MANAGING AND MINING SENSOR DATA






MANAGING AND MINING SENSOR DATA

Edited by

CHARU C. AGGARWAL
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Kluwer Academic Publishers
Boston/Dordrecht/London



Contents

Preface

1

An Introduction to Sensor Data Analytics
Charu C. Aggarwal

1. Introduction

2. Research in Sensor Processing
3. Conclusions and Summary
References

2

A Survey of Model-based Sensor Data Acquisition and Management
Saket Sathe, Thanasis G. Papaioannou, Hoyoung Jeung and Karl Aberer

1. Introduction
2. Model-Based Sensor Data Acquisition
2.1 Preliminaries
2.2 The Sensor Data Acquisition Query
2.3 Pull-Based Data Acquisition
2.4 Push-Based Data Acquisition
3 Model-Based Sensor Data Cleaning
3.1 Overview of Sensor Data Cleaning System
3.2 Models for Sensor Data Cleaning
3.3 Declarative Data Cleaning Approaches
4 Model-Based Query Processing
4.1 In-Network Query Processing
4.2 Model-Based Views
4.3 Symbolic Query Evaluation
4.4 Processing Queries over Uncertain Data
4.5 Query Processing over Semantic States
4. Processing Event Queries
5. Model-Based Sensor Data Compression
5.1 Overview of Sensor Data Compression System

5.2
5.3
5.4
5.5
5.6
5.7

Methods for Data Segmentation
Piecewise Approximation
Compressing Correlated Data Streams
Multi-Model Data Compression
Orthogonal Transformations

Lossless vs. Lossy Compression

6 Summary

References

xiii

~N W

Ne



vi

3

MANAGING AND MINING SENSOR DATA

Query Processing in Wireless Sensor Networks
Lizin Wang, Lei Chen and Dimitris Papadias

1.
2.

or

7.
Refere

4

Introduction

Limitations of Sensor Nodes

2.1 Energy Constraint

2.2 Other Constraints
Topologies of WSNS

3.1 Tree-Based Topology

3.2 Multi-Path-Based Topology
3.3 Hybrid Topology

Data Storage

Data Acquisition and Aggregation
5.1 Query Models

5.2 Basic Acquisition and Aggregation

5.3 Secure Aggregation

5.4 Efficient Algorithms for Specific Aggregations

5.5 Join Processing

Other Queries

6.1 l\/é%del—Driven Data Acquisition and Probabilistic Queries
6.2 Event Detection

6.3 Approximation Queries

Conclusion

nces

Event Processing in Sensor Streams
Fusheng Wang, Chunjie Zhou and Yanming Nie

1.

5.
Refere

5

Events and Event Processing

1.1 Semantics of Events

1.2 Event Processing

1.3 Applications of Sensor Event Processing
Event Processing in Sensor Streams

2.1 Event Models for Sensor Streams

2.2 Sensor Event Detection

Event Processing over RFID Streams

1 RFID Events

2 RFID Complex Event Specifications

3 RFID Complex Event Detection Models

4 RFID Complex Event Detection Methods and Opti-
d

LW wWwWww

mizations

70
73
73
74

7

Advanced Topics on Complex Event Processing for Sensor Streams

9
4.1 Probability of Events
4.2 Disorder of Events
Conclusions and Summary
nces

[\

Dimensionality Reduction and Filtering on Time Series Sensor Streams
Spiros Papadimitriou, Jimeng Sun, Christos Faloutos and Philip S. Yu

1.

Introduction

93
93
96
96

103

104



Contents vii
2. Broader Overview 109
2.1 Dimensionality reduction 110
2.2 Compression and filtering 111
3. Principal Component Analysis (PCA) 113
4. Auto-Regressive Models and Recursive Least Squares 115
4.1 Auto-Regressive (AR) Modeling 115
4.2 Recursive Least Squares (RLS) 116
5. MUSCLES 117
5.1 Selective MUSCLES 117
6. Tracking Correlations and Hidden Variables: SPIRIT 119
6.1 Tracking the Hidden Variables 121
6.2 Detecting the Number of Hidden Variables 122
6.3 Exponential Forgetting 124
7. An Application-driven View: Putting Correlations to Work 125
7.1 Forecasting and Missing Values 125
7.2 Interpretation 126
8. Pattern Discovery across Time 126
8.1 Locally Optimal Patterns 129
8.2 Multiple-Scale Patterns 132
8.3 Streaming Computation 136
9. Conclusions 137
References 138
6
Mining Sensor Data Streams 143
Charu C. Aggarwal
1. Introduction 143
2. Sensor Stream Mining Issues 144
2.1 Data Uncertainty and Volume 145
2.2 Power Issues in Sensor Collection and Transmission 146
2.3 In-Network Processing 146
3. Stream Mining Algorithms 147
3.1 Data Stream Clustering 147
3.2 Data Stream Classification 150
3.3 Frequent Pattern Mining 152
3.4 Change Detection in Data Streams 153
3.5 Synopsis Construction in Data Streams 154
3.6 ll)éIZHensionality Reduction and Forecasting in Data Streams
3.7 Distributed Mining of Data Streams 162
4. Sensor Applications of Stream Mining 163
4.1 Military Applications 163
4.2 Cosmological Applications 164
4.3 Mobile Applications 164
4.4 Environmental and Weather Data 165
5. Conclusions and Research Directions 165
References 166
7
Real-Time Data Analytics in Sensor Networks 173

Themis Palpanas

1.

Introduction 173



MANAGING AND MINING SENSOR DATA

viii
2. Data Collection
2.1 Model-Driven Data Acquisition
2.2 Data-Driven Data Acquisition
2.3 Data Series Summarization
3. Data Processing
3.1 Enabling Complex Analytics
3.2 Detection and Tracking of Homogeneous Regions
3.3 Outlier Detection
3.4 Processing Uncertain Data Series
4. Discussion
4.1 Data-Aware Network Protocols
4.2 Uncertain Data Processing
4.3 Ubiquitous Sensor Networks
5. Conclusions
References
8

Distributed Data Mining in Sensor Networks
Kanishka Bhaduri and Marco Stolpe

1. Introduction
2. Clustering in Wireless Sensor Networks
2.1 Distributed Clustering of Sensor Nodes
2.2 Distributed Clustering of Sensor Measurements
3. Classification in Wireless Sensor Networks
4. Outlier Detection in WSN
4.1 Statistical approaches
4.2 Nearest neighbor based approaches
4.3 Classification based approaches
5. Conclusions
References

9

Social Sensing
Charu C. Aggarwal and Tarek Abdelzaher

1.
2.
3.

