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Abstract

Socia networks generate a large amount of text content over
time because of continuous interaction between participants. The
mining of such social streams is more challenging than traditional
text streams, because of the presence of both text content and
implicit network structure within the stream. The problem of event
detection is also closely related to clustering, because the events
can only beinferred from aggregate trend changesin the stream. In
this paper, we will study the two related problems of clustering and
event detection in social streams. We will study both the supervised
and unsupervised case for the event detection problem. We present
experimental results illustrating the effectiveness of incorporating
network structure in event discovery over purely content-based
methods.

1 Introduction

In this paper, we will study the problem of clustering and
event detection in socia streams. Much of the text data in
social scenarios arises in the context of streaming applice-
tions, in which the text arrives as a continuous and massive
stream of text segments[2]. Such applications present a spe-
cial chalenge for mining algorithms, because of the fact that
it is often necessary to process the data in a single pass and
one cannot store all the data on disk for re-processing.

The online event detection problem is closely related
to that of topic detection and tracking [4, 5, 7, 14, 17, 22,
23, 24]. This problem is aso closely related to stream
clustering, and attempts to determine new topical trendsin
the text stream and their significant evolution. The idea is
that important and newsworthy events in rea life are often
captured in the form of temporal bursts of closely related
messages in a socia stream. The problem can be proposed
in both the supervised and unsupervised scenarios. In the
unsupervised case, it is assumed that no training data is
available in order to direct the event detection process for
the stream. In the supervised case, prior data about eventsis
available in order to guide the event detection process.

In this paper, we will study the problems of clustering
and event detection in social streams in which each text
message is associated with at least a pair of actors in the
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social network. We use the term social network rather
loosely, as it could refer to the messages in an online chat
messenger service, or it could even refer to an email network
in which messages are sent between pairs of actors. A
number of interesting issues arise in such social networks,
because they are dynamic, and are associated with network
structure in the stream. Specifically, each actor is a node
in the social network, and each message sent in the social
network is the text content associated with an edge in the
socia network. Clearly, multiple messages can be sent
between the same pair of actors over time. In this case,
we would like to use the topical content of the documents,
their temporal distribution, and the graphical structure of the
dynamic network of interactionsin order to detect interesting
events and their evolution. Clearly, messages which are sent
between atightly knit group of actors may be moreindicative
of aparticular event of social interest, than a set of messages
which are more diffusely related from a structura point of
view. Such messages are structurally well connected, when
the socia network is viewed as a graph, with the edges
corresponding to the messages sent between entities. This
is related to the problem of community detection [3], in
which we try to find structurally connected regions of the
social network. At the same time, the content and topics
of the documents should also play a strong role in the event
detection process. Thus, both network locality and structure
need to be leveraged in a dynamic streaming scenario for the
event detection process.

Therefore, the key challenges for event detection in
socia streams are as follows: (a) The ability to use both the
content and the (graphical) structure of the interactions for
event detection. (b) The ability to use tempora information
in the event detection process. For example, a new trend of
closely related text documents from a structural and content
point of view, which have not been encountered earlier may
correspond to a new event in the stream. (c) The ability to
handle very large and massive volumes of text documents
under the one-pass constraint of streaming scenarios.

This paper is organized as follows. The remainder
of this section presents related work. In section 2, we
present the model for event mining in social streams. The
algorithms for supervised and unsupervised event detection
are presented in section 3. In section 4, we present the
experimental results. Section 5 presents the conclusions and
summary.



1.1 Related Work The problem of determining eventsin
streamsis closely related to the problem of stream clustering
[2]. This method has been studied extensively by the text
mining community in the context of the topic detection and
tracking problem [4, 5, 7, 14, 17, 22, 23, 24]. This is
also related to the problem of clustering and topic modeling
[6, 22, 13, 16, 21, 27] in dynamic text streams.

However, in social networks, there is a rich amount of
structure available in determining the key events in the net-
work. For example, an event corresponding to Mideast Un-
rest may often correspond to text streams exchanged be-
tween members who are closely linked to one another based
on geographical proximity. While the use of linkages in or-
der to determine clusters and patterns has been widely stud-
ied by the social networking community [8, 9, ?, 11, 25],
these methods are typically designed for static networks.
Some clustering methods have recently also been designed
for dynamic networks[8, 9], though they do not use the con-
tent of the underlying network for the mining process. On
the other hand, some recent methods for pattern discovery
in networks use both content and structure [25, 28], though
these methods are not defined for the problem of event detec-
tion in the temporal scenario. A method in [15] is designed
to measure the diffusion and spread characteristics of known
and popular events, but is not designed for new event dis-
covery. In this paper, we design a method which can use
the content, structural and temporal information in a holistic
way in order to detect relevant clusters and events in social
streams.

2 Event Miningin Social Streams. The M odel

In this section, weintroduce the notations and definitions and
the model for event mining in social streams. Such social
streams are assumed to consist of content-based interactions
between structurally connected entities in the data. There-
fore, we will propose a number of notations and definitions
for this purpose. We assume that the structure of the socia
network is denoted by the graph G = (N, A). The node set
is denoted by N and edge set is denoted by A. The socid
stream corresponds to the interactions between the different
actorsin the node N, and each interaction is an edge drawn
from the linkage set A. Therefore, the graph G providesin-
formation about the universe of interactionsin the social net-
work. We next define the concept of asocial stream whichis
overlaid on this social network structure.

