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Abstract

In recent years, the proliferation of the world wide web has lead to an increase in a number

of applications such as search, social networks and auctions, whose success depends critically

upon the number of users of that service. Two examples of such applications are internet

auctions and social networks. One of the characteristics of online auctions is that a successful

implementation requires a high volume of buyers and sellers at its website. Consequently,

auction sites which have a high volume of traffic have an advantage over those in which the

volume is limited. This results in even greater polarization of buyers and sellers towards a

particular site. The same is true for social networks in which greater use of a given social

network increases the use from other participants on the network. This is often referred to as the

“network effect” in a variety of interaction-centric applications in networks. While this effect

has qualitatively been known to increase the value of the overall network, its effect has never

been modeled or studied rigorously. In this paper, we construct a Markov Model to analyze

the network effect in the case of two important classes of web applications. These correspond

to auctions and social networks. We show that the network effect is very powerful and can

∗This paper is an extended version of (Aggarwal and Yu, 2009). This is a pre-print version of a journal article,

which will appear in Electronic Commerce Research and Applications.
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result in a situation in which an auction or a social networking site can quickly overwhelm its

competing sites. Thus, the results of this paper show the tremendous power of the network

effect for Web 2.0 applications.
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1 Introduction

With the increasing use of the world wide web, a number of applications have been developed

which are critically dependent upon their adoption by a large number of users. Examples of such

applications include online auctions, social networking sites, and product recommendation sites.

A key characteristic of these sites is that the presence of a larger number of users increases the

value of the site for all other users. A number of popular sites such as Ebay1, and Priceline.com2

routinely conduct auctions on the web in order to match buyers and sellers over a variety of prod-

ucts. Similarly, a number of social networking sites such as Facebook3, Twitter4 and LinkedIn5

have developed over time. Consequently, a number of papers have been written in recent years

which study the dynamics of applications such as auctions and social networking (Alsemgeest et

al. , 1998; Bapna et al. , 2000; Klein and O’Keefe, 1999; Lucking-Reiley, 2000; Shah et al. , 2003;

Van Heckjk and Vervest, 1998).

In many web applications, the success of the site highly depends upon the number of users at the

site. For example, a social networking site is not very useful if it has a small number of users.

Similarly, an auction site is useful only if it has a large number of buyers and sellers who are ready

to perform transactions with one another. Therefore the value of these sites greatly increase with

the number of users. This is known as the network effect (Shapiro and Vairian, 1998). The network

effect of the auction system continues to grow in a self-sustaining way with site popularity. Such

a network effect is also present in any system such as community-based search engines6 in which

the quality of the results can depend upon the number of users utilizing the system. For the case

of social networks, dense networks have a clear advantage, since it leads to rapid dissemination

of information across the network (Chakrabarti et al. , 2008; Wasserman and Faust, 1994). Large

1http://www.ebay.com
2http://www.priceline.com
3http://www.facebook.com
4http://www.twitter.com
5http://www.linkedin.com
6http://www.alexa.com
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social networks have seen a rapid increase in densification and number of participants in recent

years (Leskovec et al. , 2005). We note that the exact value, sustainability and impact of the

network effect deeply depends upon how it is leveraged for a particular application. In general,

the network effect is likely to be experienced in any application where the value of of the network

depends upon the level of interaction between the different users.

We note that our analysis pertains to the case of web applications in which the site acts as an inter-

mediary to facilitate the interaction between different participants, rather than being a participant

itself. For example, in the case of online auctions, the product is sold by an independent seller

who is charged a fee for the transaction. This is certainly the case for current auction models such

as Ebay. While some online auctioneers (such as Policeauctions.com) directly auction their own

items7, this is not the model that we wish to analyze in this paper. This is because the latter model

does not play a matching role between many buyers and sellers, which is critical for the network

effect. Correspondingly, such sites also have less capacity in attracting diverse buyers to their site,

or are limited to buyers interested in a particular segment of the fragmented marketplace. In this

paper, we are directly looking only at web applications in which the aim of the application is to

act purely as an intermediary to facilitate the interaction between different users. Our analysis

provides an understanding of the competitive dynamics of different applications attracting users to

their site, and its corresponding self-sustaining effect.

We note that network interactions can typically be of two types.

• In the first case, the interactions may occur only between certain categories of participants

such as buyers and sellers. Examples of such applications include online auctions.

• In the second case, the interaction may occur between any pair of participants at the site.

This is in fact the more general case, and encompasses may different kinds of applications

such as social networks, instant messaging systems, and chat forums.

7This site sells unclaimed items from police recovery efforts of stolen or lost items.
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This paper will analyze the network effect for both kinds of applications. First, we will analyze

the first case with the use of web auctions as the relevant scenario. Then, we will study the more

general case of interactions between any pair of users. For this case, we will study the example

of social networks. Thus, the two different cases provide an understanding of different kinds of

networks.

The analysis of the network effect helps us understand the dynamics of the phenomenon, as well

as the implications for social networking sites in terms of how it should be managed. Specifically,

our analysis of the network effect provides an understanding of the following aspects:

• Our analysis provides an understanding of the different factors which are most likely to affect

the dominance of one site over another and vice-versa.