No ot

Introduction

Technological Enablers of Social Sensing

Data Collection, Architectural and System Design Challenges

3.1 Privacy-Preserving Data Collection

2 Generalized Model Construction

3 Real-time Decision Services

4 Recruitment Issues

b Energy Efficient Design

.6 Other Architectural Challenges

Privacy Issues in Social Sensing

Trust in Social Sensing

Implied Social Networks: Inference and Dynamic Modeling

Trajectory Mining for Social Sensing

7.1 Integrating Sensor Data with Heterogeneous Media for
Enhanced Mining and Inference

Social Sensing Applications

8.1 CrowdSourcing Applications for User-Centered Activi-
ties

WWWww

174
175
176
181
184
185
186
187
192
196
196
198
199
200
201

211

212
213
214
219
222
226
227
228
229
230
230

237

238
242
244
245
246
247
247
249
251
252
258
261
265

269
271

271



Contents

9.
Refere

10

8.2 RFID Technology: The Internet of Things
8.3 Vehicular Participatory Sensing

8.4 Participatory Sensing in Healthcare
Future Challenges and Research Directions

11CES

Sensing for Mobile Objects
Nicholas D. Larusso and Ambuj K. Singh

1. Introduction
2. Data Management for Mobile Objects
2.1 Spatiotemporal Database Systems
2.2 Moving Object Databases
2.3 Mobile Objects on Road Networks
3. Probabilistic Models for Tracking
3.1 The Tracking Problem
3.2 Kalman Filter
3.3 Tracking with Road Networks
3.4 Tracking for External Sensing
4. Mining Mobility Data
5. Discussion and Future Research Directions
References

11

A Survey of RFID Data Processing

Charu C. Aggarwal and Jiowei Han

1. Introduction

2. Raw RFID Data Cleaning and Compression

3. RFID Data Management and Warehousing
3.1 Efficient Warehousing of RFID Data

4. Semantic Event Extraction from RFID Data Streams
4.1 Probabilistic Event Extraction

5. Privacy and Security Issues with RFID Data
5.1 The Kill Command
5.2 Cryptographic Solutions
5.3 Blocker Tags
5.4 Other Privacy- and Security-Protection Methods
5.5 Privacy Issues in Data Management

6. Conclusions and Summary

References

12

The Internet of Things: A Survey from the Data-Centric Perspective

Charu C.
1.

2.
3.

Aggarwal, Naveen Ashish and Amit Sheth
Introduction

1.1 The Internet of Things: Broader Vision
Applications: Current and Future Potential
Networking Issues: Impact on Data Collection

3.1 RFID Technology

3.2 Active and Passive RFID Sensor Networks
3.3 Wireless Sensor Networks

3.4 Mobile Connectivity

ix

276
277
280
282
284

299

349

350
355
359
362
365
368
369
370
371
372

375
376
376

383

384
386
389
391

393
393
394



X MANAGING AND MINING SENSOR DATA

4. Data Management and Analytics
4.1 Data Cleaning Issues
4.2 Semantic Sensor Web
4.3 Semantic Web Data Management
4.4 Real-time and Big Data Analytics for The Internet of

Things
4.5 Crawling and Searching the Internet of Things
5. Privacy and Security

5.1 Privacy in Data Collection
5.2 Privacy in Data Sharing and Management
5.3 Data Security Issues

6. Conclusions

References

13
Data Mining for Sensor Bug Diagnosis
Tarek Abdelzaher and Jiawei Han
1. Introduction
2. Classification-based Bug Localization
2.1 Simple Rule-based Classifiers
2.2 Supervised Classifiers
2.3 Unsupervised Classifiers
3. Troubleshooting Interactive Complexity
3.1 Sequence Mining
3.2 Graph Mining
3.3 Symbolic Pattern Mining
4. Other Sensor Network Debugging Work
5. Future Challenges
References

14
Mining of Sensor Data in Healthcare: A Survey
Daby Sow, Deepak S. Turaga and Michael Schmidt

1. Introduction
2. %\/[ining Sensor Data in Medical Informatics: Scope and Chal-
enges
2.1 Taxonomy of Sensors used in Medical Informatics
2.2 Challenges in Mining Medical Informatics Sensor Data
3. Sensor Data Mining Applications

3.1 Clinical Healthcare Applications
3.2 Sensor Data Mining in Operating Rooms
3.3 General Mining of Clinical Sensor Data

4. Non-Clinical Healthcare Applications
4.1 Chronic Disease and Wellness Management
4.2 Activity Monitoring
4.3 Reality Mining

5. Summary and Concluding Remarks

References

15
Earth Science Applications of Sensor Data

395
396
398
409

410
414
415
415
417
419
420
420

429

430
433
433
434
436
437
438
441
443
444
446
448

459

460

461
461
463
468
468
475
476
477
480
487
492
495
495

505



Contents

X1

Anuj Karpatne, James Faghmous, Jaya Kawale, Luke Styles, Mace Blank,
Varun Mithal, Xi Chen, Ankush Khandelwal, Shyam Boriah, Karsten Stein-

haeuser, Michael Steinbach, Vipin Kumar and Stefan Liess

1. Introduction
2. Overview of Earth Science Sensor Datasets
2.1 Observational Data
2.2 Reanalysis Data
3. Data-centric Challenges
4. Event Detection
4.1 ICHustrative Application: Monitoring Changes in Land
over

4.2 Ilustrative Application: Identifying Ocean Eddies from
Satellite Altimeter Data
5. Relationship Mining
5.1 Mlustrative Application: Identifying Atmospheric Tele-

connections
6. Concluding Remarks
7 Acknowledgments

References

Index

506
507
o07
509
511
512

014

516
519

521
522
523
923

931






Preface

Sensor data has become pervasive in recent years because of the pop-
ularization and wider availability of sensor technology through cheaper
embedded sensor devices and RFID technology. Sensors produce large
volumes of data continuously over time, and this leads to numerous
computational challenges. Such challenges arise both from accuracy and
scalability perspectives.

The scalability challenges of sensor data analytics have reached ex-
traordinary proportions, with the increasing proliferation of ubiquitous
and embedded sensors and mobile devices, each of which can potentially
generate large streams of data. Many of these devices are internet-
connected. This has enabled greater possibilities for different kinds of
distributed data sharing and analytics. It has been estimated that the
number of internet-connected devices has exceeded the number of people
on the planet since 2008. Therefore, it is foreseeable, that in the coming
years, machine generated data will dominate human-generated data by
orders of magnitude, and this gap is only likely to increase with time.
In this context, the challenges associated with scalable and real-time
management and mining of sensor data are likely to become even more
significant with time.

Sensor data mining is a relatively new area, which is now reaching a
certain level of maturity. In spite of this, the data analytics researchers
have often remained disconnected from the networking issues which arise
during data collection and processing. While the focus of this book is
clearly on the data analytics side, we have taken special care to empha-
size the impact of the network-specific issues on data processing.

This book discusses the key issues in the collection, modeling and
processing of sensor data. The content of the book is carefully designed
to cover the area of sensor data mining comprehensively. Each chapter
is written as a survey by a well known researcher from the field, so as to
cover this area comprehensively. Emphasis is also provided on different
applications of sensor networks. A number of newer applications such as
social sensing and the internet-of-things are also discussed in this book.
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The book is intended for graduate students, researchers and profes-
sors. Emphasis has been placed on simplifying the material and making
it more accessible. The material in the book can be helpful to both
beginners on the subject and advanced researchers. At the same time,
the latest topics are covered in significant detail. It is hoped that this
book will provide a comprehensive overview of the research in this field.
It will be a useful guide to students, researchers and practitioners.



Chapter 1

AN INTRODUCTION TO SENSOR DATA
ANALYTICS

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

charu@us.ibm.com

Abstract  The increasing advances in hardware technology for sensor processing
and mobile technology has resulted in greater access and availability
of sensor data from a wide variety of applications. For example, the
commodity mobile devices contain a wide variety of sensors such as
GPS, accelerometers, and other kinds of data. Many other kinds of
technology such as RFID-enabled sensors also produce large volumes
of data over time. This has lead to a need for principled methods for
efficient sensor data processing. This chapter will provide an overview of
the challenges of sensor data analytics and the different areas of research
in this context. We will also present the organization of the chapters in
this book in this context.