DEFINITION 1. (SOCIAL STREAM) A social stream is a
continuous and temporal sequence of objects Sy ... S,... .,
such that each object .S; corresponds to a content-based in-
teraction between social entities, and contains explicit con-
tent information and linkage infor mation between entities as
follows:

e Theobject S; contains a text document 7; which corre-

sponds to the content of the interaction of an entity in
the social network with one or more other entities.

e The object S; contains the origination node ¢; € N
which isthe sender of the message 7; to other nodes.

e The object S; contains a set of one or more receiver
nodes R; C N, which correspond to all recipients of
the message 7; from node ¢;. Thus, the message T; is
sent from the origination node ¢; to each node r € R;.
Itisassumed that each edge (g¢;, ) belongsto the set A.

Thus, the object S; is represented by the tuple (¢;, R;, T3).

We note that the above definition of a social stream captures
anumber of different natural scenarios in different kinds of
social networks:

o In the Twitter social network, the document 7; is the
tweet content, the node ¢; is the tweeting actor, and the
set R; isthe recipient set.

e Email and chat interaction networks may also be con-
sidered social networks with an exactly similar inter-
pretation to the above.

e In many socia networks, a posting on the wall of one
actor to another corresponds to an edge with the docu-
ment 7; corresponding to the content of the posting.

Such a socia stream typicaly contains rich information
about the trends which may lead to changes both in the con-
tent and the structural locality of the network in which the
interactions may occur. We begin with describing an unsu-
pervised technique for event detection, which continuously
characterizes the incoming interactions in the form of clus-
ters, and leverages them in order to report events in the data
stream. Weformally definethe social stream clustering prob-
lem.

DEFINITION 2. (SOCIAL STREAM CLUSTERING) A social
stream Sy ... S, ... is continuoudly partitioned into & cur-
rent clustersCs . . . Cy, such that:

e Each object S; belongs to at most one of the current
clustersC,.

e The objects are assigned to the different clusters with
the use of a similarity function which captures both the
content of the interchanged messages, and the dynamic
social network structure implied by the different mes-

sages.

We will use both the content and linkage information in
order to create the clusters. Since the clusters are created
dynamically, they may change considerably over time, asthe
stream evolves, and new points are added to the clusters.
Furthermore, in some cases, an incoming object may be



different enough from the current clusters. In that case, it
may be put into a cluster of its own, and one of the current
clusters may be removed from the set C; ...Cx. Such an
event may be an interesting one, especially if the newly
created cluster starts a new pattern of activity in which
more stream objects are subsequently added. At the same
time, in some cases, the events may not be entirely new,
but may correspond to significant changes in the patterns of
the arriving objects in terms of their relative distribution to
clusters. Therefore, we define two kinds of events, which are
referred to as novel events and evolution events in order to
describe these different scenarios.

DEFINITION 3. (NOVEL EVENT) The arrival of a data
point S; is said to be a novel event if it is placed as a sin-
gle point within a newly created cluster C;.

We denote the creation timefor cluster C; by t(C;). The event
in this case is the story or topic underlying the data point S;
and not the data point itself. We will discuss the process
for creation and maintenance of a cluster in a socia stream
dlightly later. Next, we define the concept of an evolution
event. An evolution event is defined with respect to specific
time horizon and represents a change in the relative activity
for that particular cluster. We first define the concept of
fractional cluster presence.

DEFINITION 4. (FRACTIONAL CLUSTER PRESENCE)

The fractional cluster presence for cluster C; in the time
period (t1,t2) is the fraction of records from the social
stream arriving during time period (¢1,t2), which belong
to the cluster C;. This fractional presence is denoted by
F(tl, t27 Cz)

The occurrence of a new event typically affects the
relative presence of the data points in the different clusters,
or it may result in anovel event. For example, the Mideast
Unrest event may result in either the creation of anew cluster
or the significant addition of new data points to the clusters
most closely related to thistopic. Thisis because it is often
possible for previously existing clusters to match closely
with a sudden burst of objects related to a particular topic.
This sudden burst is characterized by a change in fractional
presence of data pointsin clusters. Formally, we define such
an event as an Evolution Event. In order to determine such
evolution events, we determine the higher rate at which data
points points have arrived to this cluster in the previous time
window of length H, as compared to the that even before it.
A parameter « isused in order to measure this evolution rate.

DEFINITION 5. (EVOLUTION EVENT) An evolution event
over horizon H at current timet.. is said to have occurred at
threshold « for cluster C;, if theratio of the relative presence
of paintsin cluster C; over the horizon (t. — H,t.) to that
beforetimet. — H is greater than the threshold «. In other

Algorithm Social SreamClustering(NumClusters: k);
begin
Initialize clustersCy . .. C, to null;
Initialize 4, u, o, Mo, M1, M2 to0;
repeat
1 =141
Recelve next socia stream object .S;;
for each cluster C; compute Sim(S;, Cy);
Let r betheindex of cluster C,- with largest similarity to S;;
if (Sim(S;,Cr) < p — 3 - o) then replace most stale
cluster with anew cluster containing the single point S;;
elseadd S; to C;- and update statistics ¢,-(C-) of cluster Cy;
Update Mo, M1, M additively;
w = My /Mo;
o= \/]\/IQ/MO — ,LLQ;
until(end_of _stream);
end

Figure 1. Socia Stream Clustering for Event Detection
words, we have:

F(t. — H,t.,C;) N
F(t(ct)at(‘ - H7Cl) o

(2.1)

Furthermore, itisassumed that t. — 2 - H > t(C;).

We assumethat the value of t.—2- H islarger than the cluster
creation time ¢(C;) in order to define the afore-mentioned
evolution ratio in a stable way. This ensures that at least H
units of time are used in the computation of the denominator
of thisratio.