• The understanding of the factors, which is provided by our analysis, also helps in designing

effective methods for site administrators to tailor their applications, so as to either use or

avoid the network effect. In particular, it helps provide an understanding to the secondary

players how to grow their network in the presence of a dominant player. In a later section,

we will discuss the implications of the results of this paper on network management.

This paper is organized as follows. In the next section, we will discuss the network effect for

online auctions. We will construct a Markov Model which determines the equilibrium stability

for online auctions. We will also examine some characteristics of this model, the corresponding

interpretation, and the equilibrium stability. In section 3, we will study the second case, with

the use of social networks as the relevant application. Section 4 is the discussion of implications

of the results of this paper on network management. Section 5 will illustrate some analytical

simulations which illustrate the power of the network effect. Section 6 will present the conclusions

and summary.
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1.1 Theoretical Background

The earliest studies on the network effect were found in (Shapiro and Vairian, 1998) which contains

a mostly qualitative discussion of the effects of network size on telecommunication networks. In

particular, a law known as Metcalfe’s law was first proposed by Robert Metcalfe in regard to the

ethernet, and later formulated by George Gilder in 1993 (Shapiro and Vairian, 1998) with regard

to larger telecommunication networks. This law states that the value V of a telecommunication

network is proportional to the square of the number of nodes n in the network. In other words, we

have:

V = C · n2 (1)

Here C is a constant of proportionality. We note that the Metcalfe’s law was proposed under the

qualitative assumption that the value of the network was dependent upon the number of potential

interactions between the different network entities. Since the number of potential interactions is

proportional to the square of the number of nodes, Metcalfe’s law also proposes this as a thumb

rule for measuring the value of the network. A different approach (Beckstrom, 2009) proposes the

value of the network in terms of its effect on an individual user. This law known as Beckstrom’s

law (Beckstrom, 2009; Buley, 2009) defines the value of a network in terms of the sum of the

individual values of the transactions across all the different users. For example, consider a user

who buys their items annually from different networks for 1000 dollars. After the addition of

Amazon to the network, the price of the same set of items reduces to 600 dollars. Then, the value

of the Amazon to the user is 400 dollars. By summing up this saving across different users, we

can determine the value of Amazon to the network. Thus, if Ri(j) and R′
i(j) be the value of

transactions of the ith user in the presence and absence of the jth user respectively, then the value

V j of j to the network is given by:

V j =
∑
i

(Ri(j)−R′
i(j)) (2)
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The total value V of the network itself is a summation of the value of each of the network entities.

Therefore, we have:

V =
∑
j

V j (3)

For cases, in which we wish to compute these values for a long time horizon in the future, it is

possible to compute the present-value of the network by summing up these values over different

time periods, with an appropriate time-discount factor. We note that both Metcalfe’s law and

Beckstrom’s law provide thumb rules to measure the value of the network, but they do not provide

an understanding of the network effect dynamic between competing networks.

One interesting aspect of the network effect is that the local structure of the network plays a key

role in terms of who benefits from whom (Sundarajan, 2007). This is because in the case of

many products, a user may not be interested just by the size of the user base in general, but also

directly by the decision of the subset of users which are connected to them. This is because these

connected individuals form the peer group which has the greatest influence on that particular user.

A mathematical model and theoretical analysis of the concept of local network effect is provided

in (Sundarajan, 2007). However, this particular analysis is not so much dependent upon the global

size of the network itself, but rather on the specificity of who may influence whom. It also does not

analyze the dynamics of competing networks in terms of consumer behavior.

The network effect is not just relevant for consumer applications, but also a variety of social net-

working applications in which the social effects can be used in order to improve the underlying

service. For example, a variety of search engines such as Google and Alexa utilze user-behavior

in order to provide more effective search results. Methods to maximize and evaluate the economic

value of networks are discussed in (Buley, 2009; Economides, 1996). A discussion of the network

effect in the context of a wide variety of different network and ecommerce-based applications is

provided in (Alsemgeest et al. , 1998; Bapna et al. , 2000; Klein and O’Keefe, 1999; Lucking-

Reiley, 2000; Shah et al. , 2003; Van Heckjk and Vervest, 1998). None of these papers however

provide an understanding of the dynamics of user behavior in the context of multiple networks.

This paper provides the first such theoretical study.
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2 The Network Effect in Web Auctions

In this section, we will model the network effect in online auctions. In order to do so, we will con-

struct a Markov Model which relates the behavior of buyers and sellers in an online environment.

The reason for using a Markov chain is that it tracks the dynamics of the network in the form of a

number of probabilistic states which transition between each other. Since the membership of the

user in a network can be treated as a state, this can be effectively simulated by a dynamic Markov

Model. Clearly, the process, in which users dynamically join and leave networks is a probabilis-

tic process which can be dynamically simulated. Markov chains provide an effective tool for this

simulation, especially in terms of the steady-state behavior of the network.

The basic assumptions in the model are as follows:

• The auctioneer acts only as an intermediary agent during the selling process, and is not a

direct party to the transaction. Therefore, buyers and sellers are only interested in the most

efficient and cost effective transaction.

• A greater number of buyers provides a more effective and cost efficient transaction to the

seller. Therefore, a seller is more likely to choose a particular auctioning agent, if it provides

access to a greater number of buyers.

• A greater number of sellers provides a more effective and cost efficient transaction to the

buyer. Therefore, an auction with a larger number of sellers is also more attractive to the

buyer.