Keywords: Sensor data, stream processing

1. Introduction

Recent years have seen tremendous advances in hardware technology
such as the development of miniaturized sensors, GPS-enabled devices,
pedometers, and accelerometers, which can be used to collect different
kinds of data [6]. This has lead to a deluge of tremendous amounts of
real-time data, which can be mined for a variety of analytical insights.
The costs of sensor hardware has been consistently going down over the
past few years. Furthermore, many data collection technologies [5] such
as RFID have been enabled in a very cost-effective way, as a result of
which the scale of the collection process has become enormous. Sensor
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data is produced in the context of a wide variety of applications such as
the following:

m A wide variety of mobile devices are now GPS-enabled. This has
lead to unprecedented opportunities in the context of several ap-
plications such as social sensing [4]. GPS data is also available in
the context of many location-aware devices and applications.

m  The decreasing cost of RFID tags has lead to tremendous volumes
of RFID data. The cost of an RFID tag is now in the range
of under 5 cents. This has allowed cost-effective deployment of
RFID tags on products of even modest price. RFID data poses
numerous challenges because of the tremendous amounts of noise
in the collected data [5].

s Numerous military applications use a wide variety of sensors in
order to track for unusual events or activity. This could include
visual or audio cameras, or seismometers for tracking movements
of large objects [9].

m Sensors are also deployed in the context of a wide variety of en-
vironmental applications, such as detecting weather and climate
trends [7], and tracking pollution levels in water networks [11].

Sensor data brings numerous challenges with it in the context of data
collection, storage and processing. This is because sensor data processing
often requires efficient and real-time processing from massive volumes of
possibly uncertain data. Some of these challenges may be enumerated
as follows:

m Data collection is a huge challenge in the context of sensor pro-
cessing because of the natural errors and incompleteness in the
collection process. Sensors often have limited battery life, because
of which many of the sensors in a network may not be able to col-
lect or transmit their data over large periods of time. The errors
in the underlying data may lead to uncertainty of the data repre-
sentation [8]. Therefore, methods need to be designed to process
the data in the presence of uncertainty.

m  Sensors are often designed for applications which require real-time
processing. This requires the design of efficient methods for stream
processing [1]. Such algorithms need to be executed in one pass of
the data, since it is typically not often possible to store the entire
data set because of storage and other constraints.
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s The large volumes of data lead to huge challenges in terms of
storage and processing of the data. It has been estimated that since
2008, the number of internet-connected devices has exceeded the
number of people on the planet. Thus, it is clear that the amount
of machine generated data today greatly exceeds the amount of
human generated data, and this gap is only likely to increase in
the forseeable future. This is widely known as the big data problem
in the context of analytical applications [10], or the information
overload problem in stream processing.

®m In many cases, it is critical to perform in-network processing, wherein
the data is processed within the network itself, rather than at a
centralized service. This needs effective design of distributed pro-
cessing algorithms, wherein queries and other mining algorithm
can be processed within the network in real time [12].

In this book, we will provide an overview of the key areas of research
in sensor processing, as they related to these challenges. We will also
study a number of new applications of sensor data such as social sensing,
mobile data processing, RFID processing, and the internet of things.

This chapter is organized as follows. In the next section, we will dis-
cuss the key areas of research in sensor processing, as they relate to the
afore-mentioned challenges. We will also relate the different research
areas to these challenges. Section 3 discusses the conclusions and sum-
mary.

2. Research in Sensor Processing

The research issues in the area of sensor processing arise along all
stages of the pipeline, beginning from data collection, cleaning, data
management, and knowledge discovery and mining. Furthermore, many
research issues arise in the context of in-network processing, which are
specific to the particular application domain. The specificity to the
application domain may arise in the context of other parts of the pipeline
as well. Therefore, we summarize the key research issues which arise in
the context of sensor data processing as follows:

s Data Collection and Cleaning Issues: Numerous issues arise
in the context of collection of sensor data. Sensor data is inher-
ently noisy and uncertain, and may either have missed readings or
redundant readings depending upon the application domain. For
example, in the context of RFID data, almost 30% of the readings
are dropped, and multiple sensors may track the same RFID ob-
ject. In the context of battery-driven sensors, numerous errors may



4 MANAGING AND MINING SENSOR DATA

arise during data transmission, and there may also be significant
incompleteness because of limited battery life.

s Data Management Issues: The large volumes of collected data
poses significant challenges for the collected data. Sometimes, the
volume of the data is so large, that it may be impractical to store
the entire raw data, and it may be desirable to either compress
or drop portions of the data. What parts of the data should be
dropped or compressed? The errors and uncertainty in sensor data,
have spurred the development of algorithms for uncertain database
management [2].

m Sensor Data Mining and Processing: The large volumes of
sensor data necessitate the design of efficient one-pass algorithms
which require at most one scan of the data. These are traditionally
referred to as data stream mining algorithms. Furthermore, it
may sometimes be advantageous to perform in-network processing,
which can perform partial processing of the data in the network
before sending these results on to a higher level of storage.

m  Application-Specific Issues: Sensor data can arise in many do-
mains such as retail data (RFID), military sensor networks, astron-
omy, the environment, and mobile data. Different domains may
lead to different issues in the context of storage and processing.
For example, RFID data may have larger levels of redundancy and
uncertainty, whereas mobile data mining applications may require
spatio-temporal mining techniques.

The different chapters of this book will study these different aspects of
sensor stream processing. Therefore, the book will be organized so as
to comprehensively study these different aspects. The different topics
covered by the chapters of this book are as follows:

Data Collection and Management Issues The key data collec-
tion and management issues are discussed in Chapter 2. This chapter
discusses some of the key database management aspects, which have
recently been designed in the context of sensor data. Issues involving
data uncertainty and query processing are discussed in this chapter, es-
pecially in the context of sensor data. The area of indexing and query
processing is very important in the context of sensor data, and therefore
we have also designed chapters specifically for this topic.

Query Processing of Sensor Data Sensor data poses numerous
challenges from the perspective of indexing and query processing, be-
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cause of the massive volume of the data which is received over time. A
special case of query processing in sensor data is that of event detection,
wherein continuous queries are posed on the sensor data in order to de-
tect the underlying events. The main challenge in event processing is
that the high level semantic events are often a complex function of the
underlying raw sensor data. In some cases, the event-query cannot be
posed exactly, since the event detection process is ambiguously related
to the underlying data. Methods for query processing of sensor data
are discussed in Chapter 3. Specialized methods for event processing of
sensor data are discussed in Chapter 4.

Mining Sensor Data A variety of data mining methods such as clus-
tering, classification, frequent pattern mining, and outlier detection are
often applied to sensor data in order to extract actionable insights. This
data usually needs to be compressed and filtered for more effective min-
ing and analysis. The main challenge is that conventional mining al-
gorithms are often not designed for real time processing of the data.
Therefore, new algorithms for sensor data stream processing need to
perform the analytics in a single pass in real time. In addition, the sen-
sor scenario may often require in-network processing, wherein the data is
processed to higher level representations before further processing. This
reduces the transmission costs, and the data overload from a storage
perspective. The problems of stream compression [3] and stream mining
are therefore tightly integrated together from an efficiency perspective.
For example, compression and hidden variable modeling provides sum-
marized representations which can be leveraged for applications such as
forecasting and outlier analysis. A survey of methods for dimensional-
ity reduction, compression and filtering of sensor streams is provided in
Chapter 5. This chapter studies the issue of stream correlation analysis,
compression across streams in terms of hidden variables, and compres-
sion across time in a given stream. The application of these concepts to
a few stream mining problems is also studied in the same chapter. A
number of methods for real-time sensor stream mining, processing and
analytics are discussed in Chapters 6 and 7. Specific methods for mining
sensor streams in the distributed setting are presented in Chapter 8.