3 Social Stream Clustering

The design of an effective online clustering algorithm is the
key to the event detection process. Therefore, we will first
focus on the problem of online clustering. Then, we will
discuss how to leverage this clustering for event detection.
We assume that the clustering a gorithm uses the number of
clusters £ as input, and maintains the structural and content
information in the underlying clusters in the form of node
and word frequencies in the cluster. The clusters are de-
noted by C; ...C;. We assume that the set of nodes asso-
ciated with the cluster C; is denoted by V;, and the set of
words associated with it is denoted by W,. The set V; is
referred to as the node summary, whereas the set W; is re-
ferred to as the word summary. As we will see later, this
summary characterization can be used for assignment of in-
coming socia stream objectsto clusters. The set V; contains
the nodes j;1, jio - - - Jis, together with node frequencies de-
noted by v;; ...v;5. The word set W; contains the word
identifiers ;1, l;2, . . . [;5 together with word frequencies de-
noted by ¢;1, ¢i2 ... p;s. One challenge with maintaining
node summaries in large social networks is that the number
of nodes can be extremely large (in the hundreds of millions),
as a result of which the summary may be too large to use



efficiently, especialy in the online context. Later, we will
discuss how to use sketch-based methods in order to com-
pute the similarities more effectively. First, wewill discussa
more straightforward method for online maintenance of the
clusters with the direct use of the cluster-summary. Now, we
will formally define the concept of cluster-summary.

DEFINITION 6. The cluster-summary «;(C;) of cluster C; is
defined as follows:

e |t contains the node-summary, which is a set of nodes
Vi = {jin, Jiz - - - Jis, } together with their frequencies
M = Vi1 ... Vs,. Thenodeset V; is assumed to contain
s; hodes.

e |t contains the content-summary, which is a set of word
identifiers W; = {l;1,li2, ..., } together with their
corresponding word frequencies ®; = ¢;1, ¢ia - . . Piu; -
The content-summary W; is assumed to contain w;
words.

The overall summaryis;(C;) = (Vi, ni, Wi, ®;).

We design an online partition-based clustering method-
ology, in which a set of clustersC; ... C;, are maintained to-
gether with their cluster summaries ¢4 (Cy) ... 95 (Cr). As
new socia stream objects arrive, the clusters are continu-
ously updated. At the same time, the changes in the under-
lying clusters are continuously tracked and used in order to
raise darms for new events. First, we will discuss how the
clusters are maintained. We will discuss the process of con-
structing event alarms from cluster statistics slightly later.

In each iteration, we compute the similarity of the in-
coming social stream object S; to each cluster summary
1;(C;). The details of the similarity computation will be pro-
vided later. The incoming stream object is then assigned to
its closest cluster, unless the closest similarity value is sig-
nificantly lower than that attained for the stream objects en-
countered so far. In order to determine if the closest similar-
ity value is significantly lower than that attained by previous
stream objects, we maintain the mean p and standard devi-
ation o of al closest similarity values of incoming stream
objects to cluster summaries. The similarity value is said to
be significantly below the threshold, if itislessthan y—3-o.
We will describe the process of dynamically maintaining 1
and o at alater stage of the paper.

If the similarity value of the closest cluster is above the
threshold of 1 — 3 - o, then we can assign the incoming
stream object S; to its closest cluster centroid. Once the
stream object S; is assigned to its closest cluster centroid
C., we update the corresponding cluster summary v,.(C,.).
Specifically, any new nodes in S;, which are not aready
included in V,. are added to V., and the frequency of the
nodes of \S; which are included in V,. are incremented by 1.
We note that the nodes in \S; correspond to both the source

node ¢; and the destination nodes R;. In other words, the
set R; U {¢;} is used to update the set V. and its member
frequencies. The same approach is applied to the words in
W, with the use of the words in the social stream object
S;. The only difference in this case is that the frequencies
of the words are not incremented only by 1, but by their
frequency of presence in the underlying document. On the
other hand, if the similarity of S; to C, is greater than
u— 3 - o, then we create a singleton cluster containing only
the object S; and corresponding cluster summary statistics.
This cluster replaces the most stale cluster from the current
collection C; . ..Ci. The most stale cluster is defined as the
one which was updated the least recently. In the event that
a null cluster exists (which has never been updated), it is
automatically considered the most stale cluster. Any tiesare
broken randomly.

It remains to explain how the similarity of the stream
object S; isto computed to the cluster C,.. In order to com-
pute the similarity, we need to compute both the structural
SimS(S;,C,)) and the content components SimC(S;,C,)
of the similarity value. The content-components of the sim-
ilarity is straightforward, and is ssimply the tf-idf based [18]
similarity between the content T; (belonging to social stream
object S;) and the content TW,.. Next, we discuss how to
compute the structural similarity between the nodes V,. and
the nodes R; U {¢;} in the social stream. Let B(S;) =
(b1, ba, ... bs, ) bethe bit-vector representation of R; U {qg;},
which has a bit for each node in V., and in the same order as
the frequency vector n = (vp1, Vra, . . . Urs,.) Of V.. The bit
valueis1, if the corresponding nodeisincluded in R; U {q; }
and otherwise it is 0. The structural similarity between the
object S; and the frequency-weighted node set of cluster C,.
is defined as follows:

Zf;l by - Vrt
1R U {ai ] - (3252, vre)

Note that we are using the L;-norm of the node-frequency
vector in the denominator as opposed to the normal use of the
Lo-norm in order to penalize the creation of clusters which
aretoo large. Thiswill result in more balanced clusters.

The overall similarity Sim(S;,C,) iscomputed asalin-
ear combination of the structural and content-based similar-
ity values.

(3.3)
Sim(S;,Cr) = A - SimS(S;,Cr) + (1 = A) - SimC(S;,C,)

(32  SimS(Si,C,) =

The parameter X is the balancing parameter, and lies in the
range (0, 1). This parameter is specified by the user.

It remains to explain how we maintain the mean and
standard deviation of the (closest) similarity values of the
incoming objects to the clusters. For this purpose, we
maintain the zeroth, first and second order moments M,
My and M, of the closest similarity values continuously.



