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Abstract. The rapid proliferation of the World Wide Web has increased the impor-
tance and prevalence of text as a medium for dissemination of information. A variety of
text mining and management algorithms have been developed in recent years such as
clustering, classification, indexing and similarity search. Almost all these applications
use the well known wvector-space model for text representation and analysis. While the
vector-space model has proven itself to be an effective and efficient representation for
mining purposes, it does not preserve information about the ordering of the words in
the representation. In this paper, we will introduce the concept of distance graph rep-
resentations of text data. Such representations preserve information about the relative
ordering and distance between the words in the graphs, and provide a much richer rep-
resentation in terms of sentence structure of the underlying data. Recent advances in
graph mining and hardware capabilities of modern computers enable us to process more
complex representations of text. We will see that such an approach has clear advan-
tages from a qualitative perspective. This approach enables knowledge discovery from
text which is not possible with the use of a pure vector-space representation, because it
loses much less information about the ordering of the underlying words. Furthermore,
this representation does not require the development of new mining and management
techniques. This is because the technique can also be converted into a structural version
of the vector-space representation, which allows the use of all existing tools for text.
In addition, existing techniques for graph and XML data can be directly leveraged
with this new representation. Thus, a much wider spectrum of algorithms is available
for processing this representation. We will apply this technique to a variety of mining
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and management applications, and show its advantages and richness in exploring the
structure of the underlying text documents.

1. Introduction

Text management and mining algorithms have seen increasing interest in recent
years, because of a variety of Internet applications such as the World Wide
Web, social networks, and the blogosphere. In its most general form, text data
can be represented as strings, though simplified representations are used for
effective processing. The most common representation for text is the vector-space
representation [21]. The vector-space representation treats each document as an
unordered “bag-of-words”. While the vector-space representation is very efficient
because of its simplicity, it loses information about the structural ordering of
the words in the document, when used purely in the form of individual word
representations.

For many applications, the “unordered bag of words” representation is not
sufficient for the purpose of analytical insights. This is especially the case for
fine grained applications in which the structure of the document plays a key role
in the underlying semantics. One advantage of the vector-space representation
is that its simplicity lends itself to straightforward processing. The efficiency of
the vector-space representation has been a key reason that it has remained the
technique of choice for a variety of text processing applications. On the other
hand, the vector-space representation is very lossy because it contains absolutely
no information about the ordering of the words in the document. One of the
goals of this paper is to design a representation which retains at least some of
the ordering information among the words in the document without losing its
flexibility and efficiency for data processing.

While the processing-efficiency constraint has remained a strait-jacket on the
development of richer representations of text, this constraint has become easier to
overcome in recent years because of a variety of hardware and software advances:

— The computational power and memory of desktop machines have increased
by more than an order of magnitude over the last decade. Therefore, it has
become increasingly feasible to work with more complex representations.

— The database community has seen tremendous algorithmic and software ad-
vances in management and mining of a variety of structural representations
such as graphs and XML data [8]. In the last decade, a massive infrastructure
has been built around mining and management applications for structural and
graph data such as indexing [27, 28, 31, 33, 34], clustering [4] and classification
[32]. This infrastructure can be leveraged with the use of structural represen-
tations of text.

In this paper, we will design graphical models for representing and processing
text data. In particular, we will define the concept of distance graphs, which
represents the document in terms of the distances between the distinct words.
We will then explore a few mining and management applications with the use of
the structural representation. We will show that such a representation allows for
more effective processing, and results in high quality representations. This can
retain rich information about the behavior of the underlying data. This richer
level of structural information can provide two advantages. First, it enables ap-
plications which are not possible with the more lossy vector-space representation.
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Second, the richer representation provides higher quality results with existing ap-
plications. In fact, we will see that the only additional work required is a change
in the underlying representation, and all ezisting text applications can be directly
used with a vector-space representation of the structured data. We will present
experimental results on a number of real data sets illustrating the effectiveness
of the approach.

This paper is organized as follows. In the next section, we will explore the
concept of distance graphs, and some of the properties of the resulting graphs. In
Section 3, we will show how to leverage distance graphs for a variety of mining
and management applications. Section 4 discusses the experimental results. The
conclusions and summary are presented in Section 5.

2. Distance Graphs

In this section, we will introduce the concept of distance graphs, a graphical
paradigm which turns out to be an effective text representation for processing.
While the vector-space representation maintains no information about the or-
dering of the words, the string representation is at the other end of spectrum in
maintaining all ordering information. Distance graphs are a natural intermediate
representation which preserve a high level of information about the ordering and
distance between the words in the document. At the same time, the structural
representation of distance graphs makes it an effective representation for text
processing. Distance graphs can be defined to be of a variety of orders depend-
ing upon the level of distance information which is retained. Specifically, distance
graphs of order k retain information about word pairs which are at a distance of
at most k in the underlying document. We define a distance graph as follows:

Definition 2.1. A distance graph of order k for a document D drawn from a
corpus C is defined as graph G(C, D, k) = (N(C), A(D, k)), where N(C) is the set
of nodes defined specific to the corpus C, and A(D, k) is the set of edges in the
document. The sets N(C) and A(D, k) are defined as follows:

—The set N(C) contains one node for each distinct word in the entire document
corpus C. Therefore, we will use the term “node ¢” and “word " interchange-
ably to represent the index of the corresponding word in the corpus. Note that
the corpus C may contain a large number of documents, and the index of the
corresponding word (node) remains unchanged over the representation of the
different documents in C. Therefore, the set of nodes is denoted by N(C), and
is a function of the corpus C.

