
substantially larger than k. Furthermore, it is unlikely
to lose much in terms of accuracy because when the
seeds become more re�ned in the last few iterations,
then larger sample sizes are used.

3 Empirical Results

The simulations were performed on a 233-MHz IBM
RS/6000 computer with 128 M of memory, 2GB SCSI
drive, and running AIX 4.1.4. We tested the following

accuracy and performance measures:
1. Accuracy of the clustering with respect to matching
of points in Input and Output Clusters.
2. Scaling of running times with database size.
3. Scaling of the I/O performance with initial number
of seeds.

In order to test the accuracy results, we determined
the Confusion Matrix which indicated how well the
output clusters matched with the input points. The
entry (i; j) of the confusion matrix indicates the number
of points belonging to the output cluster i, which were
generated as a part of the input cluster j. If the
clustering algorithm performs well, then each row and
column is likely to have one entry which is signi�cantly
larger than the others. On the other hand, in the
case when the clustering technique is so bad as to be
completely random, then the points are likely to be
evenly distributed among the di�erent clusters.

3.1 Synthetic Data Generation

The �rst stage of synthetic data generation was to �nd
the arbitrarily oriented subspaces associated with each
cluster. In order to generate the subspace associated
with each cluster, we generated random matrices, such
that the (i; j)th entry of the matrix was a random
real number in the range (�1; 1). In addition, the
matrix was made to be symmetric so that the (i; j)th
entry was equal to the (j; i)th entry. Since, this
is a symmetric matrix, the eigenvalues are all real,
and an orthonormal eigenvector system exists. This
orthonormal axis system will be used to generate the
input orientation for the corresponding cluster. We
used a di�erent matrix for each of the clusters in order
to generate the corresponding orientation.

The number of points in each cluster was determined
by using the followingmethod to determine the number
of points in each cluster: We �rst determined the
constant of proportionality ri which found how many
points were present in each cluster i. The constant
of proportionality ri was determined by the formula
ri = p + R � q. Here p and q are constants, and R
is a random number which is drawn from a uniform
distribution in the range (0; 1). (Thus, the resulting
number will be drawn from the uniform distribution in
the range (p; p+q).) For the purpose of our experiments,
we used p = 1 and q = 5. Thus, if r1; r2; : : :rk be the
proportionality constants for the entire space, then the
number of points Ni in the cluster i was determined by
using the formula Ni = N � ri=

Pk
i=1 ri.

The next step was to generate the anchor points (an
approximation of the central point) of each cluster. The
anchor points were chosen from a uniform distribution
of points in the space. Once the anchor points were
determined, they were used to generate the clusters
of points. We have already discussed how the axes

orientations for each cluster are determined by using
the eigenvectors of the randomly generated symmetric
matrices. Now it remains to distribute the points in
each cluster corresponding to this axis system. Since
this axis system corresponds to one in which the
correlations of the points are zero, we generate the
coordinates with respect to this transformed subspace
independently from one another. (The generated points
can then be transformed back to their original space.)
For each cluster, we picked the l eigenvectors which
de�ned the subspace in which it was hidden. The points
were distributed in a uniform random distribution along
the other d� l axes directions.
It now remains to explain how the point distribution

for the hidden axes directions was accomplished. The
�rst step was to determine the spread along each of the
l eigenvectors. This was determined by a pair of spread
parameters �s and
. The spread along the eigenvector
i was determined to be proportional to (Qi)
 , where
Qi was drawn from an exponential distribution with
mean �s, and
 was a parameter which determined the
level of disproportionality that we wished to create in
the various axes directions. This is because when the
value of
 is increased, the amount of disproportionality
in the values of (Qi)

 increased for di�erent values of
i. Thus, the ith coordinate for the point with respect
to the transformed subspace was drawn from a normal
distribution with its mean at the anchor point and its
variance equal to (Qi)
 . For our experiments, we used
d = 20, �s = 0:1,
 = 2, p = 1, q = 5, k = 5 and l = 6.
The resulting clusters were very sparse in full dimen-

sional space. The cluster sparsity coe�cient when mea-
sured in full dimensional space for the input clusters
for this choice of parameters was 0:85. Furthermore,
we checked the sparsity coe�cient of each individual
input cluster for each 1-dimensional 2 axis parallel pro-
jection, and found that in each case, the cluster sparsity
coe�cient was at least as high as 0:7, and averaged at
0:83. The high sparsity coe�cients indicate that the
generated data is one on which either full-dimensional
or axis-parallel projected clustering would be meaning-
less.

3.2 Failure of axis-parallel projections

We tested an axis-parallel version3 of this algorithm

2Cluster sparsity coe�cients for higher dimensional projec-
tions would always be at least as large as the minimum sparsity
coe�cient of some 1-dimensional subset, and will be at most as
large as the maximum sparsity coe�cient of any 1-dimensional
subset. This can be proved from the additive property of the en-
ergy metric over di�erent dimensions. A formal proof is omitted.