These values can be easily maintained in the stream scenario,
because they can be additively maintained over the data
stream. The mean p and standard deviation o can be
expressed in terms of these moments as follows:

=M /My, o =+/My/My— (M;/My)?

The overall algorithm for cluster maintenance is illus-
trated in Figure 1. The main challenge of this algorithm is
that the node based statistics can be rather large and the cor-
responding similarity computations cumbersome. For exam-
ple, the number of nodes in V,. may be of the order of tens
of millions and this can make the algorithm extremely slow.
Therefore, we will design a sketch-based technique in order
to speed up the computations.

3.1 Sketch-based Speedup In this section, we discuss
the sketch-based technique for maintaining node statistics.
Sketch based techniques [10] are a natural method for com-
pressing the counting information in the underlying data so
that the broad characteristics of the dominant counts can be
maintained in a space-efficient way. In this paper, we will
apply the count-min sketch [10] for maintaining node counts
in the underlying clusters. In the count-min sketch, ahashing
approach is utilized in order to keep track of the node counts
in the underlying data stream. We use w = [In(1/4)] pair-
wise independent hash functions, each of which map onto
uniformly random integers in the range b = [0, ¢/¢], where
e isthe base of the natural logarithm. The data structureitself
consists of atwo dimensiona array with w - h cells with a
length of h and width of w. Each hash function corresponds
to one of w 1-dimensional arrays with h cells each. In stan-
dard applications of the count-min sketch, the hash functions
are used in order to update the counts of the different cells
in this 2-dimensional data structure. For example, consider a
1-dimensional data stream with elements drawn from amas-
sive set of domain values. For example, in our application,
this domain of values corresponds to the different node iden-
tifiersin the social network. When anew element of the data
stream is received, we apply each of the w hash functions to
map onto anumber in [0. ..~ — 1]. The count of each of the
set of w cellsisincremented by 1. In order to estimate the
count of an item, we determine the set of w cells to which
each of the w hash-functions map, and compute the mini-
mum value among al these cells. Let ¢; be the true value of
the count being estimated. We note that the estimated count
isat least equal to ¢;, since we are dealing with non-negative
counts only, and there may be an over-estimation because of
collisions among hash cells. Asit turns out, a probabilistic
upper bound to the estimate may also be determined. It has
been shown in[10], that for adatastream with T" arrivals, the
estimateisat most c; + € - T' with probability at least 1 — 6.
In order to use the count-min sketch for improving the
node-count estimation process, we maintain a sketch table

for each cluster in the data. The sketch table is used for the
purpose of maintaining the frequency counts of the nodes
in the incoming data stream. Specifically, the sketch table
for the jth cluster is denoted by U;. If desired, we can use
the same set of w hash functions for the different clusters.
The main condition isthat the set of w hash functions should
be independent of one another. For each incoming object
S;, we update the sketch table for the cluster to which it is
assigned on the basis of the similarity measure. We apply the
w different hash functions to the (string representation of the
identifier of the) nodesin R; U {¢; }, and add 1 to the counts
of the corresponding cells. Thus, for the incoming object
R;, we need to apply each of hash functions to the different
|R;| + 1 different nodes, and update the corresponding cells.
This corresponds to an application of (|R;| + 1) - w hash
function instantiations and corresponding cell updates.

The sketch-based structure can aso be used to effec-
tively estimate the similarity value Sim.S(S;,C,). We note
that this similarity computation needs to be performed for
each cluster C,., and its corresponding sketch table U.. in or-
der to determine the closest cluster to the incoming object
based on the composite similarity measure. The denomina-
tor of SimS(S;,C,) can be exactly estimated, because the
object S; is known, and therefore the value of /| R; U {¢; }|
can also be known exactly. The value of Y7, v,, can also
be known exactly, because it issimply equal to the sum of all
the values in the sketch table cellsin U,. for any one of the w
hash functions. Thus, this value may be obtained exactly by
summing up the h cells for any particular' one of the hash
functions. On the other hand, the numerator needs to esti-
mated approximately. Note that the numerator is essentially
defined by the sum of the estimated values of the frequencies
of thenodesincluded in R; U {q;}.

The frequency of each such node can be estimated in
a manner discussed in [10]. Specificaly, for each node
included in R; U {¢;}, the corresponding cluster-specific
frequency of the node can be obtained by applying the hash
function to theidentifier of each node. We note that the value
of the corresponding hash cell will alwaysbe an overestimate
because of collisions between the different nodeidentifiersto
the same hash cell. Therefore, the minimum of these values
across the w different hash functions will also be an over-
estimate, though it will be much tighter and more robust
because of the use of different hash functions. We sum up
these estimated frequency values over the different nodesin
R; U{q;}. Thisisessentially the estimate of the numerator.
This estimation of the numerator can be used in conjunction
with our exact knowledge about the different denominator
values in order to create an estimate of SimS(S;,C,.). Let
EstSimS(S;, C,) represent the estimated similarity of .S; to

TThe sum of the h cells would be the same, no matter which hash
function is picked.