—The set A(D, k) contains a directed edge from node 4 to node j if the word 4
precedes word j by at most k positions. For example, for successive words,
the value of k is 1. The frequency of the edge is the number of times that word
i precedes word j by at most k positions in the document.

We note that the set A(D, k) always contains an edge from each node to itself.
The frequency of the edge is the number of times that the word precedes itself
in the document at a distance of at most k. Since any word precedes itself at
distance 0 by definition, the frequency of the edge is at least equal to the
frequency of the corresponding word in the document.

Most text collections contain many frequently occurring words such as prepo-
sitions, articles and conjunctions. These are known as stop-words. Such words
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Fig. 1. Illustration of Distance Graph Representation

are typically not included in vector-space representations of text. Similarly, for
the case of the distance-graph representation, it is assumed that these words are
removed from the text before the distance graph construction. In other words,
stop-words are not counted while computing the distances for the graph, and
are also not included in the node set N(C). This greatly reduces the number of
edges in the distance graph representation. This also translates to better effi-
ciency during processing.

We note that the order-0 representation contains only self-loops with corre-
sponding word frequencies. Therefore, this representation is quite similar to the
vector-space representation. Representations of different orders represent insights
about words at different distances in the document. An example of the distance
graph representation for a well-known nursery rhyme “Mary had a little lamb”
is illustrated in Figure 1. In this figure, we have illustrated the distance graphs
of orders 0, 1 and 2 for the text fragment. The distance graph is constructed
only with respect to the remaining words in the document, after the stop-words
have already been pruned. The distances are then computed with respect to the
pruned representation. Note that the distance graphs of order 0 contain only
self-loops. The frequencies of these self-loops in the order-0 representation corre-
sponds to the frequency of the word, since this is also the number of times that
a word occurs within a distance of 0 of itself. The number of edges in the repre-
sentation will increase for distance graphs of successively higher orders. Another
observation is that the frequency of the self-loops in distance graphs of order 2
increases over the order-0 and order-1 representations. This is because of repeti-
tive words like “little” and “lamb” which occur within alternate positions of one
another. Such repetitions do not change the frequencies of order-0 and order-1
distance graphs, but do affect the order-2 distance graphs. We note that distance
graphs of higher orders may sometimes be richer, though this is not necessarily
true for orders higher than 5 or 10. For example, a distance graph with order
greater than the number of distinct words in the document would be a complete
clique. Clearly, this does not necessarily encode useful information. On the other
hand, distance graphs of order-0 do not encode a lot of useful information either.
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In the experimental section, we will examine the relative behavior of the distance
graphs of different orders, and show that distance graphs of low orders turn out
to be the most effective.

From a database perspective, such distance graphs can also be represented in
XML with attribute labels on the nodes corresponding to word-identifiers, and
labels on the edges corresponding to the frequencies of the corresponding edges.
Such a representation has the advantage that numerous data management and
mining techniques for semi-structured data have already been developed. These
can directly be used for such applications. Distance graphs provide a much richer
representation for storage and retrieval purposes, because they partially store
the structural behavior of the underlying text data. In the next section, we
will discuss some common text applications such as clustering, classification and
frequent pattern mining, and show that these problems can easily be solved with
the use of the distance graph representation.

An important characteristic of distance graphs is that they are relatively
sparse, and contain a small number of edges for low values of the order k. As we
will see in the experimental section, it suffices to use low values of k for effec-
tive processing in most mining applications. We make the following observations
about the distance graph representation:

Observation 2.1. Let f(D) denote the number of words? in document D (count-
ing repetitions), of which n(D) are distinct. Distance graphs of order k contain
at least n(D) - (k+1) — k- (k—1)/2 edges, and at most f(D) - (k+ 1) edges.

The above observation is simple to verify, since each node (except possibly
for nodes corresponding to the last k words) contains a self-loop along with at
least k edges. In the event that the word occurs multiple times in the document,
the number of edges out of a node may be larger than k. Therefore, if we do
not account for the special behavior of the last k& words in the document, the
number of edges in a distance graph of order k is at least n(D) - (k + 1). By
accounting for the behavior of the last k£ words, we can reduce the number of
edges by at most k - (k — 1)/2. Therefore, the total number of edges is given
by at least n(D) - (k+ 1) — k- (k — 1)/2. Furthermore, the sum of the outgoing
frequencies from the different nodes is exactly f(D)-(k+1)—k-(k—1)/2. Since
each edge has frequency at least 1, it follows that the number of edges in the
graph is at most f(D)-(k+1). In practice, the storage requirement is much lower
because of repetitions of word occurrences in the document. The modest size of
the distance graph is extremely important from the perspective of storage and
processing. In fact, the above observation suggests that for small values of k, the
total storage requirement is not much higher than that required for the vector-
space representation. This is a modest price to pay for the syntactic richness
captured by the distance graph representation. We first make an observation for
documents of a particular type; namely documents which contain only distinct
words.