We note that the above observations serve as the source of the network effect in online auctions. It

is clear that auctions with a larger number of buyers are likely to attract more sellers and vice-versa.

This may result in defection behavior from one auction to another. This defection behavior creates

a self-sustaining effect which results in one dominant auction crowding out the others rapidly.

Even in situations in which multiple auctions exist with an equal amount of market dominance, we
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will see that the nature of the equilibrium is stochastically unstable, and will lead to dominance of

one auction over time.

In order to formally model the propensity of buyers and sellers to pick the most attractive auction,

let us consider two competing auctions, each of which has a set of buyers and sellers. We also as-

sume that these are the only two available auctions, and a hypothetical buyer must choose between

one of the two. Such a binary model can be directly generalized to the case of multiple auctions

using the binary model recursively. In Figure 1, we have illustrated the defection model in which

we have illustrated two hypothetical auctioneers. Two separate markov models are illustrated. The

model on the left (Figure 1(a)) illustrates the defection behavior of a hypothetical buyer. Thus,

the hypothetical buyer may shift between states 1 and 2. These states correspond to his choosing

auctions 1 or 2 respectively. Thus, an auction buyer may use auction 1 for a current transaction,

but may transition to auction 2 for the next transaction with probability p12. Alternatively, they

may choose to use the same auction with probability p11. The latter case is illustrated as a self loop

in state 1 of Figure 1(a). It is also clear that since the buyer uses either auction 1 or auction 2 for

each transaction, we have:

p11 + p12 = 1, p21 + p22 = 1 (4)

In general, we would like to find the steady-state probability that the buyer chooses one of the two

auctions. We assume that the steady state probability of states 1 and 2 are denoted by α1 and α2

respectively. Then, for the Markov model to be in steady state, the transition probability into a

given state must be equal to the transition probability out of it. For state 1, we have the following

relationship:

α1 · p11 + α1 · p12 = α1 · p11 + α2 · p21 (5)

This relationship is equivalent to the following:

α1 · p12 = α2 · p21 (6)

We can set up a similar steady state relationship for state 2, though the relationship is equivalent

to that of Equation 6. We also note that the sum of the steady state probabilities over the buyer (or
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seller) side Markov Model must be equal to 1. Therefore, we have:

α1 + α2 = 1 (7)

We note that we can set up similar relationships at the seller side as well. Let us assume that

the steady state probability for states 1 and 2 at the seller side are denoted by β1 and β2 respec-

tively. Correspondingly, we have the following relationships among the transition and steady state

probabilities:

q11 + q12 = 1, q21 + q22 = 1 (8)

β1 · q12 = β2 · q21 (9)

So far, we have not connected the state probabilities of the Markov Models corresponding to Fig-

ures 1(a) and (b). We earlier observed that the likelihood of the defection of a buyer is dependent

upon the number of sellers present at an auction and vice-versa. This effectively means that the

transition probabilities of the buyer-model are dependent on the state probabilities of the seller-

model and vice-versa. This is a unique way of relating two markov models, since the transition

probabilities of one model depend upon the state probabilities of the other and vice-versa. This

relationship is defined by the following two non-increasing functions f(·) and g(·):

p12 = f(β1), p21 = f(β2), q12 = g(α1), q21 = g(α2) (10)

We refer to these functions as defection functions. The function f(·) is the buyer defection function,

and the function g(·) is the seller defection function. The functions f(·) and g(·) should satisfy the

following properties:

• f(·) and g(·) are both non-increasing functions. This corresponds to the fact that a higher

state probability at the buyer side of an auction corresponds to a lower probability of seller

defection from that auction and vice-versa.

• The functions are defined over the probability range (0, 1) and satisfy the following end-point

relationships:

f(0) = 1, f(1) = 0, g(0) = 1, g(1) = 0

9



These constraints correspond to the fact that a buyer will not participate in any auction which

has no sellers and vice-versa.

• The above-mentioned principle can be generalized further to use a minimum critical mass in

order to define a threshold at which the buyers or sellers will not participate. This minimum

critical mass is required for an auction to be a viable activity. We denote this minimum

critical mass for the buyers and sellers by cb and cs respectively. Below this critical mass, a

buyer or seller in the auction has 100% defection probability.

First, we will begin by defining a simple linear functional form for relating the probability of

defection to the steady state probabilities. This linear function f(x) is defined in the probability

range (0, 1) ⇒ (0, 1) as follows:

f(x) =


1 0 6 x 6 cs

(1− cs − x)/(1− 2 · cs) cs 6 x 6 1− cs

0 1− cs 6 x 6 1

(11)

The corresponding function g(x) is defined similarly except that the critical mass cb for buyers is

utilized. Therefore, we have:

g(x) =


1 0 6 x 6 cb

(1− cb − x)/(1− 2 · c) cb 6 x 6 1− cb

0 1− cb 6 x 6 1

(12)

We note that the above simple function is a natural choice based on the constraints discussed earlier.

We will analyze the behavior of the Markov model using this function. We make the following

observations:

Observation 2.1 A steady state solution to the markov model is α1 = 1, α2 = 0, β1 = 1, and

β2 = 0.