Social Sensing Applications and Mobile Data The popularity of
mobile phones and other sensor-enabled devices has lead to a plethora
of “socially-aware data” which can be mined in the context of a wide
variety of applications. This trend has lead to the integration of sensors
and dynamic social networks. A number of architectural, privacy and
trust issues arise in the collection of socially aware sensor data. These
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issues are discussed in detail in Chapter 9. The chapter also discusses
the issues of mining the different kinds of GPS- and content-based data
generated in such applications.

Much of the data in social sensing applications often contains GPS
trajectory data. Mobile data has a number of characteristics, which can
be exploited in order to create more efficient methods for clustering, clas-
sification, anomaly detection, and pattern mining. Therefore, we have
included a chapter which discusses algorithms for mobile data analysis
in detail. Chapter 10 provides a detailed discussion of a wide variety of
indexing and mining algorithms in the context of mobile data.

RFID Data and the Internet of Things The trend towards ubig-
uitous and embedded sensing has lead to a natural focus on machine-
to-machine (M2M) paradigms in sensor processing. These paradigms
use small RFID sensors to collect data about many smart objects. The
data generated from such applications can be shared by different devices
for heterogeneous fusion and inference, especially if the devices are con-
nected to the internet. A number of issues also arise about how such
devices can be effectively discovered and used by different network par-
ticipants. Chapter 11 provides an overview on RFID applications for
collecting such data. Issues about how such data can be used in the
context of the internet of things are discussed in Chapter 12.

Software Bug Tracing in Sensor Networks Most of the afore-
mentioned chapters provide application-specific insights on the basis of
the collected data. Sensors also produce diagnostic data, which can be
used in order to determine diagnostic bugs within the sensor software.
Thus, this kind of mining process can be used in order to improve the
performance of the underlying sensor network. A survey of methods
and algorithms for software bug tracing in sensor networks is provided
in Chapter 13.

Healthcare Applications Sensor data has found increasing applica-
tion in the health care domain. A wide variety of Intensive Care Unit
(ICU) applications use sensors such as ECG, EEG, blood pressure mon-
itors, respiratory monitors, and a wide variety of other sensors in order
to track the condition of the patient. The volume of such data is ex-
tremely large and the inferences from such data need to be performed
in a time-critical fashion. Chapter 14 provides an overview of sensor
mining applications in the context of health-care data.
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Environmental and Climate Applications A wide variety of sen-
sors are used in order to track environmental and sensor data. A tremen-
dous amount of sensor data is available through satellite sensing, and
other more conventional forms of sensing. Such data can be used in order
to determine the short terms and long terms trends in climate change,
and other environmental applications, such as detecting changes in land
cover. Chapter 15 provides an overview of how sensor data may be used
in the context of environmental and climate applications.

3. Conclusions and Summary

In this chapter, we provided an overview of the challenges and the
key areas of research in sensor processing. We also presented the orga-
nization of this book, as it relates to these challenges. The ubiquity and
volume of sensor data is likely to increase over time, as more and more
applications containing sensor data become widely available. A number
of emerging areas of research such as social sensing have brought the use
of sensor data within the reach of the masses, because of their incor-
poration in commoditized devices such as mobile phones. Furthermore,
newer applications such as the internet of things have lead to a greater
focus on the effective storage and processing of sensor data. This book
will discuss all of these challenges in a holistic and integrated way.
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Abstract In recent years, due to the proliferation of sensor networks, there has
been a genuine need of researching techniques for sensor data acquisi-
tion and management. To this end, a large number of techniques have
emerged that advocate model-based sensor data acquisition and manage-
ment. These techniques use mathematical models for performing vari-
ous, day-to-day tasks involved in managing sensor data. In this chapter,
we survey the state-of-the-art techniques for model-based sensor data
acquisition and management. We start by discussing the techniques for
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acquiring sensor data. We, then, discuss the application of models in
sensor data cleaning; followed by a discussion on model-based meth-
ods for querying sensor data. Lastly, we survey model-based methods
proposed for data compression and synopsis generation.

Keywords: model-based techniques, data acquisition, query processing, data clean-
ing, data compression.

1. Introduction

In recent years, there has been tremendous growth in the data gen-
erated by sensor networks. Equivalently, there are pertinent techniques
proposed in recent literature for efficiently acquiring and managing sen-
sor data. One important category of techniques that have received sig-
nificant attention are the model-based techniques. These techniques use
mathematical models for solving various problems pertaining to sensor
data acquisition and management. In this chapter, we survey a large
number of state-of-the-art model-based techniques for sensor data ac-
quisition and management. Model-based techniques use various types of
models: statistical, signal processing, regression-based, machine learn-
ing, probabilistic, or time series. These models serve various purposes
in sensor data acquisition and management.

It is well-known that many physical attributes, like, ambient tempera-
ture or relative humidity, vary smoothly. As a result of this smoothness,
sensor data typically exhibits the following properties: (a) it is continu-
ous (although we only have a finite number of samples), (b) it has finite
energy or it is band-limited, (c) it exhibits Markovian behavior or the
value at a time instant depends only on the value at a previous time
instant. Most model-based techniques exploit these properties for effi-
ciently performing various tasks related to sensor data acquisition and
management.

In this chapter, we consider four broad categories of sensor data man-
agement tasks: data acquisition, data cleaning, query processing, and
data compression. These tasks are pictorially summarized in the toy
example shown in Figure 2.1. From Figure 2.1, it is interesting to note
how a single type of model (linear) can be used for performing these
various tasks. For each task considered in this chapter, we extensively
discuss various, well-researched model-based solutions. Following is the
detailed discussion on the sensor data management tasks covered in this
chapter:
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Figure 2.1. Various tasks performed by models-based techniques. (a) to improve
acquisitional efficiency, a function is fitted to the first three sensor values, and the
remaining values (shown dotted) are not acquired, since they are within a threshold
0, (b) data is cleaned by identifying outliers after fitting a linear model, (c) a query
requesting the value at time ¢’ can be answered using interpolation, (d) only the first
and the last sensor value can be stored as compressed representation of the sensor
values.

m Data Acquisition: Sensor data acquisition is the task responsi-
ble for efficiently acquiring samples from the sensors in a sensor
network. The primary objective of the sensor data acquisition
task is to attain energy efficiency. This objective is driven by
the fact that most sensors are battery-powered and are located in
inaccessible locations (e.g., environmental monitoring sensors are
sometimes located at high altitudes and are surrounded by highly
inaccessible terrains). In the literature, there are two major types
of acquisition approaches: pull-based and push-based. In the pull-
based approach, data is only acquired at a user-defined frequency
of acquisition. On the other hand, in the push-based approach, the
sensors and the base station agree on an expected behavior; sensors
only send data to the base station if the sensor values deviate from
such expected behavior. In this chapter, we cover a representative
collection of model-based sensor data acquisition approaches [2,
12, 17, 16, 18, 27, 28, 41, 66].

s Data Cleaning: The data obtained from the sensors is often er-
roneous. Erroneous sensor values are mainly generated due to the
following reasons: (a) intermittent loss of communication with the
sensor, (b) sensor’s battery is discharged, (c) other types of sensor
failures, for example, snow accumulation on the sensor, etc. Model-
based approaches for data cleaning often use a model to infer the
most probable sensor value. Then the raw sensor value is marked
erroneous or outlier if the raw sensor value deviates significantly
from the inferred sensor value. Another important approach for
data cleaning is known as declarative data cleaning [32, 46, 54].
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In this approach, the user registers SQL-like queries that define
constraints over the sensor values. Sensor values are marked as
outliers when these constraints are violated. In addition to these
methods, we also discuss many other data cleaning approaches [31,
73, 23, 21, 52, 65]

s Query Processing: Obtaining desired answers, by processing
queries is another important aspect in sensor data management.
In this chapter, we discuss the most significant model-based tech-
niques for query processing. One of the objectives of these tech-
niques is to process queries by accessing or generating minimal
amount of data [64, 5]. Model-based methods that access/generate
minimal data, and also handle missing values in data, use models
for creating an abstraction layer over the sensor network [18, 33].
Other approaches model the sensor values by a hidden Markov
model (HMM), associating state variables to the sensor values. It,
then, becomes efficient to process queries over the state variables,
which are less in number as compared to the sensor values [5].
Furthermore, there are approaches that use dynamic probabilistic
models (DPMs) for modeling spatio-temporal evolution of the sen-
sor data [33, 29]. In these approaches, the estimated DPMs are
used for query processing.