Observation 2.2. Distance graphs of order 2 or less, which correspond to doc-
uments containing only distinct words, are planar.

The above observation is straightforward for graphs of order 0 (self-loops)
and order 1 (edges between successive words). Next, we verify this observation

2 We assume that stop-words have already been removed from the document D.
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for graphs of order 2. Note that if the document contains only distinct words,
then we can represent the nodes in a straight line, corresponding to the order of
the words in the document. The distinctness of words ensures that all edges are
to nodes one and two positions ahead, and there are no backward edges. The
edges emanating from odd numbered words can be positioned above the nodes,
and the edges emanating from even numbered words can be positioned below
the nodes. It is easy to see that no edges will cross in this arrangement.

In practice, documents are likely to contain non-distinct words. However,
the frequencies are usually quite small, once the stop-words have been removed.
This means that the graph tends to approximately satisfy the pre-conditions of
Observation 2.2. This suggests that lower order distance graph representations
of most documents are either planar or approximately planar. This property is
useful since we can process planar graphs much more efficiently for a variety of
applications. Even for cases in which the graphs are not perfectly planar, one can
use the corresponding planar algorithms in order to obtain extremely accurate
results.

We note that the distance graphs are somewhat related to the concept of using
n-grams for text mining [6, 7]. However, n-grams are typically mined a-priori
based on their relative frequency in the documents. Such n-grams represent only
a small fraction of the structural relationships in the document, and are typically
not representative of the overall structure in the document. A related area of
research is that of collocation processing [13, 17, 24]. In collocation processing,
the frequent sequential patterns of text are used to model word dependencies,
and these are leveraged for the purpose of online processing. As in the case of
n-grams, collocation processing is only concerned with aggregate patterns in a
collection, rather than the representation of a single text document with the
precise ordering of the words in it. This can lead to a number of differences
in the capabilities of these techniques. For example, in the case of a similarity
search application, methods such as collocation processing may often miss many
specific sequential patterns of words which occur in common between a pair of
documents, if they do not occur frequently throughout the collection. Stated
simply, the distance graph is a representation for text, which is independent of
the aggregate patterns in the other documents of the collection.

Next, we examine the structural properties of documents which are reflected
in the distance graphs. These structural properties can be leveraged to perform
effective mining and management of the underlying data. A key structural prop-
erty retained by distance graphs is that it can be used to detect identical portions
of text shared by the two documents. This can be useful as a sub-task for a va-
riety of applications (eg. detection of plagiarisms), and cannot be achieved with
the use of the vector-space model. Thus, the distance graph representation pro-
vides additional functionality which is not available with the vector-space model.
We summarize this property as follows:

Observation 2.3. Let D; and D5y be two documents from corpus C such that
the document D; is a subset of document Ds. Then, the distance graph G(C, D1, k)
is a subgraph of the distance graph G(C, D1, k).

While the reverse is not always true (because of repetition of words in a docu-
ment), it is often true because of the complexity of the text structure captured by
the distance graph representation. This property is extremely useful for retrieval
by precise text fragment, since subgraph based indexing methods are well known
in the graph and XML processing literature [27, 28, 29, 30, 31, 32, 33, 34]. Thus,
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subgraph based retrieval methods may be used to determine a close superset
of the required document set. This is a much more effective solution than that
allowed by the vector-space representation, since the latter only allows indexing
by word membership rather than precise-sentence fragments.

Observation 2.3 can be easily generalized to the case when the two documents
share text fragments without a direct subset relationship:

Observation 2.4. Let D; and D5 be two documents from corpus C such that
they share the contiguous text fragment denoted by F'. Then, the distance graphs
G(C,Dy,k) and G(C, D3, k) share the subgraph G(C, F\ k).

We further note that a fragment F' corresponding to a contiguous text fragment
will always be connected. Of course, not all connected subgraphs correspond to
contiguous text fragments, though this may often be the case for the smaller
subgraphs. The above observation suggests that by finding frequent connected
subgraphs in a collection, it may be possible to determine an effective mapping to
the frequent text fragments in the collection. A number of efficient algorithms for
finding such frequent subgraphs have been proposed in the database literature
[29, 30]. In fact, this approach can be leveraged directly to determine possible
plagiarisms (or commonly occurring text fragments) in very large document col-
lections. We note that this would not have been possible with the “bag of words”
approach of the vector-space representation, because of the loss in the underlying
word-ordering information.

It is also possible to use the technique to determine documents such that some
local part of this document discusses a particular topic. It is assumed that this
topic can be characterized by a set S of m closely connected keywords. In order
to determine such documents, we first synthetically construct a bi-directional
directed clique containing these m keywords (nodes). A bi-directional directed
clique is one in which edges exist in both directions for every pair of nodes.
In addition, it contains a single self-loop for every node. Then the aggregate
frequency of the edge-wise intersection of the clique with the graph G(C, D, k),
represents the number of times that the corresponding keywords occur within
distance® of at most k with one another in the document. This provides an idea
of the local behavior of the topics discussed in the collection.