3We have another axis-parallel projected clustering algorithm
called PROCLUS [1] which also could not match input to output
clusters well. In addition, PROCLUS would classify an unusually
large number of input points as outliers. We found that the axis-
parallel version of ORCLUS was slightly more stable and accurate
than PROCLUS.

Input Clusters A B C D E
Output Clusters

1 639 178 0 0 131
2 0 931 549 465 29
3 121 35 851 265 90
4 50 225 135 2889 408
5 135 133 201 128 1412

Table 1: Axis Parallel projections: Confusion Matrix
-[User-speci�ed l = 14]

Input Clusters A B C D E
Output Clusters

1 367 202 261 208 263
2 70 835 631 1331 241
3 169 101 604 103 73
4 108 180 99 2001 128
5 231 184 141 104 1365

Table 2: Axis Parallel projections: Confusion Matrix
-[User-speci�ed l = 6]

on the data set. This was done by ensuring that the
FindV ectors(�) procedure returned the least spread
axis parallel directions. We will state the salient ob-
servations very brie
y:
� The axis parallel projected version found very poor
matching between the input and output clusters. The
method was not signi�cantly better than a random clus-
tering technique for some of the runs. We have illus-
trated two runs on the same data set of 10,000 points,
with varying values of the projected dimensionality and
illustrated the results in Tables 1 and 2. The Confusion
Matrix in Table 1 (l = 14) is slightly better than the
confusion matrix in Table 2 (l = 6), though neither of
them can be considered very clean partitionings, since
each input cluster is split into several output clusters
and vice-versa. This was part of an interesting trend
that we observed: reducing the user-speci�ed value of
projected dimensionality l always worsened the quality
of clustering by the axis-parallel version. When the clus-
ters exist in arbitrary subspaces, then forcing particular
kinds of projections on the clusters leads to loss of in-
formation; the greater the projection, the greater the
loss.
� The axis-parallel version was unstable. Slight

changes in initialization conditions (such as changing
the random seed) signi�cantly changed the the matrices
obtained in Tables 1 and 2.
The above results are quite expected; our observa-

tions on the sparsity coe�cients indicate the unsuit-
ability of the class of axis-parallel projection methods.

3.3 Results for ORCLUS

Input Clusters A B C D E
Output Clusters

1 898 0 0 0 2
2 0 1401 0 124 0
3 23 0 1703 0 0
4 0 40 0 3623 59
5 24 61 33 0 2009

Table 3: ORCLUS: Confusion Matrix (Case 1) [User-
speci�ed l = 6]

Input Clust. A B C D E
Output Clust.

1 9201 103 12 0 0
2 122 16144 7 24 0
3 0 0 29821 0 22
4 3 0 0 20451 24
5 15 101 0 0 23950

Table 4: ORCLUS: Confusion Matrix (Case 2) [User-
speci�ed l = 6]

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

NUMBER OF RECORDS

T
IM

E

SCALING WITH DATABASE SIZE

Figure 6: Scaling of running time with database size

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

INITIAL NUMBER OF SEEDS

R
E

LA
T

IV
E

 R
U

N
N

IN
G

 T
IM

E

RELATIVE RUNNING TIME VARIATION WITH NUMBER OF SEEDS

Figure 7: Scaling of running time with k0

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

INITIAL NUMBER OF SEEDS

N
U

M
B

E
R

 O
F

 I/
O

 P
A

S
S

E
S

I/O PERFORMANCE

Figure 8: Scaling of I/O passes with k0

For the purpose of our tests, we always used k0 =
15�k, unless mentioned otherwise. We generated several
input data sets and computed the Confusion Matrix for
each of the cases. We will present some of the confusion
matrices which are very representative of the general
trend that we observed. First we ran the algorithm for
di�erent values of the projected dimensionality l and
tested the corresponding cluster sparsity coe�cient. In
each case, we found that the output cluster sparsity
coe�cient dropped signi�cantly from l = 7 to l = 6
(Case 1- 0.081 to 0.003; Case 2- 0.09 to 0.0024), whereas
the drop from l = 6 to l = 5 was relatively small
(Case 1- 0.003 to 0.0025; Case 2- 0.0024 to 0.0022).
In fact, the percentage drop in sparsity coe�cient was
always the highest from l = 7 to l = 6 which was
the dimensionality of the subspace in which the input
clusters were hidden. We used this criterion to pick the
projected dimensionality l = 6 in both the cases that we
illustrate below. The �rst data set (Case 1) contained
10,000 points, and the results are indicated in Table 3.
This is the same data set which was used in Tables 1
and 2. As we can see from the table one of the entries
in each column is clearly much larger than the rest of
the entries. This indicates that each input cluster gets
directed into one output cluster with the exception of
some points, which get distributed to other clusters.
Table 4 (Case 2) illustrates another example containing
100,000 points. The trends are very similar to Table
3. These results are generally indicative of a very clean
mapping from the input to output clusters. We also
tested the sensitivity of this clustering to variations in
the value of the input parameter l. We found in each
case that a good confusion matrix was obtained in the
range of l = 2 to l = 8, and was only slightly worse than
the confusion matrix for the optimized value l = 6. This
is also an indication of the stability of this technique.