C, with the use of the sketch-based approach. Then, we can
show the following result:

LEMMA 3.1. If a sketch-table with length h and width w
is used, then for some small value ¢ > +/|R;|+ 1/h,
the estimated value of the similarity FstSimS(S;,C,) is
bounded to the following range with probability at least

- (5

h-€
(3.9
SimS(S;,Cr) < EstSimS(S;, Cr) < SimS(S;,C,) + €

Proof. As discussed earlier in Equation 3.2, the structural
similarity is given by the following equation:

22;1 bt *Urt
[R: U{qiH] - (007, vre)

We note that the numerator is (over)-estimated approxi-
mately with the use of the sketch-based process, whereas
the denominator can be known exactly. It is evident that
SimS(S;,Cr) < EstSimS(S;,C,) because of the over-
estimation of the numerator. It remains to show that
EstSimS(S;,C) < SimS(S;,C,) + e with probability at

VIR |+1 v
least 1 —  Y—5—

Let SimSN(S;,C.) and EstSimSN(S;,C,) be the
estimation of the numerator with the sketch-based approach.
Then, since the denominator can be computed exactly, we
have:

(35)  SimS(Si,C,) =

EstSimSN(S;,C,)

VIR 41 (300 vrt)

(36)  EstSimS(S;,C,) =

Furthermore, we have:
SimSN(S;,C,)
VIR +1- (32 vet)

Therefore, in order to prove the result in the lemma we
need to prove bounds on the approximation in the numerator.
Specifically, we need to prove that the following holds true

with probability at least 1 — <Vf‘”1)
(3.8)
EstSimSN(S;,C,) < SimSN(S;, C,)+e

(3.7) SimS(S;,Cr) =

VIR +1- Z

Let us abbreviate one of the terms on the right hand side
of the above equation by B = € - /|R;| + 1 - (3_;7, vrt).
In other words, we need to show the above bound on the
probability for the condition that:

(3.9 EstSimSN(S;,C.) — SimSN(S;,C,) < B

The expected value of the estimation of SimSN(S;,C,) —
SimSN(S;,C,) with the use of any particular hash function

is (|Ri| + 1) - (3232, vre)/h. This is because, we need
to sum up the errors over |R;| + 1 different frequency
estimations, and the expected number of collisions for any
of these cell-based estimations is (3°;7, v,+)/h. Then, we
can use the Markov inequality to show that the probability
that the condition in Equation 3.9 is violated with the use of
1 hash function with probability at most M

We can generalize the probability of this to w mdependent

hash functions to at most ( { B 0200 veo) " Therefore,
the condition in Equation 3.9 holds with probability at least
1— (—“R”H)g%f;l ””))w. By substituting the value of B
in the above equation, we get the desired result.

The above result suggests that the value of the similarity can
be estimated quite accurately with the use of modest memory
requirements of a sketch table. For example, consider a
tweet with |R| ~ 100, and a similarity estimation bound
of ¢ = 0.001. If we use a sketch table with &4 = 200, 000
and w = 5 (typica values), it will require a storage of
only 1 million cells, which is in the megabyte order. The
similarity estimate lies within e = 0.001 of the true value
with probability at least 1 —(1/20)® > 1—1075. In practice,
since these theoretical bounds are quite loose, the estimates
are much better.

3.2 Event Detection with Clustering The clustering
method discussed above can be used directly in order to per-
form the event detection. As discussed before, the event de-
tection algorithm uses a time horizon H as the input which
is used for the event detection process. In order to perform
the event detection, we monitor the ratio % for
each cluster C; continuously over time, and trigger an alarm
whenever thisratio exceeds the threshold of «.. Thissuggests
a significant change in the underlying social stream, which
is detected by a significant change in the ratios of stream ob-
jects being assigned to the different clusters.

3.2.1 Supervised Event Detection The afore-mentioned
approach discusses the case of unsupervised event detection
in which we only try to find significant events in the socia
network without any particular regard to their nature. In
actice, one may want to detect known events which have
E’ encountered earlier in the stream. This is the case of
supervised event detection. In this case, we assume that we
have access to the past history of the stream in which the
event £ has been known to have occurred. In addition, we
have information about at least a subset of the socia stream
tweets which are relevant to this particular event. Thisisthe
ground truth which can be leveraged for more accurate event
detection.
In order to perform supervised event detection, we
need to make some changes to the clustering portion of the



algorithm as well. One major change isthat we do not allow
replacement of old clusters or creation of new clusters when
a new incoming point does not naturally fit in any cluster.
Rather, it is always assigned to its closest cluster, with any
ties broken randomly. This is done in order to provide
stability to the clustering characteristics, and is essential for
characterizing the events in a consistent way over time with
respect to the clustersin the underlying data.

The relative distribution of event-specific stream objects
to clusters is used as a signature which is specific to the
event. These can be used in order to perform the detection
in real time. The assumption in the supervised case is that
the training data about the social stream objects which are
related to the event are available in the historical training
data. The signature of the event £ is defined as follows.

DEFINITION 7. (EVENT SIGNATURE) The event signature
of asocial streamisa k-dimensional vector V' (£) containing
the (average) relative distribution of event-specific stream
objects to clusters. In other words, the ith component
of V(&) is the fraction of event-specific (training) stream
objects which are assigned cluster i.

Clearly, the event signature provides a useful characteriza
tion of therelative topical distribution during an event of sig-
nificance. For example, during a period of mideast unrest
(the event &), some clusters are likely to be much more ac-
tive than others, and this can be captured in the vector V' (£),
aslong as ground truth is available to do so. The event sig-
natures can be compared to horizon signatures, which are
essentially defined in the same way as the event signatures,
except that they are defined over the more recent time hori-
zon (t. — H, t.) of length H.

DEFINITION 8. (HORIZON SIGNATURE) The horizon sig-
nature over the last time period (t. — H,t.) is a k-
dimensional vector containing the relative distribution of so-
cial stream objects to clusters which have arrived in the pe-
riod (t. — H, t.).

In order to perform the supervised event detection, we simply
compute the dot product of the horizon signature with the
known event signature (which was computed by the ground
truth), and output an alarm level which isequal to thisvalue.
The tradeoff between false positives and false negatives is
determined by the threshold chosen to decide when such an
event has really occurred.

4 Experimental Results

In this section, we will study the clustering and event detec-
tion algorithms for effectiveness and efficiency. We used two
real data setsto evaluate the effectiveness of our approach.