Observation 2.5. Let Fj be a bi-directional clique containing m nodes and D
be a document from corpus C. Let E be the edge-wise intersection of the set
of edges from G(C, D, k) which are contained with those in F;. Let g be the sum
of the frequency of the edges in E. Then, ¢ represents the number of times that
the keywords in the nodes corresponding to F} occur within a distance of k of
one another in the document.

The above property could also be used to determine documents which contain
different topics discussed in different parts of it. Let S7 and Ss be the sets of key-
words corresponding to two different topics. Let F; and F5; be two bi-directional
cliques corresponding to sets S and Sy respectively. Let Fio be a bi-directional
clique containing the nodes in S; U Sy. Similarly, let Eq (D), E2(D) and E12(D)
be the intersections of the edges of G(C, D, k) with Fy, F» and Fi respectively.
Note that the set of edges in E12(D) is a superset of the edges in E;(D)UEs(D).
Intuitively, the topics corresponding to F; and Fy are discussed in different parts

3 The distance of a word to itself is zero.
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Fig. 2. Illustration of Distance Graph Representation (Undirected Graph of order 2)

of the document if the frequencies of the edges in E1(D) and E5(D) are large,
but the frequency of the edges in E12(D) — (E1(D) U E2(D)) is extremely low.
Thus, we can formalize the problem of determining whether a document contains
the topics corresponding to S7 and S5 discussed in different parts of it.

Formal Problem Statement: Determine all documents D such that the fre-
quency of the edges in E1(D) U Eo(D) is larger than s1. but the frequency of the
edges in E12(D) — (E1(D) U Ex(D)) is less than ss.

2.1. The Undirected Variation

Note that the distance graph is a directed graph, since it accounts for the ordering
of the words in it. In many applications, it may be useful to relax the ordering a
little bit in order to allow some flexibility in the distance graph representation.
Furthermore, undirected graphs allow for a larger variation of the number of
applications that can be used, since they are much simpler to deal with for
mining applications.

Definition 2.2. An undirected distance graph of order k for a document D
drawn from a corpus C is defined as graph G(C, D, k) = (N(C), A(D, k)), where
N(C) is the set of nodes, and A(D, k) is the set of edges in the document. The
sets N(C) and A(D, k) are defined as follows:

—The set N(C) contains one node for each distinct word in the entire document
corpus.

—The set A(D, k) contains an undirected edge between nodes i and j if the
word ¢ and word j occur within a distance of at most k positions. For example,
for successive words, the value of k is 1. The frequency of the edge is the number
of times that word ¢ and word j are separated by at most k positions in the
document.

The set A(D, k) contains an undirected edge from each node to itself. The
frequency of the edge is equal to the total number of times that the word occurs
with distance k of itself in any direction. Therefore, the frequency of the edge
is at least equal to the frequency of the corresponding word in the document.
In this first paper on distance graphs, we will not explore the undirected
variation too extensively, but briefly mention it as an effective possibility for
mining purposes. An illustration of the undirected distance graph for the example
discussed earlier in this paper is provided in Figure 2. In this case, we have
illustrated the distance graph of order two. It is clear that the undirected distance
graph can be derived from the directed graph by replacing the directed edges with
undirected edges of the same frequency. In case edges in both directions exist,
we can derive the frequencies of the corresponding undirected edge by adding



Towards Graphical Models for Text ProcessingThis paper is an extended version of [1]. 9

the frequencies of the bi-directional edges. For example, the frequency of the
undirected edge between “little” and “lamb” is the sum of the frequency of the
directed edges in Figure 1. The undirected representation loses some information
about ordering, but still retains information on distances. While this paper is not
focussed on this representation, we mention it, since it may be useful in many
scenarios:

— Undirected graphs often provide a wider array of mining techniques, because
undirected graphs are easier to process than directed graphs. This may be a
practical advantage in many scenarios.

— While this paper is not focussed on cross-language retrieval, it is likely that
directed graphs may be too stringent for such scenarios. While different lan-
guages may express the same word translations for a given text fragment, the
ordering may be slightly different, depending upon the language. In such cases,
the undirected representation may provide the flexibility needed for effective
processing.

In future work, we will explore the benefits of the undirected variant of this
problem. In the next section, we will discuss the applications of the distance
graph representation.

3. Leveraging the Distance Graph Representation:
Applications

One advantage of the distance-graph representation is that it can be used directly
in conjunction with either existing text applications or with structural and graph
mining techniques, as follows:

— Use with existing text applications: Most of the currently existing text
applications use the vector-space model for text representation and processing.
It turns out that the distance graph can also be converted to a vector-space
representation. The main property which can be leveraged to this effect is that
the distance-graph is sparse and the number of edges in it is relatively small
compared to the total number of possibilities. For each edge in the distance-
graph, we can create a unique “token” or “pseudo-word”. The frequency of
this token is equal to the frequency of the corresponding edge. Thus, the
new vector-space representation contains tokens only corresponding to such
pseudo-words (including self-loops). All existing text applications can be used
directly in conjunction with this “edge-augmented” vector-space representation.

