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About the Book

This book teaches probability and statistics from the machine learning perspective. The
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bility and statistics, and cover the key principles of these topics. Chapter 1 provides
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learning. The fundamentals of probability and statistics are covered in Chapters 2
through 5.

2. From probability to machine learning: Many machine learning applications are ad-
dressed using probabilistic models, whose parameters are then learned in a data-
driven manner. Chapter 6 through 9 explore how different models from probability
and statistics are applied to machine learning. Perhaps the most important tool that
bridges the gap from data to probability is maximum-likelihood estimation, which is
a foundational concept from the perspective of machine learning.

3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores
the application of probability and statistics to a temporal and sequential setting,
although the applications extended to more complex settings such as graphical data.
Chapter 11 covers a number of useful concepts in extreme-value analysis.

The style of writing promotes the learning of probability and statistics simultaneously with
a probabilistic perspective on the modeling of machine learning applications. The book
contains over 200 worked examples in order to elucidate key concepts. Exercises are included
both within the text of the chapters and at the end of the chapters. The book is written for
a broad audience, including graduate students, researchers, and practitioners.
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Preface

“Lies, damned lies, and statistics.” — Mark Twain

Most of machine learning is directly or indirectly related to probability and statistics.
After all, machine learning is all about making predictions based on data, which inevitably
leads to statistical methods. These statistical methods are often couched as models, which
use probabilities to quantify the likelihoods of events. Therefore, having a strong background
in probability and statistics is critical.

The familiarity required with probability and statistics often goes well beyond what is
taught in undergraduate curricula. As a result, this presents a challenge to beginners in
the field. In many cases, the type of techniques required from probability and statistics are
specific to machine learning, which is not covered by generic courses on probability and
statistics. This book therefore develops a treatment of probability and statistics from the
specific perspective of machine learning.

This book teaches probability and statistics with a specific focus on machine learning
applications. As a natural consequence of this approach many key concepts in machine
learning are covered in detail. Therefore, it is possible to learn a significant amount of
machine learning during the process of learning probability and statistics in this book. The
chapters of this book are organized as follows:

1. The basics of probability and statistics: These chapters focus on the basics of proba-
bility and statistics, and cover the key principles of these topics. Chapter 1 provides
an overview of the area of probability and statistics and its relationship to machine
learning. The fundamentals of probability and statistics are covered in Chapters 2
through 5.

2. From probability to machine learning: Many machine learning applications are ad-
dressed using probabilistic models, whose parameters are then learned in a data-
driven manner. Chapter 6 through 9 explore how different models from probability
and statistics are applied to machine learning. Perhaps the most important tool that
bridges the gap from data to probability is maximum-likelihood estimation, which is
a foundational concept from the perspective of machine learning.

3. Adwvanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores
the application of probability and statistics to a temporal and sequential setting,
although the applications extended to more complex settings such as graphical data.
Chapter 11 covers a number of useful concepts in extreme-value analysis.

xi
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More than 200 worked examples are provided in the book in order to elucidate different
concepts. Furthermore, the book contains unsolved exercises both within and at the end
of chapters. The worked examples should be solved without looking at the solution as one
reads the chapter. This will lead to slower progress but a better understanding. In-chapter
exercises are often similar to worked examples — hints for solving the more difficult of these
exercises are often given immediately after the exercise in order to help the reader along.
Exercises at the end of the chapter are intended to be solved as refreshers after completing
the chapter. An instructor solution manual is available containing solutions to end-of-chapter
exercises. There are a total of about 600 (solved, in-chapter, and end-of-chapter) exercises
in the book. Therefore, the book provides ample opportunity for practice.

Prerequisites for the Book

The main challenge with writing such a book is that it is grounded in a solid understand-
ing of basic mathematics. A knowledge of calculus (at the high-school level) is absolutely
essential for understanding the book. There are some concepts that also require a notation-
level understanding of multivariate and vector calculus but these concepts are largely self-
explanatory in nature (and only require an understanding of basic definitions). A basic
understanding of vectors is needed, although a detailed understanding of linear algebra is
not assumed. The only concept that is used repeatedly in the book is the concept of eigenvec-
tors and principal component analysis, which is described from first principles in Chapter 2.
Except for a single (clearly demarcated) section in Chapter 10, advanced concepts in linear
algebra are not needed for understanding the material. The book makes an effort to point
out sections of the book that can be skipped over without loss in continuity (by clearly
demarcating them). These sections are somewhat advanced and used only occasionally in
machine learning. The corresponding sections have been marked by an asterisk (*) in the
section header.

Notations

Throughout this book, a vector or a multidimensional data point is annotated with a vector
right arrow, such as X or y. A vector or multidimensional point may be denoted by either
small letters or capital letters, as long as it has a bar. Vector dot products are denoted by
centered dots, such as - i. A matrix is denoted in capital letters without a vector symbol,
such as R. Random variables are also denoted by capital letters, and the difference between
a random variable and a matrix is usually obvious from the underlying context. Samples
of random variables are denoted by small letters. Throughout the book, the n x d matrix
corresponding to the entire training data set is denoted by D, with n data points and d
dimensions. The individual data points in D are therefore d-dimensional row vectors, and
are often denoted by #; ... Z,. Note that these vectors use small letters rather than capital
letters, because they are assumed to be samples from some underlying data distribution.
Vectors with one component for each data point (observation) are usually n-dimensional
column vectors. An example is the n-dimensional column vector i of class variables of n
data points. An observed value y; is distinguished from a predicted value §j; by a circumflex
at the top of the variable.