10



We note that because of the values of α1 and β1, the values of the transition probabilities are as

follows: p11 = 1, p12 = 0, p21 = 1, p22 = 0. By substituting these values, we can satisfy all the

conditions discussed above. Similarly, we can show the following results:

Observation 2.2 A steady state solution to the markov model is α1 = 0, α2 = 1, β1 = 0, and

β2 = 1.

Observation 2.3 A steady state solution to the markov model is α1 = 0.5, α2 = 0.5, β1 = 0.5,

and β2 = 0.5.

We note that for general functions f(·) and g(·), the following relationships hold true:

Lemma 2.1 A steady state solution to the problem can be defined if and only if a pair (α0, β0) ∈

(0, 1) can be found for which the buyer and seller defection functions satisfy the following rela-

tionship:

α0 · f(β0) = (1− α0) · f(1− β0), β0 · g(α0) = (1− β0) · g(1− α0) (13)

Proof: First, let us consider the case when such a pair (α0, β0) can be found satisfying the condi-

tions of Equations 13. A steady state solution can be determined by setting α1 = α0, α2 = 1− α0,

β1 = β0, β2 = 1−β0, p21 = f(1−β0), p12 = f(β0), p11 = 1−p12, p22 = 1−p21, q21 = g(1−α0),

q12 = g(α0), q11 = 1 − q12, q22 = 1 − q21. It is easy to verify that all the steady state conditions

for the markov model are satisfied by these conditions. For example, the conditions illustrated

in Equations 6 and 9 are satisfied because of the pre-conditions in the problem statement of this

lemma. The conditions interrelating the two models are satisfied because of the way in which the

transition probabilities are chosen.

Next, if we consider a Markov Model in steady state, then the values of (α0, β0) can be chosen

as the (respective) buyer and seller state probabilities of one of the two auctions. From the steady

state conditions, it can be shown that the pre-conditions of the lemma are satisfied.
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We note that one of the consequences of this lemma is that it provides conditions on the exis-

tence of a steady state in the markov chain. Furthermore, any steady state can be satisfied by the

pair (α0, β0) which satisfy the above conditions. These conditions can also be used to show the

following:

Corollary 2.1 For linear defection functions with non-zero critical mass, the only steady state

pairs are defined by (α0, β0) = (0, 1), (α0, β0) = (1, 0), and (α0, β0) = (0.5, 0.5).

Proof Sketch: It is straightforward to verify our earlier observations that the specified pairs (0, 1),

(1, 0), and (0.5, 0.5) are steady state conditions. In order to prove the reverse, let us pick values

(α0, β0) of the probability which are not equal to (0, 1), (0.5, 0.5), and (1, 0) respectively. We

will show that it is not possible to pick values of (α0, β0) which are such that Equation set 13

are satisfied. Different cases can be considered for the ranges of α0 and β0 with respect to the

corresponding critical mass. For each of these cases, it can be shown that the Equation set 13

cannot be consistently satisfied by such a pair.

2.1 Stable and Unstable Equilibrium

We note that not all steady state conditions are equivalent in terms of stability. Intuitively, a steady

state condition is stable when a small disturbance to the probability of that state results in the

markov model returning to the earlier state of equilibrium. We note that the issue of stability

arises in our application because of the special relationship between two Markov Models: the state

probabilities of one depend upon the transition probabilities of the other, and vice-versa. In the

standard Markov Model, all steady states are stable and vice-versa. In order to define the concept

of stability of the steady state in markov models more exactly, we need to define a dynamic version

of the markov model. In the dynamic version of a markov model, we define temporally layered

states, in which the ith layer corresponds to the ith transition. Temporally layered markov models

are a useful technique for understanding the transient behavior of markov models, and the rate at

which a given markov model will reach equilibrium.

12



For each state i of the standard markov model, the temporally layered markov model has a state iT

for the state i after T transitions. The state i0 corresponds to the initial probability of state i. For

each edge (i, j) in the initial Markov Model, we have a state (it, jt+1) in the transformed Markov

Model. The value of t can range from 0 to ∞. An example of the dynamic Markov Model is

illustrated in Figure 2. The state probability at time period t on the buyer side for nodes i1t and

i2t are denoted by αt
1 and αt

2 respectively. We note that the state probabilities of the node layer t

at all time periods other than at time period t, are equal to zero. This is because of the layered

structure of the Markov Model in which a transition occurs into layer t only after t time periods.

The corresponding state probabilities on the seller side are denoted by βt
1 and βt

2 respectively. The

transition probability of the edge (it, jt+1) on the buyer side is denoted by ptij . The corresponding

transition probability for the seller side of the Markov Model is denoted by qtij . As in the static

Markov Model, the transition probabilities are related to the state probabilities. In this case, the

transition probabilities at time period t at the buyer side are related to the state probabilities at time

period t and vice-versa.

pt12 = f(βt
1), p

t
21 = f(βt

2), q
t
12 = g(αt

1), q
t
21 = g(αt

2) (14)

The corresponding transition equations in the Markov Model are defined as follows:

αt
1 · pt11 + αt

2 · pt21 = αt+1
1 · (pt+1

11 + pt+1
12 ) (15)

Since the sum of the transition probabilities out of a state is 1:

αt
1 · pt11 + αt

2 · pt21 = αt+1
1 (16)

The corresponding transition condition on the seller side is defined as follows:

βt
1 · pt11 + βt

2 · pt21 = βt+1
1 (17)

In general, as t → ∞ the state probabilities αt
1 and αt

2 will move to one of the steady states. In the

standard form of the Markov Model, only one steady state exists which is independent of the initial

state probabilities α0
1 and α0

2. However, in the form of the model discussed in this paper, (in which

13



the transition probabilities of one model depend upon the state probabilities of the other), the final

state probabilities depend both upon the initial state probabilities as well as the initial state of the

Markov Model. In addition, the Markov Model is more likely to rest in a final steady state which is

stable. Consequently, we will define the concept of stability of steady state. In essence the steady

state condition states that a small perturbation from the state distribution is likely to bring it back

to its original state.