— Use with structural mining and management algorithms: The database
literature has seen an explosion of techniques [4, 27, 28, 29, 30, 31, 32, 33, 34]
in recent years which exploit the underlying structural representation in or-
der to provide more effective mining and management methods for text. Such
approaches can sometimes be useful, because it is often possible to tailor the
structural representation which is determined with this approach.

Both of the above methods have different advantages, and work well in different
cases. The former provides ease in interoperability with existing text algorithms
whereas the latter representation provides ease in interoperability with recently
developed structural mining methods. We further note that while the vector-space
representations of the distance graphs are larger than those of the raw text, the
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actual number of tokens in a document is typically only 4 to 5 times larger than
the original representation. While this slows down the text processing algorithms,
the slowdown is not large enough to become an unsurmountable bottleneck with
modern computers. In the following, we will discuss some common text mining
methods, and the implications of the use of the distance graph representation
with such scenarios.

3.1. Clustering Algorithms

The most well-known and effective methods for clustering text [2, 9, 10, 22, 26, 35]
are variations on seed-based iterative or agglomerative clustering. The broad idea
is to start off with a group of seeds and use iterative refinement in order to gen-
erate clusters from the underlying data. For example, the technique in [22] uses
a variation of k-means clustering algorithms in which documents are assigned to
seeds in each iteration. These assigned documents are aggregated and the low
frequency words are projected out in order to generate the seeds for the next
iteration. This process is repeated in each iteration, until the assignment of doc-
uments to seeds is stabilized. We can use exactly the same algorithm directly on
the wvector-space representation of the distance-graph. In such a case, no addi-
tional algorithmic redesign is needed. We simply use the same algorithm, except
that the frequency of the edges in the graph are used as a substitute for the fre-
quencies of the words in the original document. Furthermore, other algorithms
such as the EM-clustering algorithm can be adapted to the distance-graph rep-
resentation. In such a case, we use the edges of the distance graph (rather than
the individual words) in order to perform the iterative probabilistic procedures.
In a sense, the edges of the graph can be considered pseudo-words, and the EM
procedure can be applied with no changes. A second approach is to use the struc-
tural representation directly and determine the clusters by mining the frequent
patterns in the collection and use them to create partitions of the underlying
documents [4]. For example, consider the case, where a particular fragment of
text “earthquake occurred in japan” or “earthquake in japan” occurs very often
in the text. In such a case, this would result in the frequent occurrence of par-
ticular distance subgraph containing the words “earthquake”, “occurred” and
“japan”. This resulting frequent subgraphs would be mined. This would tend to
mine clusters which contain similar fragments of text embedded inside them.

3.2. Classification Algorithms

As in the case of clustering algorithms, the distance graph representation can
also be used in conjunction with classification algorithms. We can use the vector-
space representation of the distance graphs directly in conjunction with most of
the known text classifiers. Some examples are below:

— Naive Bayes Classifier: In this case, instead of using the original words
in the document for classification purposes, we use the newly derived tokens,
which correspond to the edges in the distance graph. The probability distri-
bution of these edges are used in order to construct the Bayes expression for
classification. Since the approach is a direct analogue of the word-based prob-
abilistic computation, it is possible to use the vector-space representation of
the edges directly for classification purposes.
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— k-Nearest Neighbor and Centroid Classifiers: Since analogous similarity
functions can be defined for the vector-space representation, they can be used
in order to define corresponding classifiers. In this case, the set of tokens in
the antecedent correspond to the edges in the distance graphs.

— Rule Based Classifiers: As in the previous case, we can use the newly defined
tokens in the document in order to construct the corresponding rules. Thus,
the left-hand side of the rules correspond to combinations of edges, whereas
the right hand side of the rules correspond to class labels.

We can also leverage algorithms for structural classification [32]. Such algorithms
have the advantage that they directly use the underlying structural information
in order to perform the mining. Thus, the use of the distance-graph representa-
tion allows for the use of a wider array of methods, as compared to the original
vector-space representation. This provides us with greater flexibility in the min-
ing process.

3.3. Indexing and Retrieval

The structural data representation can also be used in conjunction with indexing
and retrieval with two distinct approaches.

— We can construct an inverted representation directly on the augmented vector-
space representation. While such an approach may be effective for indexing on
relatively small sentence fragments, it is not quite as effective for document-
to-document similarity search.

— We can construct structural indices directly on the underlying document col-
lections [27, 28, 29, 30, 31, 33, 34] and use them for retrieval. We will see
that the use of such an approach results in much more effective retrieval. By
using this approach, it is possible to retrieve similar documents in terms of en-
tire structural fragments. This is not possible with the use of the vector-space
representation.