4.1 Data Sets Our agorithm was tested on the following
two data sets:

Twitter Social Stream: Thisisastream of tweetswhich was
crawled from the Twitter social network. Each socia object
contains the network structure and content in a tweet. The
stream contained a total of 1,628,779 tweets, which were
distributed over a total of 59,192,401 nodes. The nodes
include the sender and the receivers either in the form of
direct mentions from senders or their followers in the case
of broadcast messages. On the average, each stream object
contained about 84 nodes per twest.

Enron Email Stream: The well known Enron email data
set? was converted to a stream with the use of the time stamp
information in the emails. Each object contained the text
of the email, and the network structure corresponding to the
sender and receiver(s). In this sense, the network structure of
an emalil is very similar to a tweet with a single sender and
multiple receivers. The Enron email data stream contained
atotal of 517,432 emails. We eliminated emails that did
not have valid sender and receiver email identifiers. We
also filtered out the calender invites, duplicate emails, and
the email history at the bottom of each email. The total
emails after the filtering process were 349911, which were
distributed over atotal of 29,083 individuals. Onthe average,
each email contained 3.62 receivers.

4.2 Evaluation Measures We tested both the clustering
and event detection methods for effectiveness. For the case
of efficiency, we tested only the clustering method, because
the majority of the time for event detection was spent in
the clustering process. In order to test the effectiveness,
we used a number of class labels which were associated
with the objects in the social stream. For the case of the
Twitter stream, these class labels were the hash tags which
were associated with the tweet. The most frequent hash tags
in the stream often correspond to events in the stream such
as Uganda protests or the Japan Earthquake, and represent
meaningful characteristics of the underlying objects which
ought to be clustered together. These hash tags also often
represent the meaningful events in the stream. We note that
not every tweet may contain hash tags, and therefore, the
hash tags were only associated with a subset of the tweets.
For the case of the Enron email stream, the class labels
were defined by the most frequently occurring tokens in the
subject line. These tokens were as follows:
meeting, agreement, gas, energy, power, report, update, request, conference,
letter, deal, credit, california, trading, contract, project, presentation,
houston, announcement

All emails which contained any of the above tokens in
the subject line were tagged with the corresponding class
label. Thus, for both data streams, a subset of the stream
objects were tagged with a class label. Clearly, clusters of
high quality would tend to put objects with similar tags in

2http ://www.cs.cmu.edu/~enron/



the same cluster. Therefore, we computed the dominant class
purity of each cluster. For each cluster, we determined the
tag with the highest presence, and computed the fraction of
the (tagged) cluster objects, which belonged to that label.
This value was averaged over the different clusters in a
weighted way, where the weight of acluster was proportional
to the number of (tagged) objectsinit.

We aso tested the efficiency of the socia stream clus-
tering process. In order to test efficiency, we computed the
number of socia stream objects processed per unit of time,
and we presented this number for the different algorithms.

We also also tested the effectiveness of the event detec-
tion agorithm. For the case of the unsupervised agorithm,
we will present a case study, which illustrates the interest-
ing events found by the technique. This provides an intuitive
idea about the effectiveness of the technique. For the super-
vised algorithm, we first need to generate the ground truth
for the supervised agorithm. For this purpose, we used the
hash tags in the Twitter Stream in order to generate a 0-1 bit
stream corresponding to when the events actually occurred.
We used the two hash tags corresponding to #japan and
#uganda in order to generate the events in our Twitter data
stream. Specifically, a each time stamp, we looked at the
past window of length h and counted the number of occur-
rences of a particular hash tag in that window. If the number
of occurrences of the hash tag was at least 3, then we gen-
erated abit of 1 at that time stamp to indicate that the event
has indeed occurred.

We note that our supervised event detection agorithm
generates a continuous alarm level. It is possible to use
a threshold ¢ on this continuous alarm level in order to
generate a 0-1 bit stream corresponding to the algorithmic
prediction of when the event has occurred. By using different
thresholds ¢ on this alarm level, we can obtain different
tradeoffs between precision and recall. Let Sz (t) be the set
of time stamps at which an alarm is generated with the use
of threshold value of ¢ on the real alarm level. Let S be
the ground truth set of time stamps at which the event truly
occurs. Then, Precision(t) and Recall(t) can be computed
asfollows:

" _ 1Sr(t) N Sq|
(4.10) Precision(t) = W
(4.11) Recall(t) = ISr(t) N Se|
|Sc|
(4.12)

We presented the tradeoff between the precision and recall
by varying the value of ¢ in order to generate a plot between
the two.

4.3 Algorithm Variationsand Baseline We tested differ-
ent algorithm settings to determine the effect of content and
network structure on accuracy and efficiency. We note that

by setting \ to the extreme values of 0 and 1, we can test
how well the algorithm performs, when we use either the
network only, or the text only for the clustering process. We
al so tested a combination schemein which the value of A was
set to 0.5. Thiskind of scheme provides equal weight to the
text and content in the clustering and event detection process.
For the combination scheme, wetested it both with and with-
out the sketch in order to estimate the effects of sketch use
on the scheme in terms of accuracy and efficiency. We note
that the text-only variation can be considered quite similar to
the stream text-clustering approach discussed in [1]. There-
fore, this variation also serves as a good baseline, because
the use of pure text content isthe only natural alternative for
this problem at this juncture.