m Data Compression: It is well-known that large quantity of sen-
sor data is being generated by every hour. Therefore, eliminating
redundancy by compressing sensor data for various purposes (like,
storage, query processing, etc.) becomes one of the most challeng-
ing tasks. Model-based sensor data compression proposes a large
number of techniques, mainly from the signal processing literature,
for this task [1, 72, 22, 53, 7]. Many approaches assume that the
user provides an accuracy bound, and based on this bound the sen-
sor data is approximated, resulting in compressed representations
of the data [24]. A large number of other techniques exploit the
fact that sensor data is often correlated; thus, this correlation can
be used for approximating one data stream with another [24, 67,
49, 3.

This chapter is organized as follows. In Section 2, we define the pre-
liminaries that are assumed in the rest of the chapter, followed by a
discussion of important techniques for sensor data acquisition. In Sec-
tion 3, we survey model-based sensor data cleaning techniques, both
on-line and archival. Model-based query processing techniques are dis-
cussed in Section 4. In Section 5, model-based compression techniques



A Survey of Model-based Sensor Data Acquisition and Management 13

are surveyed. At the end, Section 6 contains a summary of the chapter
along with conclusions.

2. Model-Based Sensor Data Acquisition

In this section, we discuss various techniques for model-based! sensor
data acquisition. Particularly, we discuss pull- and push-based sensor
data acquisition methods. In general, model-based sensor data acquisi-
tion techniques are designed for tackling the following challenges:

Energy Consumption: Obtaining values from a sensor requires high
amount of energy. In contrast, since most sensors are battery-powered,
they have limited energy resources. Thus, a challenging task is to mini-
mize the number of samples obtained from the sensors. Here, models are
used for selecting sensors, such that user queries can be answered with
reasonable accuracy using the data acquired from the selected sensors
[2, 17, 16, 27, 28|.

Communication Cost: Another energy-intensive task is to communi-
cate the sensed values to the base station. There are, therefore, several
model-based techniques proposed in the literature for reducing the com-
munication cost, and maintaining the accuracy of the sensed values [41,
18, 66, 12].

Table 2.1. Summary of notations.

Symbol Description

S Sensor network consisting of sensors s;, where j = (1,...,m).
S; Sensor identifier for a sensor in S.
Vij Sensor value observed by the sensor s; at time ¢;, such that v;; € R.
V3 Row vector of all sensor values observed at time t;, such that v; € R™.
Vij Random variable associated with the sensor value v;;.

2.1 Preliminaries

We start by describing our model of a sensor network and establish-
ing the notation that is utilized in the rest of the chapter. The sensor
network considered in this chapter consists of a set of stationary sensors
S = {sj]1 < j < m}. The value sensed by a sensor s; at time t; is
denoted as v;;, which is a real number. In addition, note that we use s;,
where j = (1,...,m), as sensor identifiers. In certain cases the sampling
interval could be uniform, that is, t;41 — t; is same for all the values of

1We use model-based and model-driven interchangeably.
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i > 1. In such cases, the time stamps t; become irrelevant, and it is
sufficient to use only the index i for denoting the time axis.

t;
01:00
01:00
01:00
01:05
01:05
01:05

sensor_values

Figure 2.2. Database table containing the sensor values. The position of the sensor
s; is denoted as (z;,y;). Since the sensors are assumed to be stationary, the position
can also be stored using a foreign-key relationship between s; and (z;,y;). But, for
simplicity, we assume that the sensor_values table is in a denormalized form.

In this chapter, we assume a scenario where the sensors are used for
environmental monitoring. We assume that all the sensors are monitor-
ing/sensing only one environmental attribute, such as, ambient temper-
ature?. As discussed in Section 1, we assume that the environmental
attribute we monitor is sufficiently smooth and continuous. If necessary
for rendering the discussion complete and convenient, we will introduce
other attributes being monitored by the sensors. But, in most cases, we
restrict ourselves to using only ambient temperature. Figure 2.2 shows
a conceptual representation of the sensor values in a form of a database
table, denoted as sensor_values.

2.2 The Sensor Data Acquisition Query

Sensor data acquisition can be defined as the processes of creating
and continuously maintaining the sensor_values table. In existing lit-
erature, naturally, many techniques have been proposed for creating and
maintaining the sensor_values table. We shall discuss these techniques
briefly, describing their important characteristics and differences with
other techniques. We use the sensor data acquisition query shown in
Query 2.1 for discussing how different sensor data acquisition approaches
process such a query. Query 2.1 is a query that triggers the acquisition
of ten sensor values v;; from the sensors s; at a sampling interval of
one second. Moreover, Query 2.1, is the typical sensor data acquisition
query that is used by many methods for collecting sensor data.

2We use ambient temperature and temperature interchangeably.



A Survey of Model-based Sensor Data Acquisition and Management 15

‘ SELECT s;, v;; FROM sensor_values SAMPLE INTERVAL 1s FOR 10s

Query 2.1: Sensor data acquisition query.

—— push-based
------ pull-based

sensor network base station user

Figure 2.3. Push- and pull-based methods for sensor data acquisition.

2.3 Pull-Based Data Acquisition

Broadly, there are two major approaches for data acquisition: pull-
based and push-based (refer Figure 2.3). In the pull-based sensor data
acquisition approach, the user defines the interval and frequency of data
acquisition. Pull-based systems only follow the user’s requirements, and
pull sensor values as defined by the queries. For example, using the
SAMPLE INTERVAL clause of Query 2.1, users can specify the number of
samples and the frequency at which the samples should be acquired.

2.3.1 In-Network Data Acquisition. This approach of sen-
sor data acquisition is proposed by TinyDB [45, 44, 43], Cougar [69] and
TiNA [58]. These approaches tightly link query processing and sensor
data acquisition. Due to the lack of space, we shall only discuss TinyDB
in this subsection.

TinyDB refers to its in-network query processing paradigm as Acquisi-
tional Query Processing (ACQP). Let us start by discussing how ACQP
processes Query 2.1. The result of Query 2.1 is similar to the table
shown in Figure 2.2. The only difference, as compared to Figure 2.2, is
that the result of Query 2.1 contains 10 x m rows. The naive method of
executing Query 2.1 is to simultaneously poll each sensor for its value at
the sampling interval and for the duration specified by the query. This
method may not work due to limited range of radio communication be-
tween individual sensors and the base station.

Data Acquisition using Semantic Overlays: TinyDB proposes a
tree-based overlay that is constructed using the sensors S. This tree-
based overlay is used for aggregating the query results from the leaf
nodes to the root node. The overlay network is especially built for
efficient data acquisition and query processing. TinyDB refers to its
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tree-based overlay network as Semantic Routing Trees (SRTs). A SRT
is constructed by flooding the sensor network with the SRT build request.
This request includes the attribute (ambient temperature), over which
the SRT should be constructed. Each sensor s;, which receives the build
request, has several choices for choosing its parent: (a) if s; has no
children, which is equivalent to saying that no other sensor has chosen
sj as its parent, then s; chooses another sensor as its parent and sends
its current value v;; to the chosen parent in a parent selection message,
or (b) if s; has children, it sends a parent selection message to its parent
indicating the range of ambient temperature values that its children are
covering. In addition, it locally stores the ambient temperature values
from its children along with their sensor identifiers.