We note that the second representation also allows us efficient document-to-
document similarity search. The inverted representation is only useful for search-
engine like queries over a few words. Efficient document-to-document similarity
indexing is an open problem for the case of text data (even with unaugmented
vector-space representations). This is essentially because text data is inherently
high dimensional, which is a challenging scenario for the similarity search ap-
plication. On the other hand, the structural representation provides off-the-shelf
indexing methods, which are not available with the vector-space representation.
Thus, this representation not only provides more effective retrieval capabilities,
but it also provides a wider array of such techniques.

An important observation is that large connected subgraphs which are shared
by two documents typically correspond to text fragments shared by the two.
Therefore, one can detect the nature and extent of structural similarity of docu-
ments to one another by computing the size of the largest connected components
which are common between the original document and the target. This is equiv-
alent to the problem of finding the maximum common subgraph between two
data sets. We will discuss more on this issue slightly later.
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3.4. Frequent Subgraph Mining on Distance Graphs: An
Application

Recently developed algorithms for frequent subgraph mining [29, 30] can also
be applied to large collections of distance graphs. Large connected subgraphs in
the collection correspond to frequently occurring text fragments in the corpus.
Such text fragments may correspond to significant textual characteristics in the
collection. We note that such frequent pattern mining can also be performed
directly on the vector-space model, though this can be inefficient since it may
find a large number of disconnected graphs. On the other hand, subgraph mining
algorithms [29, 30] can be used to prune off many of the disconnected subgraphs
from the collection. Therefore, the structural representation has a clear advantage
from the perspective of discovering significant textual patterns in the underlying
graphs. We can use these algorithms in order to determine the most frequently
occurring text fragments in the collection. While the text fragments may not be
exactly re-constructed from the graphs because of non-distinctness of the word
occurrences, the overall structure can still be inferred from lower-order distance
graphs such as G; and Ga. At the same time, such lower order distance graphs
continue to be efficient and practical for processing purposes.

3.4.1. Plagiarism Detection

The problem of plagiarism detection from large text collections has always been
very challenging for the text mining community because of the difficulty in deter-
mination of structural patterns from large text collections. However, the trans-
formation of a text document to a distance graph provides a way to leverage
techniques for graph pattern mining. We note that large connected graphs typ-
ically correspond to plagiarisms, since they correspond to huge structural sim-
ilarities in the underlying text fragments for the document. In particular, the
maximum common subgraph between a pair of graphs can be used in order to
define the plagiarism index between two documents. Let G4 and GZ be the
distance graph representation of two documents, and let MCG(G4, G®) be the
maximum common subgraph between the two documents. Then, we define the
plagiarism index P(G4, GP) as follows:

B |MCG{G*, GB}|

VIGA - VIGP|
We note that the computation of the maximum common subgraph is an NP-
hard problem in the general case, but it is a simple problem in this case because
of the fact that all node labels are distinct and correspond to unique words.

Therefore, this approach provides an efficient methodology for detecting the
likely plagiarisms in the underlying data.

P(GA,GP)

(1)

4. Experimental Results

Our aim in this section is to illustrate the representational advantages of the use
of the distance graphs. This will be achieved with the use of off-the-shelf vector-
space and structural applications. The aim is to minimize the specific effects
of particular algorithms, and show that the new representation does provide a



Towards Graphical Models for Text ProcessingThis paper is an extended version of [1]. 13

more powerful expression of the text than the traditional vector-space represen-
tation. We note that further optimization of many of the (structural) algorithms
is possible, though we leave this issue to future research. We will use diverse
applications such as clustering, classification and similarity search to show that
this new representation does provide more qualitatively effective results. Fur-
thermore, we will use different kinds of off-the-shelf applications to show that
our results are not restricted to a specific technique, but can achieve effective
results over a wide variety of applications. We will also show that our methods
maintain a level of efficiency which is only modestly less than the vector-space
representation. This is a reasonable tradeoff in order to achieve the goals which
are desired in this paper.

All our experiments were performed on an Intel PC with a 2.4GHz CPU,
2GB memory, and running Redhat Linux. All algorithms were implemented and
compiled by gcc 3.2.3.

4.1. Data Sets

We choose three popular data sets used in traditional text mining and infor-
mation retrieval applications in our experimental studies: (1) 20 newsgroups (2)
Reuters-21578 and (3) WebKB. Furthermore, the Reuters-21578 data set is of
two kinds: Reuters-21578 R8 and Reuters-21578 R52. So we have four different
data sets in total. The 20 newsgroups data set* contains 20,000 messages from
20 Usenet newsgroups, each of which has 1,000 Usenet articles. Each newsgroup
is stored in a directory, which can be regarded as a class label, and each news
article is stored as a separate file. The Reuters-21578 corpus® is a widely used
test collection for text mining research. The data was originally collected and
labeled by Carnegie Group, Inc. and Reuters, Ltd. in the course of developing
the CONSTRUE text categorization system[16]. Due to the fact that the class
distribution for the corpus is very skewed, two sub-collections: Reuters-21578
R52 and Reuters-21578 RS, are usually considered for text mining tasks[11]. In
our experimental studies, we make use of both of these two data sets to evalu-
ate a series of different data mining algorithms. The WebKB data set® contains
WWW-pages collected from computer science departments of various universi-
ties in January 1997 by the World Wide Knowledge Base project of the CMU
text learning group. The 8,282 pages were manually classified into the follow-
ing seven categories: student, faculty, staff, department, course, project, and other.
Every document in the aforementioned data sets is preprocessed by eliminating
non-alphanumeric symbols, specialized headers or tags and stop-words. The re-
maining words of each document are further stemmed by the Porter stemming
algorithm”. The distance graphs are defined with respect to this post-processed
representation.