Definition 2.1 A steady state (α, β) is said to be stable, if for any small perturbation vector ϵ such

that |ϵ| ≤ ϵ0, a starting state of (α0, β0) = (α, β) + ϵ leads to (α, β) as the final state. Therefore,

we would have:

limt⇒∞(αt, βt) = (α, β). (18)

The intuitive significance of the above definition is that a small perturbation from the steady state

is likely to lead to the system reverting back to its steady state. The aim of this is to model real

life situations in which minor transitory events lead to the system being perturbed from its steady

state. In such cases, stable steady states are more likely to reflect the final behavior of the model.

We make the following conjectures about the behavior of these models:

Conjecture 2.1 The solution (α, β) = (0.5, 0.5) is not stable.

The intuition behind this conjecture is that a reduction of the state probabilities below 0.5 for a

particular auction on the buyer side reduces the state probability at the seller side as well. (This

is because of the functional relationship between the state and transition probabilities.) the corre-

sponding transition probabilities on the seller side and vice-versa. This leads to a self sustaining

cycle of reduction on state probabilities for one of the two auctions. We currently do not have a

formal proof of this behavior, but will illustrate the process through simulation. Other observations

about the state probabilities are as follows:

Observation 2.4 The solutions (α, β) = (0, 1) and (α, β) = (1, 0) are stable.

14
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Figure 3: Markov Model for the Social Network

This observation is straightforward, because any perturbation which is lower than the critical mass

reverts the system to the steady state in the very next iteration.

The implications of the above observations are that the auction system is in a stable steady state in

case of one or the other auction dominating. In the next section, we will provide some empirical

simulations which illustrate the extent of the domination of the states.

2.2 Adding Temporal Memory to the Model

We note that the transition probabilities on the buyer side during a given time period are dependent

upon the state probabilities on the buyer side and vice-versa. In the model discussed above, we

have assumed that the transition probabilities during time period t are dependent upon the state

probabilities during the same time period t. This is purely a memoryless model, since the state

probabilities during earlier periods do not affect the transition probability. In practice, there may

be a delay in the process of buyers or sellers reacting to state changes in the Markov Model.

Therefore, we define a time averaged state probability as follows:

α′t
1 =

∑t
i=i α

i
1 · 2i−t·λ

2i−t·λ (19)

The value of 1/λ is defined as the half-life during which the importance of a state probability gets

reduced by half. We note that for very large values of λ, this corresponds to the purely memory
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less model. The transition probabilities during the time period t are defined as a function of the

time-averaged state probabilities during the same time period.

pt12 = f(β′t
1 ), p

t
21 = f(β′t

2 ), q
t
12 = g(α′t

1 ), q
t
21 = g(α′t

2 ) (20)

We note that the addition of memory to the model generally affects the rate of convergence to the

model, but it does not usually affect the state to which the system converges. A lower value of

λ increases the half life for calculating the relationship between the transition probabilities and

the state probability of the different Markov Models. This also increases the time required by the

model to reach steady state. In the next section, we will also study the effect of choosing different

values of the parameter λ.

3 Analysis for Social Networks

In this section, we will discuss the network effect for applications in which any pair of participants

may interact with one another. This is generally the case for socially focussed applications such as

chat rooms and social networks. For ease in discussion, we will assume the case of the social net-

working application, though these results can also be generalized to arbitrary applications. In the

case of a social network, the interaction may occur between any pair of nodes, and the probability

of a person joining a social network is highly dependent upon the probability of his friends being

a part of the social network as well. This is in turn dependent upon the probability that different

individuals become a part of the social network as well.

In order to build the Markov Model, we will make a number of assumptions. Unlike the auction

model, one of the key differences is that it is a possible for an individual to belong to multiple

social networks. However, at a given time, a person is active only in one network. Therefore, we

assume the following:

• At a given time, a person is active only in one social network.
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• The probability of a person being active on the social network at a given time is dependent

upon the probability that his or her friends are active on it.

We note that even though individuals may register for multiple social networks, they may stay

active on only one for long periods of time. The aim of this analysis is to show that there is a high

likelihood that a majority of the participants may be active on only one of the social networks.

The result of this is that one of the social networks becomes progressively more active, and the

remaining become less active.

In order to formally model the propensity of users to pick the most relevant social network, let

us consider two competing networks, and a user may pick any one of them. Correspondingly, we

create a Markov chain with two states. The two states correspond to a hypothetical user being

active in social network 1 and social network 2. Note that we have only one markov model in

this case, since we do not distinguish between buyers and sellers in this model. In Figure 3, we

have illustrated the defection model in which we have illustrated two hypothetical users of the

social network. A hypothetical user may shift between states 1 and 2. These states correspond to

his being active in social networks 1 and 2 respectively. The probability of an individual moving

between the two states are denoted by r12 and r21 respectively. The probability of an individual

staying in the same state are denoted by r11 and r22 respectively.