Next, when Query 2.1 is presented to the root node of the SRT, it
forwards the query to its children and prepares for receiving the results.
At the same time, the root node also starts processing the query locally
(refer Figure 2.4). The same procedure is followed by all the intermediate
sensors in the SRT. A sensor that does not have any children, processes
the query and forwards the value of v;; to its parent. All the collected
sensor values v;; are finally forwarded to the root node, and then to
the user, as a result of the query. This completes the processing of the
sensor data acquisition query (Query 2.1). The SRT, moreover, can also
be used for optimally processing aggregation, threshold, and event based
queries. We shall return to this point later in Section 4.1.

SELECT Sj, Vij
FROM sensor_values S1 | Via
S5 | Vis
S3 | Vis
S4 | Vig
S2 | Viz

Figure 2.4. Toy example of a Semantic Routing Tree (SRT) and Acquisitional Query
Processing (ACQP) over a sensor network with five sensors. Dotted arrows indicate
the direction of query response. A given sensor appends its identifier s; and value v;;
to the partial result, which is available from its sub-tree.

2.3.2 Multi-Dimensional Gaussian Distributions. The
Barbie-Q (BBQ) system [17, 16], on the other hand, employs multi-
variate Gaussian distributions for sensor data acquisition. BBQ main-
tains a multi-dimensional Gaussian probability distribution over all the
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sensors in S. Data is acquired only as much as it is required to main-
tain such a distribution. Sensor data acquisition queries specify certain
confidence that they require in the acquired data. If the confidence
requirement cannot be satisfied, then more data is acquired from the
sensors, and the Gaussian distribution is updated to satisfy the confi-
dence requirements. The BBQ system models the sensor values using
a multi-variate Gaussian probability density function (pdf) denoted as
p(Vi1, Via, .- ., Vim), where V;1, Via, ..., Vi, are the random variables as-
sociated with the sensor values v;1,v;9,...,vV;m respectively. This pdf
assigns a probability for each possible assignment of the sensor values
v;j. Now, let us discuss how the BBQ system processes Query 2.1.

In BBQ), the inferred sensor value of sensor s;, at each time ¢;, is
defined as the mean value of V;;, and is denoted as #;;. For example,
at time tq, the inferred sensor values of the ambient temperature are
11, V12, - - - , U1m- LThe BBQ system assumes that queries, like Query 2.1,
provide two additional constraints: (i) error bound e, for the values
;j, and (ii) the confidence 1 — § with which the error bound should be
satisfied. Admittedly, these additional constraints are for controlling the
quality of the query response.

Suppose, we already have a pdf before the first time instance t;, then
the confidence of the sensor value vy; is defined as the probability of
the random variable Vj; lying in between v1; — € and v1; + ¢, and is
denoted as P(Vy; € [01; — €,71; + €]). If the confidence is greater than
1 — 4, then we can provide a probably approximately correct value for
the temperature, without spending energy in obtaining a sample from
sensor s;. On the other hand, if a sensor’s confidence is less than 1 — 4,
then we should obtain one or more samples from the sensor (or other
correlated sensors), such that the confidence bound is satisfied. In fact,
it is clear that there could be potentially many sensors for which the
confidence bound may not hold.

As a solution to this problem, the BBQ system proposes a procedure
to chose the sensors for obtaining sensor values, such that the confidence
bound specified by the query is satisfied. First, the BBQ system samples
from all the sensors S at time t1, then it computes the confidence B;(S)
that it has in a sensor s; as follows:

BJ(S) = P(Vlj S [lej — €015 + 6”1)1), (2.1)

where v1 = (v11,v12,...,V1m) is the row vector of all the sensor values at
time t1. Second, for choosing sensors to sample, the BBQ system poses
an optimization problem of the following form:

i C(So), 2.2
$,CS and B(S.)>1-5. (So) (2.2)
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where S, is the subset of sensors that will be chosen for sampling, C(S,)
and B(S,) = @ Zj:sjeso B;(S) are respectively the total cost (or energy
required) and average confidence for sampling sensors S,. Since the
problem in Eq. (2.2) is NP-hard, BBQ proposes a greedy solution to
solve this problem. Details of this greedy algorithm can be found in [17].
By executing the proposed greedy algorithm, BBQ selects the sensors
for sampling, then it updates the Gaussian distribution, and returns the
mean values v11, 012, ...,01m. These mean values represent the inferred
values of the sensors at time t;. This operation when performed ten
times at an interval of one second generates the result of the sensor data
acquisition query (Query 2.1).

2.4 Push-Based Data Acquisition

Both, TinyDB and BBQ, are pull-based in nature: in these systems
the central server/base station decides when to acquire sensor values
from the sensors. On the other hand, in push-based approaches, the
sensors autonomously decide when to communicate sensor values to the
base station (refer Figure 2.3). Here, the base station and the sensors
agree on an expected behavior of the sensor values, which is expressed as
a model. If the sensor values deviate from their expected behavior, then
the sensors communicate only the deviated values to the base station.

2.4.1 PRESTO. The Predictive Storage (PRESTO) [41] sys-
tem is an example of the push-based data acquisition approach. One of
the main arguments that PRESTO makes against pull-based approaches
is that due to the pull strategy, such approaches will be unable to ob-
serve any unusual or interesting patterns between any two pull requests.
Moreover, increasing the pull frequency for better detection of such pat-
terns, increases the overall energy consumption of the system.

The PRESTO system contains two main components: PRESTO prox-
ies and PRESTO sensors. As compared to the PRESTO sensors, the
PRESTO proxies have higher computational capability and storage re-
sources. The task of the proxies is to gather data from the PRESTO
sensors and to answer queries posed by the user. The PRESTO sensors
are assumed to be battery-powered and remotely located. Their task is
to sense the data and transmit it to PRESTO proxies, while archiving
some of it locally on flash memory.

Now, let us discuss how PRESTO processes the sensor data acqui-
sition query (Query 2.1). For answering such a query, the PRESTO
proxies always maintain a time-series prediction model. Specifically,
PRESTO maintains a seasonal ARIMA (SARIMA) model [60] of the
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following form for each sensor:
Vij = U(z’fl)j + U(ifL)j - U(ifol)j + (961‘,1 - @61‘7]4 + 9@61‘,L,1, (23)

where 6 and © are parameters of the SARIMA model, e; are the predic-
tion errors and L is known as the seasonal period. For example, while
monitoring temperature, L could be set to one day, indicating that the
current temperature (v;;) is related to the temperature yesterday at the
same time (v(;_r);) and a previous time instant (v(;_r_1y;). In short,
the seasonal period L allows us to model the periodicity that is inherent
in certain types of data.

In the PRESTO system the proxies estimate the parameters of the
model given in Eq. (2.3), and then transmit these parameters to in-
dividual PRESTO sensors. The PRESTO sensors use these models to
predict the sensor value ¥;;, and only transmit the raw sensor value v;;
to the proxies when the absolute difference between the predicted sensor
value and the raw sensor value is greater than a user-defined threshold
0. This task can be summarized as follows:

|vij — ;;| > 9, transmit v to proxy. (2.4)

The PRESTO proxy also provides a confidence interval for each pre-
dicted value it computes using the SARIMA model. Like BBQ (refer
Section 2.3.2), this confidence interval can also be used for query pro-
cessing, since it represents an error bound on the predicted sensor value.
Similar to BBQ, the PRESTO proxy queries the PRESTO sensors only
when the desired confidence interval, specified by the query, could not
be satisfied with the values stored at the PRESTO proxy. In most cases,
the values stored at the proxy can be used for query processing, with-
out acquiring any further values from the PRESTO sensors. The only
difference between PRESTO and BBQ is that, PRESTO uses a differ-
ent measure of confidence as compared to BBQ. Further details of this
confidence interval can be found in [41].