Next, we will detail our experimental evaluation over a variety of data mining
applications, including text classification, clustering and similarity search. In
many cases, we test more than one different method. The aim is to show that the

4 http://kdd.ics.uci.edu/databases/20newsgroups

5 http://kdd.ics.uci.edu/databases/reuters21578

6 http://www.cs.cmu.edu/afs/cs.cmu.edu/project /theo-20/www/data/webkb-data.gtar.gz
7 http://tartarus.org/ martin/PorterStemmer
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Fig. 3. Text Classification Accuracy with 95% Confidence Level (20 Newsgroups)

distance graph has a number of representational advantages for mining purposes
over a wide variety of problems and methods.

4.2. Classification Applications

In this section, we will first test the effectiveness of the distance graph represen-
tation on a variety of classification algorithms. We make use of Rainbow [20], a
freely available statistical text classification toolkit for our experimental studies.
First of all, Rainbow reads and indexes text documents and builds the statis-
tical model. Then, different text classification algorithms are performed upon
the statistical model. We used three different algorithms from Rainbow for text
classification. These algorithms are the Naive Bayes classifier [19], TFIDF classi-
fier [15] and Probabilistic Indexing classifier [12] respectively. For each classifica-
tion method of interest, we employ the vector-space models including unigram,
bigram and trigram models, and the distance graph models of different orders
ranging from 1 to 4, respectively, as the underlying representational models for
text classification. In order to simulate the behaviors of the bigram model and
the trigram model, we extract the most frequent 100 doublets and triplets from
the corpora and augment each document with such doublets and triplets, re-
spectively. The vector-space models are therefore further categorized as unigram
with no extra words augmentation, bigram with doublets augmentation and tri-
gram with triplets augmentation. We conduct 5-fold cross validation for each
algorithm in order to compare the classification accuracies derived from different
representation strategies. All the reported classification accuracies are statisti-
cally significant with 95% significance level.

In Figure 3, we have illustrated the classification accuracy results in the 20
newsgroups data set for the three different classifiers. In addition to the vector-
space representations for unigram, bigram and trigram models, we have also
illustrated the classification results for the distance graph representations with
different distance orders ranging from 1 to 4. It is clear that the addition of
structural information in the distance graph models improves the quality of the
underlying result in most cases. Specifically, the best classification results are ob-
tained for distance graphs of order 2 in Naive Bayes classifier, and of order 1 in
TFIDF classifier and of order 4 in Probabilistic Indexing classifier, respectively.
Meanwhile, in all of the cases, the distance graph representations consistently
obtain better classification results than all the vector-space models, including
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the unigram, the bigram and the trigram models. Even though the optimal clas-
sification accuracy is achieved for distance graphs of orders 1 and 2 in some
experimental scenarios, it is noteworthy that the vector-space representations
did not even perform better than the higher order distance graphs in all cases.
We also tested the classification results for the Reuters-21578 (R8 and R52) data
sets. The classification accuracy results are illustrated in Figure 4 and Figure 5,
respectively. It is evident that the distance graph representations are able to pro-
vide a higher classification accuracy over the different kinds of classifiers as com-
pared to the vector-space representations. The reason for this is that the distance
graph representations can capture structural information about the documents
which is used in order to help improve the classification accuracy. As a result, the
classification results obtained with the use of the distance graph representations
are superior to those obtained using the vector-space representations.

We also tested the efficiency of the distance graph representations for the
different data sets. We note that the higher order distance graph representations
have a larger number of edges, and are therefore likely to be somewhat slower.
The results for the 20 newsgroups data set, Reuters-21578 R8, and Reuters-
21578 R52 data sets are illustrated in Figures 6(a), 6(b), and 6(c) respectively.
In each case, the running times are illustrated on the Y-axis, whereas the order of
the distance graph representation is illustrated on the X-axis. In this graph, the
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Fig. 6. Classification Efficiency on Different Datasets

order-0 representation corresponds to the vector-space representation (unigram).
It is evident that the running time increases only linearly with the order of the
representation. Since the optimal results are obtained for lower order representa-
tions, it follows that only a modest increase in running time is required in order
to improve the quality of the results with the distance graph representations.
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4.3. Clustering Application

We further tested our distance graph representation for the clustering applica-
tion. Two different text clustering algorithms are adopted in our experimental
studies: K-means [14] and Hierarchical EM clustering [5]. We implemented the
K-means algorithm and used the Hierarchical EM clustering algorithm in cross-
bow, which provides clustering functionality in the Rainbow toolkit [20]. For each
clustering algorithm, we used entropy as a measure of quality of the clusters [25]
and compare the final entropies of clusters generated with different underlying
representations. The entropy of clusters can be formally defined as follows: Let C'
be a clustering solution generated by a specific clustering algorithm mentioned
above. For each cluster c;, the class distribution of the data within ¢; is com-
puted first: we denote p;; as the probability that a member of ¢; belongs to class
i. Then the entropy of ¢; is computed as follows:

E, =— Zpijlog(Pij) (2)

where the sum is taken over all classes. The total entropy for a set m of clusters
is calculated as the sum of the entropies of each cluster weighted by the size of
each cluster, as follows:

Eo=)Y 2 (3)

where |c;| is the size of cluster ¢;.