Let γ1 and γ2 be the steady state probabilities of the two states. Then, the steady-state relationships

between the two states are as follows:

γ1 · r12 = γ2 · r21

γ1 + γ2 = 1

We note that γ1 and γ2 also represent the steady state probabilities for an individual being in

networks 1 and 2 respectively. The transition probabilities are correspondingly defined as follows:

r11 + r12 = 1

r21 + r22 = 1
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Next, we examine how the state and transition probabilities of the Markov Model are connected to

one another. We note that the defection of a user from one social network to the other is dependent

upon the corresponding steady state probability. This is because a social network with a larger

number of users is likely to have a lower defection rate and vice-versa. This relationship is defined

by the non-increasing functions h(·):

r12 = h(γ1), r21 = h(γ2) (21)

The function h(·) is referred to as a defection function. This function is a non-increasing function

because a higher state probability at a social network corresponds to a lower probability of transi-

tion out of it. As in the case of the auction model, the function h(·) is defined over the probability

range (0, 1) and satisfies the following end-point relationship:

h(0) = 1, h(1) = 0

This corresponds to the fact that a user will not stay in an empty social network. Similarly, a user

will not leave a social network for one which does not have any other user.

The above-mentioned principle can be generalized further to use a minimum critical mass in order

to define a threshold at which user will join a social network. If the social network has fewer than

a certain fraction of the users, it will not stay viable, and all users will defect from it. We denote

this minimum critical mass by cn. Below this critical mass, a user will always move to the other

social network.

As in the previous case, we will define a linear functional form for relating the probability of

defection to the steady state probabilities. This linear function h(x) is defined in the probability

range (0, 1) ⇒ (0, 1) as follows:

h(x) =


1 0 6 x 6 cn

(1− cn − x)/(1− 2 · cn) cn 6 x 6 1− cn

0 1− cn 6 x 6 1

(22)
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We make the following observations as in the case of the auction model. The arguments are similar

to those of the case of the auction model. In fact, the arguments are simpler in this case, since we

are dealing with a single markov model rather than two connected models.

Observation 3.1 There are three possible steady states to this model:

• The first steady-state probability is γ1 = 0, γ2 = 1.

• The second steady-state probability is γ1 = 1, γ2 = 0.

• The third steady state probability is γ1 = 0.5, γ2 = 0.5

Of the three steady states, only two of them are stable. Therefore, we have;

Observation 3.2 Only two of the three steady states are stable. Specifically, the third steady state

γ1 = 0.5, γ2 = 0.5 is unstable.

These results are completely analogous to those for the case of the auction model. Next, we will

provide experimental results which show the effect on both models. Furthermore, as in the case of

the auction model, we can ass temporal memory to the social networking model with the use of the

parameter λ. Since the extension is very straightforward and can be done in an exactly analogous

way to the auction model, we omit a more detailed description.

4 Implications for Network Management

The results have a number of implications for the actual management of the network-based ap-

plications. The key implication is primarily for the case of networks which need to grow in the

presence of already existing dominant players. While the results of this paper seem to suggest that

the presence of a dominant player should be a deterrent to the entry of other players, it turns out
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that the results of this paper also have key implications for understanding the conditions that enable

the effective entry of secondary players in the field.

The key assumption for designing the competing models is that the interaction behavior of different

players is sufficiently similar so as to enable effective comparison of the different networks by

the participants. This is because the participants can make reasonable decisions about defection

behavior between different networks (based on the number of interacting participants), only if the

mode of interaction between the participants is very similar. This suggests that the best route for

entry of new players in any given network application domain in a presence of an existing dominant

player is the use of a completely different interaction model. We present some examples of how

a network can distinguish itself with the use of different kinds of features, which will appeal to

participants from different domains.

• An auction site which is designed with a sufficiently different bidding model than a currently

existing site is likely to attract a slightly different segment of the participants, because of the

different experience associated with the auction itself. For example, penny auctions charge

participants for the option to bid by raising the current bid by a penny. The auction makes

money which is generated by the potentially large number of bids entered by different par-

ticipants, though the final purchase price for the winner is a small fraction of the true price of

the item. In effect, the other bidders subsidize the price of the item for the final winner. This

provides a fast-paced “game aspect” to the auction which is enjoyable to the participants and

very attractive to certain kinds of players in spite of the presence of a dominant conventional

site such as Ebay.8

• Different social networking sites may have different kinds of connections which may lead

to different kinds of interactions. This may make them less prone to direct competition with

one another for participants, and may allow co-existence of participants across different

8For example the site QuiBids (www.quibids.com) has been very successful. The final prices of items are often

less than 5% of their true market prices.
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Figure 4: Final State of Model with Different Starting States

sites. For example, the concepts of followers and follower-centered tweets is quite different

from the modes of connections and communications on a site like Facebook. Similarly, a

professional site such as LinkedIn may allow for employer references and other professional

services which are not available at many other sites. This difference in site management and

features allows for the existence of multiple sites simultaneously.