We also present the computational scalability results

for the algorithm here. The results were averaged over
�ve runs in each case in order to smooth the curve.
The scaling of running time with the number of points
N in the database is illustrated in Figure 6. As we
see, the algorithm performance is practically linear with
database size. Note that the curve is interesting only
for the case when N is substantially larger than k0, the
initial number of seeds.
Figure 7 illustrates the CPU performance when the

initial number of seeds k0 was increased. We know that
the quality of the clusters is likely to be better when
starting with a larger number of seeds, because each
cluster is then likely to be covered by at least one seed.
Correspondingly, the running time of the algorithm also
increases, because of the contribution of the subspace
determination operations during the Merge phase. The
I/O requirements varied less dramatically with the
initial number of seeds. This is because the total
number of iterations is log�(k=k0), in each of which at
most one I/O pass is performed. Figure 8 illustrates
the corresponding trend. This curve remains the same
irrespective of database size, dimensionality, or the �nal
number of projected dimensions. These results indicate
that when a larger number of initial seeds are picked in
the interest of greater accuracy, the method is unlikely
to be I/O bound.

4 Conclusions and Summary

In this paper we discussed the concept of �nding arbi-
trarily oriented projected clusters in high dimensional
spaces, a de�nition of clustering which is a practical and
e�ective solution to the dimensionality curse for the tra-
ditional version of this problem. The idea of eliminating
the most sparse subspaces for each cluster, and project-
ing the points into those subspaces in which the greatest
similarity occurs is a very generalized notion of cluster-
ing of which the full dimensional case is a special one.
Since the sparsity of high dimensional data prevents the
detection of natural clusters for full-dimensional prob-
lems, this modi�ed de�nition of clustering is best likely
to rede�ne our understanding of the notion of high di-
mensional clustering. In future research, we will show
how to use this technique for e�ective high dimensional
data visualization.

References

[1] C. C. Aggarwal et. al. Fast algorithms for projected
clustering. ACM SIGMOD Conference, 1999.

[2] R. Agrawal et. al. Automatic Subspace Clustering
of High Dimensional Data for Data Mining Appli-
cations. ACM SIGMOD Conference, 1998.

[3] K. Beyer et. al. When is nearest neighbor meaning-
ful? ICDT Conference, 1999.

[4] C. Cheng, A. W. Fu, Y. Zhang. Entropy-based
Subspace Clustering for Mining Numerical Data.
ACM SIGKDD Conference, 1999.

[5] M. Ester et. al. A Density Based Algorithm for
Discovering Clusters in Large Spatial Databases
with Noise. KDD Conference, 1996.

[6] C. Faloutsos, K.-I. Lin. FastMap: A Fast Algorithm
for Indexing, Data-Mining and Visualization of Tra-
ditional and Multimedia Datasets. ACM SIGMOD
Conference, 1995.

[7] A. Gionis, P. Indyk, R. Motwani. Similarity Search
in High Dimensions via Hashing. VLDB Conference,
1999.

[8] S. Guha, R. Rastogi, K. Shim. CURE: An E�cient
Clustering Algorithm for Large Databases. ACM
SIGMOD Conference, 1998.

[9] A. Hinneburg, D. Keim. Optimal Grid-Clustering:
Towards Breaking the Curse of Dimensionality in
High-Dimensional Clustering. VLDB Conference,
1999.

[10] P. Indyk, R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of Dimen-
sionality. STOC, 1998.

[11] A. Jain, R. Dubes. Algorithms for Clustering Data.
Prentice Hall, New Jersey, 1998.

[12] I. T. Jolli�e. Principal Component Analysis.
Springer-Verlag, New York, 1986.

[13] J. Kleinberg. Two algorithms for nearest-neighbor
search in high dimensional space. STOC, 1997.

[14] R. Kohavi, D. Sommer�eld. Feature Subset
Selection Using the Wrapper Method: Over�tting
and Dynamic Search Space Topology. KDD, 1995.

[15] R. Ng, J. Han. E�cient and E�ective Clustering
Methods for Spatial Data Mining. VLDB Confer-
ence, 1994.

[16] K. Ravi Kanth, D. Agrawal, A. Singh. Dimension-
ality Reduction for Similarity Searching in Dynamic
Databases. ACM SIGMOD Conference, 1998.

[17] X. Xu et. al. A Distribution-Based Clustering
Algorithm for Mining in Large Spatial Databases.
ICDE Conference, 1998.

[18] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH:
An E�cient Data Clustering Method for Very Large
Databases. ACM SIGMOD Conference, 1996.