We tested both the K-means and the Hierarchical EM-clustering algorithm
with the use of the vector-space representation as well as the distance graph
method. The results are illustrated in Figure 7 for the 20 newsgroups data set
(Figure 7(a)), the Reuters-21578 R8 data set (Figure 7(b)) and the WebKB data
set (Figure 7(c)), respectively. The order of the distance graph is illustrated on
the X-axis, whereas the entropy is illustrated on the Y-axis. The standard vector-
space representation corresponds to the case when we use a distance graph of
order-0 (unigram). It is evident from the results of Figure 7, that the entropy
reduces with increasing order of the distance graph. This is because the distance-
graph uses the structural behavior of the underlying data in order to perform
the distance computations. The higher quality of these distance computations
also improves the corresponding result for the overall clustering process.

We also tested the efficiency of different clustering methods with increasing
order of the distance graph representation on different data sets. The results
for the 20 newsgroups, the Reuters-21758 R8, and the WebKB data sets are
illustrated in Figures 8(a), 8(b), and 8(c) respectively. The order of the distance
graph is illustrated on the X-axis, whereas the running time is illustrated on the
Y-axis. It is clear that the running time increases gradually with the order of the
distance graph. The linear increasing in running time is an acceptable tradeoff,
because of the higher quality of the results obtained with the use of the method.
Furthermore, since the most effective results are obtained with the lower order
distance graphs, this suggests that the use of the method provides a significant
advantage without significantly compromising efficiency.
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4.4. Similarity Search Application

We also tested the effectiveness of our distance graph presentation in the similar-
ity search application. For the case of the distance graph representation, we used
the similarity measure, which uses the cosine on the edge-based structural sim-
ilarity as defined by a frequency-weighted version of Equation 1. We compared
the effectiveness of our approach to that of the (standard) vector-space represen-
tations, including unigram, bigram and trigram. Similar to the text classification
case, we augment each of the documents with most frequent 100 doublets and
triplets extracted from the text corpora to simulate the behaviors of the bigram
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model and the trigram model, respectively. A key issue of similarity search is the
choice of the metric used for comparing the quality of search results with the use
of different representations. In order to measure the qualitative performance, we
used a technique which we refer to as the class stripping technique. We stripped
off the class variables from the data set and found the k = 30 nearest neighbors
to each of the records in the data set using different similarity methods. In each
case, we computed the number of records for which the majority class matched
with the class variable of the target document. If a similarity method is poor in
discriminatory power, then it is likely to match unrelated records and the class
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Representation WebKb Reuters-21758 R8
Vector Space (unigram) 44.99 82.80
Vector Space (bigram) 45.15 82.93
Vector Space (trigram) 45.19 82.69
DistGraph(1) 45.91 83.50
DistGraph(2) 45.55 83.34
DistGraph(3) 45.62 83.31
DistGraph(4) 48.11 81.0

Table 1. Similarity Search Effectiveness

variable matching is also likely to be poor. Therefore, we used the class variable
matching as a surrogate for the effectiveness of our technique. The results for
the WebKB data set and the Reuters-21578 RS data set are illustrated in Table
1. It is evident that in most cases, the quality of the similarity search is better
for the higher order distance graphs. The results for these lower order represen-
tations were fairly robust, and provided clear advantages over the vector-space
representations for all unigram, bigram and trigram. Thus, the results of this
paper suggest that it is possible to improve the quality and effectiveness of text
processing algorithms with the use of novel distance graph models.

5. Conclusions and Summary

In this paper, we introduced the concept of distance graphs, a new paradigm for
text representation and processing. The distance graph representation maintains
information about the relative placement of words with respect to each other,
and this provides a richer representation for mining purposes. We can use this
representation in order to exploit the recent advancements in structural mining
algorithms. Furthermore, the representation can be used with minimal changes
to existing data mining algorithms if desired. Thus, the new representation does
not require additional development of new data mining algorithms. This is an
enormous advantage, since existing text processing and graph mining infrastruc-
ture can be used directly with the distance graph representation. In this paper,
we tested our approach with a large number of different classification, clustering
and similarity search applications. Our results suggest that the use of the dis-
tance graph representation provides significant advantages from an effectiveness
perspective.

In future work, we will explore specific applications, which are built on top
of the distance graph representation in greater detail. Specifically, we will study
the problems of similarity search, plagiarism detection, and its applications. We
have already performed some initial work on performing similarity search, when
the target is a set of documents [3], rather than a single document. We will
also study how text can be efficiently indexed and retrieved with the use of the
distance graph representation.
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