In addition, the incorporation of interoperability with existing networks is an effective methodol-

ogy in order to negate the existing network effect of competing sites. For example, the Google

Social Circle application builds upon the Facebook connections of an actor in order to provide

leverage in the social network construction process. Thus, the addition of interoperability between

competing sites is one way for a secondary provider to quickly build upon the existing network

of the dominant network. In general, the goal is to design the network, so as to bypass the as-

sumption of direct competition between the different sites either on the basis of differentiation or

interoperability.
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Figure 5: Number of Iterations to Convergence with Different Starting states
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Figure 7: Progression of State Probabilities with Different Memory Parameters
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5 Experimental Simulations

In this section, we will illustrate some experimental simulations which confirm the convergence

behavior of the markov model for online auctions and social networks. We will also illustrate how

different starting points affect the behavior of the convergence towards a steady state. First, we

will simulate the case of online auctions. Then, we will study the case of social networks.

5.1 Simulation for Online Auctions

We construct a simulation of the Markov Model using MATLAB software. The use of the dynamic

variation of the model allowed us to test the behavior of the rate of convergence as well as the

effect of the initial states. Since real data about defection behavior in social networks and auction

networks is hard to obtain, we used a simulation for our study. An important issue to be examined

is how the initial choice of state probabilities affects the final state probabilities in the model. In

Figure 4, we have illustrated the behavior of the final state probabilities (after 100 transitions of

the Markov chain) with different initial state probabilities. In this case, the parameters were set

at cb = cs = 0.1 and λ = 1. The value of (α, β) was allowed to vary over the entire range of

possibilities in the unit square over 50 ∗ 50 = 2500 points in the grid. It is interesting to notice

that over almost the entire range of values, the model converged to either (0,0) or (1, 1). For

example, even when using the value of α0 = 0.5, β0 = 0.48, the system converged to the value

(0, 0). Intuitively, this means that even if one of the two auctions had a slight advantage over either

the buyer or seller side, this advantage is sufficient for one auction to overwhelm the other. This

is evidence of the fact that the state (0.5, 0.5) does not correspond to a stable steady state. The

only set of initial states (α0, β0) for which the system did not always converge to either (0, 0) or

(1, 1) was the set of values in the grid along the line α0 + β0 = 1. As is evident from Figure

4, for the entire range of values along each side of this dividing line, the final state of the model

takes on the value (0, 0) or (1, 1). The only set of values which converged to (0.5, 0.5) were found
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Figure 8: Rate of Convergence with different memory parameters
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Figure 9: Progression of State Probabilities with Different Critical Mass Thresholds

along the dividing line. We also note that in some cases, small rounding errors lead to the system

converging to (0, 0) or (1, 1), whereas the final state ought have been (0.5, 0.5). This is again an

evidence of just how unstable the state (0.5, 0.5) is in practice, since such errors are also likely to

be manifested as probabilistic variations in real life. Thus, this suggests that even with a relatively

even distribution between networks at the beginning, one of the networks is very likely to dominate

the other one at the end. In many cases, 100 transitions were not sufficient to reach convergence at

this point. This brings to the natural observation that a greater level of skew in the initial starting

states required a greater level of iterations for convergence. Next, we will study the effect of the

initial starting state on the number of iterations required for convergence.
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In Figure 5, we have illustrated the variation in the number of iterations with different initial

starting states. In this cases, we defined convergence as the minimum number iterations required

for one of the states to reach within 0.001 of the final steady state. As in the previous case, the

positions in the grid of initial values for (α0, β0) which are closer to the line α0 + β0 = 1 took

a longer time to converge than the points which were closer to (0, 0) or (1, 1). Intuitively this

means that while a small perturbation leads to one or the other auctions dominating, the rate of

convergence is heavily dependent upon the initial state. We also tested a few data points which

lay within 10−6 of the steady state (0.5, 0.5). In such cases, the system required more than 100

iterations to converge to the final value. In order to illustrate the effect of the initial starting state a

little better, we have illustrated the behavior of the convergence with the number of iterations for

different starting points in Figure 6. In each case, the value of β was chosen to be 0.5, whereas the

value of alpha was set to the three different values of α = 0.49, 0.499, 0.4999. It is clear that the

rate of convergence was heavily affected by the initial state, though the final state was the same

in all three cases. The closer the initial state was to 0.5, the longer it took to converge to the final

state. In the context of a real application, it means that a relatively even size of the network at the

initial phase results in a slower rate of dominance of one network over the other.

We tested the convergence behavior for different values of the memory parameter λ. In Figure

7, we have illustrated the progression of the state probabilities for different values of λ. In each

case, we chose an initial state probability of α0 = 0.50001, β = 0.5, and cb = cs = 0.1. It

is clear that a lower value of λ leads to slower convergence, but it does not affect the final state

to which the system converges. This situation is illustrated more explicitly in Figure 8 in which

we have plotted the total number of iterations to convergence for different values of the memory

parameter λ. The definition of convergence is the same as discussed earlier. These results illustrate

the natural conclusion that a higher amount of persistent memory leads to a slower and more stable

convergence, but does not affect the final disposition of the stable steady state. We note that a

higher level of memory corresponds to more persistent customers who take a longer time to realize

the benefits of using one auction over another. Correspondingly, the time required for one of the