2.4.2 Ken. For reducing the communication cost, the Ken [12]
framework employs a similar strategy as PRESTO. Although there is a
key difference between Ken and PRESTO. PRESTO uses a SARIMA
model; this model only takes into account temporal correlations. On
the other hand, Ken uses a dynamic probabilistic model that takes into
account spatial and temporal correlations in the data. Since a large
quantity of sensor data is correlated spatially, and not only temporally,
Ken derives advantage from such spatio-temporal correlation.

The Ken framework has two types of entities, sink and source. Their
functionalities and capabilities are similar to the PRESTO proxy and the
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PRESTO sensor respectively. The only difference is that the PRESTO
sensor only represents a single sensor, but a source could include more
than one sensor or a sensor network. The sink is the base station to which
the sensor values v;; are communicated by the source (refer Figure 2.3).

The fundamental idea behind Ken is that both, source and sink, main-
tain the same dynamic probabilistic model of data evolution. The source
only communicates with the sink when the raw sensor values deviate be-
yond a certain bound, as compared to the predictions from the dynamic
probabilistic model. In the meantime, the sink uses the sensor values
predicted by the model.

As discussed before, Ken uses a dynamic probabilistic model that
considers spatio-temporal correlations. Particularly, its dynamic proba-
bilistic model computes the following pdf at the source:

p(‘/(i-i-l)l?"'7‘/(i+1)m|/U17"'7/U’i) :/p(‘/(i—f—l)la"'7‘/(i+1)m|‘/’i17"'7‘/im)

p(Vit, ..o, Vim|vi, .., 0)dVir . .. dVig,.
(2.5)

This pdf is computed using the observations that have been communi-
cated to the sink; the values that are not communicated to the sink are
ignored by the source, since they do not affect the model at the sink.
Next, each sensor contained in the source computes the expected sensor
value using Eq. (2.5) as follows:

V(i+1)j :/V(z‘+1)jp(V(i+1)1,---,V(z'+1)m)dv(z‘+1)1~-~dV(z'+1)m- (2.6)

The source does not communicate with the sink if |0(;1.1); — v(i1);] <6,
where ¢ is a user-defined threshold. If this condition is not satisfied, the
source communicates to the sink the smallest number of sensor values,
such that the § threshold would be satisfied. Similarly, if the sink does
not receive any sensor values from the source, it computes the expected
sensor values U;;1); and uses them as an approximation to the raw sensor
values. If the sink receives a few sensor values form the source, then,
before computing the expected values, the sink updates its dynamic
probabilistic model.

2.4.3 A Generic Push-Based Approach. The last push-
based approach that we will survey is a generalized version of other
push-based approaches [38]. This approach is proposed by Silberstein
et al. [61]. Like other push-based approaches, the base station and the
sensor network agree on an expected behavior, and, as usual, the sensor
network reports values only when there is a substantial deviation from
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the agreed behavior. But, unlike other approaches, the definition of
expected behavior proposed in [61] is more generic, and is not limited
to a threshold §.

In this approach a sensor can either be an updater (one who acquires
or forwards sensor values) or an observer (one who receives sensor val-
ues). A sensor node can be both, updater and observer, depending on
whether it is on the boundary of the sensor network or an intermediate
node. The updaters and the observers maintain a model encoding func-
tion fene and a decoding function fge.. These model encoding/decoding
functions define the agreed behavior of the sensor values. The updater
uses the encoding function to encode the sensor value v;; into a trans-
mission message g;;, and transmits it to the observer.

The observer, then, uses the decoding function fy.. to decode the
message g;; and construct ©;;. If the observer finds that v;; has not
changed significantly, as defined by the encoding function, then the ob-
server transmits a null symbol. A null symbol indicates that the sensor
value is suppressed by the observer. Following is an example of the en-
coding and decoding functions [61]:

Gij = Vij — Vjrj, if |Uij - Ui’j| > 0;
i ) — 2.7
Jenel v ]) {gij = null, otherwise. (2.7)

faee(Gijs Di—1)j) = {QA}(Z_I)J i 1 gij # nu (2.8)

V(i—1)55 if g;; = null.

In the above example, the encoding function f.,. computes the difference
between the model predicted sensor value v;; and the raw sensor value
v;j. Then, this difference is transmitted to the observer only if it is
greater than J, otherwise the null symbol is transmitted. The decoding
function fge. decodes the sensor value 9(;_1); using the message g;;.

The encoding and decoding functions in the above example are pur-
posefully chosen to demonstrate how the § threshold approach can be
replicated by these functions. More elaborate definitions of these func-
tions, which are used for encoding complicated behavior, can be found
in [61].

3. Model-Based Sensor Data Cleaning

A well-known characteristic of sensor data is that it is uncertain and
erroneous. This is due to the fact that sensors often operate with dis-
charged batteries, network failures, and imprecision. Other factors, such
as low-cost sensors, freezing or heating of the casing or measurement
device, accumulation of dirt, mechanical failure or vandalism (from hu-
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mans or animals) heavily affect the quality of the sensor data [31, 73,
23]. This may cause a significant problem with respect to data utiliza-
tion, since applications using erroneous data may yield unsound results.
For example, scientific applications that perform prediction tasks us-
ing observation data obtained from cheap and less-reliable sensors may
produce inaccurate prediction results.

To address this problem, it is essential to detect and correct erroneous
values in sensor data by employing data cleaning. The data cleaning task
typically involves complex processing of data [71, 30]. In particular, it
becomes more difficult for sensor data, since true sensor values corre-
sponding to erroneous data values are generally unobservable. This has
led to a new approach — model-based data cleaning. In this approach,
the most probable sensor values are inferred using well-established mod-
els, and then anomalies are detected by comparing raw sensor values
with the corresponding inferred sensor values. In the literature there
are a variety of suggestions for model-based approaches for sensor data
cleaning. This section describes the key mechanisms proposed by these
approaches, particularly focusing on the models used in the data cleaning
process.

3.1 Overview of Sensor Data Cleaning System

A system for cleaning sensor data generally consists of four major
components: user interface, stream processing engine, anomaly detector,
and data storage (refer Figure 2.5). In the following, we describe each
component.

( user interface ]

stream processing engine g

ﬁ N anomaly detector
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raw sensor data cleaned data

(materialized views)
data storage

Figure 2.5. Architecture of sensor data cleaning system.
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User Interface: The user interface plays two roles in the data cleaning
process. First, it takes all necessary inputs from users to perform data
cleaning, e.g., name of sensor data and parameter settings for models.
Second, the results of data cleaning, such as ‘dirty’ sensor values cap-
tured by the anomaly detector, are presented using graphs and tables,
so that users can confirm whether each candidate of such dirty values is
an actual error. The confirmed results are then stored to (or removed
from) the underlying data storage or materialized views.

Anomaly Detector: The anomaly detector is a core component in
sensor data cleaning. It uses models for detecting abnormal data values.
The anomaly detector works in online as well as offline mode. In the
online mode, whenever a new sensor value is delivered to the stream
processing engine, the dirtiness of this value is investigated and the er-
rors are filtered out instantly. In the offline mode, the data is cleaned
periodically, for instance, once per day. In the following subsections, we
will review popular models used for online anomaly detection.