4.4 Effectiveness Results for Clustering First, we will
present the effectiveness results of the clustering algorithm
in terms of the cluster purity. We tested the effectiveness of
the approach with increasing number of clusters. The results
for the Twitter and Enron streams are illustrated in Figure
2(a) and (b) respectively. The sketch table length h was set
to 262,213, whereas the sketch table width w was set to 2
for the Twitter socia stream, and these values were set to
16,369 and 2 for the Enron data stream. In each case, we
have illustrated the number of clusters on the X-axis, and
the cluster purity on the Y'-axis. A very interesting trend was
observed for both the data sets in terms of the relative perfor-
mance of the different algorithms. In all cases, the algorithm
which used only text performed the worst among all the a-
gorithms. The trends between the purely network-based ap-
proach and combined approach were dependent upon the
level of granularity at which the clustering was performed.
For both data streams, we found that when a small number
of clusters were used, the network-based approach was supe-
rior. When alarger number of clusters were used, the combi-
nation methods outperformed the purely network-based ap-
proach. This is because the network locality information is
more than sufficient to effectively partition the clusters, when
the granularity is relatively coarse. In such cases, the addi-
tion of text does not improve the quality of the underlying
clusters, and can even be detrimental to clustering quality.
However, when the number of clusters increases, the com-
bination approach tends to perform better, because the gran-
ularity of the clusters is much higher, and therefore more
attributes are required to distinguish between the different
clusters. This is particularly evident in the case of the En-
ron data stream, in which the gap between the combination-
approach and purely network-based approach is rather large.
In al cases, we found that the use of sketches lead to some
loss of accuracy. However, this loss of accuracy is not very
significant, especially when we consider the fact that the
sketch-based approach was significantly faster. It isalso im-
portant to note that the pure text-based approach (which is
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Figure 2: Effectiveness Results for Clustering

our baseline) performed the worst in al scenarios. These re-
sults also seem to suggest that the network information in the
socia stream provides much more powerful information for
clustering as compared to the text-information. This is not
particularly surprising for sources such as the Twitter data
stream in which the text is rather noisy and often contains
non-standard acronyms or other text which are hard to use
in a meaningful way. However, we found it somewhat in-
teresting and surprising that these trends were also true for a
source such as the Enron data stream, in which the text was
relatively clean and was usually quite informative for the un-
derlying class labels.

We have dso illustrated the cluster purity with progres-
sion of the stream. This provides a dynamic idea of how
the clustering process performed during the progression of
the stream itself. The results for the Twitter and Enron data
streams are illustrated in Figures 2(c) and (d) respectively.
The number of clusterswasfixed to 750. For the Twitter data
stream the sketch table length was fixed to 262,213 and for
Enron it was set to 16,369. The sketch table width was fixed
to 2 in both cases. The X -axis illustrates the progression of
the stream for every 1000 objects processed, and the Y'-axis
illustratesthe cluster purity in the last timewindow of 1 hour.
The relative trends between the different methods are similar
to our earlier observations, though the main observation is
that the cluster purities generally reduce with progression of
the stream. The reason for this is that the number of class
labels in the stream generally increase over the progression
of the stream, as new classes, tags and events are encoun-

tered. As aresult, the cluster purity also generally reduces
with stream progression.

Finally, we aso tested the sensitivity of the approach
with sketch-table length and width. The sensitivity re-
sults with increasing sketch-table length for the Twitter data
stream isillustrated in Figures 2(€). The sketch table length
isillustrated on the X -axis, whereas the cluster purity isil-
lustrated on the Y-axis. The number of clusters was set to
500 in this case and sketch table width was set to 2. We have
also shown the results for the method which does not use the
sketch in the same figure in order to provide a baseline for
the relative effectiveness of the incorporation of the sketch
structure. It is clear that the cluster-purity increases with in-
creasing sketch-table length. Thisis because alarger sketch-
table length reduces the number of collisions in the sketch
table, and it therefore improves the overal accuracy. We
also note that when the sketch-table length is increased suf-
ficiently, the accuracy of the approach based on the sketch-
table approaches that of the method which does not use the
sketch table. In such cases, the collisions reduce sufficiently
to the point that there of reduction in accuracy because of
sketch=table use.

We aso tested the sensitivity of the approach with
increasing sketch-table width. The sensitivity results with
increasing sketch-table width for the Twitter data stream is
illustrated in Figures 2(f). The number of clusters was set to
500 and sketch-table length was set to 262,213. While the
effectiveness results improve with increasing sketch-table
width, it is evident that the purity results are not quite as



sensitive to sketch-table width, as they were to the sketch-
table length. This is because an increase in the number of
hash functions provides additional robustness, but it does
not drastically reduce the number of collisions between the
different items.

45 Efficiency Results for Clustering We also tested the
efficiency of the clustering approach with increasing number
of clusters. The parameter settings were the same as those of
the effectiveness results. The efficiency results for the Twit-
ter and Enron data streams are illustrated in Figures 3(a) and
(b) respectively. The X-axis denotes the number of clus-
ters, whereas the Y'-axis denotes the number of stream ob-
jects processed every hour. It is evident that the network-
based approach was much slower than the text-based ap-
proach. Thisis because of the large number of distinct nodes
which need to be processed by a text-based approach. How-
ever, the sketch-based approach is significantly faster in both
data streams, because of the fact that the number of opera-
tionsin the similarity computation are reduced by the sketch
representation. Another interesting observation is that the
processing rate did not necessarily reduce with increasing
number of clusters. Much of this was aso because the a
larger number of clusters resulted in faster similarity com-
putations between incoming objects and the underlying clus-
ters. Thisis because a larger number of clusters resulted in
sparser clusters with fewer number of objectsin each cluster.

We aso tested the efficiency with stream progression
and present the results in Figure 3(c) and (d) respectively.
The stream progression is illustrated on the X -axis, and the
processing rate isillustrated on the Y-axis. It is evident that
the processing rate reduces with stream progression for al
the different methods. This is because the clusters contain
a larger number of objects with progression of the stream.
This increases the complexity of the similarity computations
because the number of attributes in each cluster (in terms
of the number of text words or nodes) increases as well.
However, this slow-down levels out after a certain point as
the number of attributes in each cluster stabilizes.