25



0
0.1

0.2
0.3

0.4
0.5 0

0.1

0.2

0.3

0.4

0.5
0

50

100

150

200

250

Seller Side Critical Mass

Buyer Side Critical Mass

Ite
ra

tio
ns

 to
 C

on
ve

rg
en

ce

Figure 10: Number Of Iterations to Convergence with Different Critical Mass Thresholds

auctions to dominate the other is also greater. Finally, we tested the effect of the critical mass

on the convergence behavior. Our primary observation from these tests was that the critical mass

did not affect the final state to which the system converged. However, it did affect the rate of

convergence. In Figure 9, we have illustrated an example in which we have tested the progression

of the steady state probability for different values of the critical mass. In this case, the value of the

critical mass on both the buyer and seller side were set to the same value denoted by c. The values

of α0 and β0 were set at 0.49 and 0.5 respectively. It is clear that in each case, the value of αt finally

converged to 0 (corresponding to auction 2 dominating as it had the initial advantage). In order

to determine the convergence behavior more explicitly, we calculated the number of iterations

required for convergence for different combinations of the buyer and seller side critical masses cb

and cs. To do so, we created a 24 ∗ 24 grid corresponding to the ranges [0.02, 0.48] for the buyer

and seller side critical masses. In each case, we used a starting state of α0 = 0.51, β0 = 0.5.

The results are illustrated in Figure 10. It is clear that the lower the critical mass, the slower the

convergence of one of the auctions. This is a natural consequence of the fact that a lower critical

mass also makes it more difficult for one of the auctions to dominate the other. However, it did

not affect the final result in terms of the identity of the auction that dominated the other. From the

perspective of interaction-based networks such as auctions, the critical mass plays a key role in the

sustainability of the social network.
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Figure 11: Final State of Social Network Model with Different Starting States

5.2 Results for Social Network Model

In Figure 11, we have illustrated the behavior of the final state probabilities of the social network

model after 100 transitions of the Markov chain. We used different initial state probabilities for

γ. The value of γ was allowed to vary fully in the range [0, 1]. The other parameters were set at

cn = 0.1 and λ = 1. It is interesting to notice that over almost the entire range of values, the model

converged to either 0 or 1. It was only for the case of a starting probability of 0.5 that the system

converged to 0.5 as well. We note that even a slight variation from a starting state of 0.5 lead to a

convergence to one of the other two states. This shows that this state is unstable. In real networks,

a precisely pair of balanced networks is unlikely, and therefore one or the other network is more

likely to dominate. Next, we will examine the number of iterations it takes to reach convergence

for different starting states.

In Figure 12, we have illustrated the variation in the number of iterations with different initial

starting states. As in the previous case, we defined convergence as the minimum number iterations

required for one of the states to reach within 0.001 of the final steady state. We further note that

for a starting state of 0.5, the method did not converge after 500 iterations, and we terminated at

that point. Therefore, this particular coordinate was set at 500, but it does not imply convergence

in the figure. Clearly, it is evident that the closer the social network is to an initial starting state
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Figure 12: Number of Iterations to Convergence of Social Network Model with Different Starting

States

of 0.5, the slower the convergence. This is a natural result, since it suggests that a greater skew in

the initial probability distribution across the two social networks will lead to faster convergence.

Thus, a small perturbation leads to one or the other social networks dominating, and the rate of

convergence is heavily dependent upon the initial state. Therefore, a perturbation in a real social

network which draws members of one social network into another is likely to speed up the process

of one of the networks dominating the other.

6 Conclusions and Summary

In this paper, we provided an analysis of the network effect in two key kinds of web applications.

In one kind, interactions occur between distinct classes of entities, whereas in another, interactions

occur between the same class of entities. As examples, we model interactions in auctions and

social networks. We note that many other applications can be modeled in a similar way:

• The use of chat-rooms or forums has a very similar model as the social networking model.

This is also true of electronic commerce applications such as collaborative filtering (Shardanand

and Maes, 1995).
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• The use of any form of collaborative networking application may be modeled in a similar

way as one of the two cases depending upon whether or not the users are heterogeneous.

The final results are likely to vary across different applications because of the different importance

of the network effect in different systems. This may show up in the form of varying rates of

convergence or partial co-existence of different applications. However, the effect of this is likely

to be extremely powerful over time in most cases. For example, in the case of auctions, we already

see overwhelming evidence of a single dominant player.

The primary limitation of the model is its use of simplifying assumptions in terms of the user

being able to make efficient decisions decisions between two virtually identical networks, where

all other factors remain the same. In practice, the markets may not be completely efficient or the

competing networks may have sufficient differences in terms of features and usage which can make

a difference aside from the factor of network size. Nevertheless the model does provide a good

understanding of the dynamics of defection with respect to network size.

One of the goals of this work is to provide an understanding of the cases where the insights gleaned

from the work can be used by a network administrator. For example, the assumptions which

are necessary to guarantee the network effect, also provide an understanding of cases, where the

network effect does not hold. This provides an understanding to the administrator of a new network

about how it may be grown in the presence of another dominant network.

In future work, we will study the network effect in the context of models which are not completely

efficient, and the networks are asymmetric in terms of their level of attraction to different users.

We will study the interplay of these different factors and the dynamics of multiple networks in such

scenarios.
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