We dso tested the sensitivity of the approach with
hash-table length and width. The sensitivity results with
hash-table length and width for the Twitter data streams
are illustrated in Figures 3(e), and (f). It is evident from
the figures that the running time is not very sensitive to
the hash table length, and most of the variations are really
random variations. On the other hand, the hash table width
affects the number of hash functions which need to be
computed. Therefore, the running time generally reduces
with increasing hash table width. These results seem to
suggest that a greater hash table width is not particularly
useful because it does not affect the purity very much, but
it affects the efficiency substantially. Therefore additional
memory should be used for increasing hash table length

rather than width.

4.6 Unsupervised Event Detection Case Study In this
section, we provided a case study of the unsupervised event
detection problem. Both evolutionary and novel events were
detected with the use of this approach. Typically, such events
were associated with a particular news, country, language or
mood.

The first event was related to the Japan nuclear crisis.
In particular, the relevant segment of the social stream
corresponds to the case where the Japanese Prime Minister
requested the Chubu electric company to shut down the
Hamaoka nuclear plant. This event generated considerable
chatter in the social stream, in which the underlying actors
were discussing the positives and negatives of this directive.
The corresponding portion of the social stream contained
structural nodes which were geographically biased towards
Japan, and generally created clusters of their own on the
basis of the underlying network and content information.
The frequent text content in these clusters included the
following words:

nuclear, hamaoka, plant, concerns, dilemma, gaswat, hairline, halt,
shut, heavy, japan, neglect, operation (1.152)

One interesting aspect of our algorithm was that it was
able to detect events, for which the content was in a foreign
language. The reason for this is that the event detection
agorithm does not use any methods which are specific to
English, and the use of network structure is blind to the use
of a specific language. For example, the minister for finance
in Indonesia issued an order on May 9, 2011 to buy 7% of
the shares in PT Newmont Nusa Tenggara company. This
triggered discussion threads in twitter which were captured
because of their related content and network structure. The
frequent text-content which was associated in the cluster
most related to this event was the following:

keputusan, menkeu, beli, newmont, saham, wapres, didukung, chal-
lenge, minskade, metro, jak, kimiad, menos (0.9964)

We note that the entire text content in this event consists
of foreign language words.

Our event detection algorithm was also capable of con-
necting related events. Thisis because the actors and events
are often overlapping in such cases. Thisoverlap could result
in the placement of closely related events in the same clus-
ter. An example of this were the protests on May 9, 2011 on
the Gay bill death penalty in Uganda. Many of these same
actors were also discussing issues related to the Kentucky
anti-gay marriage law, even though the two events were ge-
ographically quite disparate. As a result, these two related
events were reported as a single composite event, since they
reflected issues which were discussed in relation to one an-
other by the participants. The corresponding content words
were as follows:

protest, power, sign, identity, much, please, political, citizens, petition,
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Figure 3: Efficiency Results for Clustering

stop, kill, gays, bill, kentucky, progress, support (0.6490)

Thus, our unsupervised event detection approach was
capable of discovering interesting and novel events in the
underlying socia stream. Such inference can be very useful
in diagnosing important social moods which are related to
real events.

4.7 Supervised Event Detection We aso tested the su-
pervised event detection method on the Twitter stream. To
create the supervised events, we set the horizon to 5 minutes
and determined the periodsin which events corresponding to
the Japan Nuclear Crisisand Uganda Protest occurred inthe
data stream. In each case, we set the number of clusters to
750 in order to detect the underlying events. We illustrated
the tradeoff between the precision and recall on Figures 4(a)
and (b) respectively. The recall isillustrated on the X -axis,
whereas the precision is illustrated on the Y-axis. In each
case, we have implemented the event detection agorithm
with different variations of the algorithm. It is clear that the
use of only text did not provide as accurate an event detec-
tion than all the methods which used network structurein the
event detection process. |n particular, the method which used
both the network structure and the text content provided the
most accurate results. The use of sketches degraded the accu-
racy to some extent, but the approach was still more accurate
than that with the use of pure text. It is also evident that the
absolute values of precision and recall were fairly high. For
example, in the case of Japan Nuclear event, a precision of
0.525 was obtained at arecall point of approximately 0.62,
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when both network and text were used. On the other hand,
the scheme which used only either text or network achieved
aprecision of about 0.3 at arecall point of around 0.6.

In the case of Uganda Protests, the differences between
the different methods were even sharper. Both combination
methods were extremely accurate, and maintained a preci-
sion of 1 a arecal point of around 0.6. This essentially
means that the top reported alarms (in terms of alarm mag-
nitude) were all correct up to the point where 60% of the
correct alarm points were detected. On the other hand, the
text-based baseline provided a precision of only about 0.5 at
the same recall point. This means that about 50% of the re-
ported alarms were incorrect at the same recall point. The
purely network-based method was also not significantly bet-
ter in this case. Thus, the use of a combination of network
and text greatly improved the accuracy of the event detec-
tion algorithm. These results seem to suggest that our ap-
proach of combining network and text content for clustering
and event detection can provide useful and accurate results
in awide variety of scenarios.

5 Conclusionsand Summary

In this paper, we proposed new methods for clustering and
event-detection in social streams. We show that the use
of content- and network-stream based clustering and event
detection has a humber of fundamental advantages which
cannot be easily handled by pure text-based methods, which
arethe current state-of-the-art. Our results suggest that social
streams can be used as a valuable resource to monitor and
detect relevant and interesting events in the social stream.
We present experimental results on a number of real socid
streams, which illustrate the effectiveness of our approach.
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