Stream Processing Engine: The stream processing engine main-
tains streaming sensor data, while serving as a main platform where
the other system components can cooperatively perform data cleaning.
The anomaly detector is typically embedded into the stream processing
engine, it may also be implemented as a built-in function on database
systems.

Data Storage: The data storage maintains not only sensor values,
but also the corresponding cleaned data, typically in materialized views.
This is because applications on sensor networks often need to repeat-
edly perform data cleaning over the same data using different parameter
settings for the models, especially when the previous parameter settings
turn out to be inappropriate later. Therefore, it is important for the
system to store cleaned data in database views without changing the
original data, so that data cleaning can be performed again at any point
of time (or time interval) as necessary.

3.2 Models for Sensor Data Cleaning

This subsection reviews popular models that are widely used in the
sensor data cleaning process.

3.2.1 Regression Models. As sensor values are a representa-
tion of physical processes, it is naturally possible to uncover the follow-
ing properties: continuity of the sampling processes and correlations be-
tween different sampling processes. In principle, regression-based models
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exploit either or both of these properties. Specifically, they first compute
the dependency from one variable (e.g., time) to another (e.g., sensor
value), and then consider the regression curves as standards over which
the inferred sensor values reside. The two most popular regression-based
approaches use polynomial and Chebyshev regression for cleaning sensor
values.

Polynomial Regression: Polynomial regression finds the best-fitting
curve that minimizes the total difference between the curve and each
raw sensor value v;; at time ¢;. Given a degree d, polynomial regression
is formally defined as:

Uij:C+a1'ti+"’+Oéd’t§la (29)

where c is a constant and «q, ..., ag are regression coefficients.

Polynomial regression with high degrees approximate given time series
with more sophisticated curves, resulting in theoretically more accurate
description of the raw sensor values. Practically, however, low-degree
polynomials, such as constant (d = 0) and linear (d = 1), also perform
satisfactorily. In addition, low-degree polynomials can be more efficiently
constructed as compared to high-degree polynomials. A (weighted) mov-
ing average model [73] is also regarded as a polynomial regression.

Chebyshev Regression: Chebyshev regression is a popular model
class for fitting sensor values, since they can quickly compute near-
optimal approximations for given time series. Suppose that time values
t; vary within a range [min(t;), max(¢;)]. We, then, obtain normalized
time values ¢, within a range [—1,1], by using the following transfor-
mation function f(¢;) and its inverse transformation function f~1(¢.) as
follows:

F(ts) = <ti ~ max(t;) ;min(tz‘)> ) i YAk (2.10)

1w , max(t;) — min(t;) max(t;) + min(t;)
Fi = (et ) ) mex(b) nll),

(2.11)

Next, given a degree d, Chebyshev polynomial is defined as:
vij = f (cos(d - cosTH(f(t:))))-

Figure 2.6 illustrates a data cleaning process using degree-2 Cheby-
shev polynomials. Here, the raw sensor values are plotted as green
curves, while the inferred values, obtained by fitting a Chebyshev poly-
nomials, are overlaid by black curves. The anomaly points are then
indicated by the underlying red histograms as well as red circles.
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Figure 2.6. Detected anomalies based on 2-degree Chebyshev regression.

3.2.2 Probabilistic Models. In sensor data cleaning, infer-
ring sensor values is perhaps the most important task, since systems can
then detect and clean dirty sensor values by comparing raw sensor val-
ues with the corresponding inferred sensor values. Figure 2.7 shows an
example of the data cleaning process using probabilistic models. At time
t; = 6, the probabilistic model infers a probability distribution using the
previous values vgj,...,vs; in the sliding window. The expected value
Ugj (e.g., the mean of the Gaussian distribution in the future) is then
considered as the inferred sensor value for sensor s;.

Next, the anomaly detector checks whether the raw sensor value vg;
resides within a reasonably accurate area. This is done in order to check
whether the value is normal. For instance, the 30 range can cover 99.7
% of the density in the figure, where vg; is supposed to appear. Thus,
the data cleaning process can consider that vg; is not an error. Att; =7,
the window slides and now contains raw sensor values v3j,...,vgj. By
repeating the same process, the anomaly detector finds v7; resides out
of the error bound (3¢ range) in the inferred probability distribution,
and is identified as an anomaly [57].

A vast body of research work has utilized probabilistic models for
computing inferred values. The Kalman filter is perhaps one of the most
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Figure 2.7. An example of data cleaning based on a probabilistic model.

common probabilistic models to compute inferred values corresponding
to raw sensor values. The Kalman filter is a stochastic and recursive data
filtering algorithm that models the raw sensor value v;; as a function of
its previous value (or state) v(;_1; as follows:

vij = Av(i—1); + Bu; + w;,

where A and B are matrices defining the state transition from time ¢;_
to time t;, u; is the time-varying input at time ¢;, and w; is the process
noise drawn from a zero mean multi-variate Gaussian distribution. In
[63], the Kalman filter is used for detecting erroneous values, as well as
inter /extrapolating missing sensor values. Jain et al. [29] also use the
Kalman filter for filtering possible dirty values.

Similarly, Elnahrawy and Nath [21] proposed to use Bayes’ theorem to
estimate a probability distribution FP;; at time ¢; from raw sensor values
v;j, and associate them with an error model, typically a normal distri-
bution. Built on the same principle, a neuro-fuzzy regression model [52]
and a belief propagation model based on Markov chains [13] were used
to identify anomalies. Tran et al. [65] propose a method to infer missing
or erroneous values in RFID data. All the techniques for inferring sen-
sor values also enable quality-aware processing of sensor data streams
[36, 37], since inferred sensor values can serve as the bases for indicating
the quality or precision of the raw sensor values.

3.2.3 Outlier Detection Models. An outlier is a sensor value
that largely deviates from the other sensor values. Obviously, outlier
detection is closely related to the process of sensor data cleaning. The
outlier-detection techniques are well-categorized in the survey studies of
[51, 8.
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In particular, some of the outlier detection methods focus on sensor
data [59, 71, 15]. Zhang et al. [71] offer an overview of such outlier detec-
tion techniques for sensor network applications. Deligiannakis et al. [15]
consider correlation, extended Jaccard coefficients, and regression-based
approximation for model-based data cleaning. Shen et al. [59] propose
to use a histogram-based method to capture outliers. Subramaniam et
al. [62] introduce distance- and density-based metrics that can identify
outliers. In addition, the ORDEN system [23] detects polygonal outliers
using the triangulated wireframe surface model.

3.3 Declarative Data Cleaning Approaches

From the perspective of using a data cleaning system, supporting a
declarative interface is important since it allows users to easily control
the system. This idea is reflected in a wide range of prior work that pro-
poses SQL-like interfaces for data cleaning [32, 46, 54]. These proposals
hide complicated mechanisms of data processing or model utilization
from the users, and facilitate data cleaning in sensor network applica-
tions.

More specifically, Jeffery et al. [31, 32] divide the data cleaning pro-
cess into five tasks: Point, Smooth, Merge, Arbitrate, and Virtualize.
These tasks are then supported within a database system. For exam-
ple, the SQL statement in Query 2.2 performs anomaly detection within
a spatial granule by determining the average of the sensor values from
different sensors in the same proximity group. Then, individual sensor
values are rejected if they are outside of one standard deviation from the
mean.

As another approach, Rao et al. [54] focus on a systemic solution,
based on rewriting queries using a set of cleansing rules. Specifically,
the system offers the rule grammar shown in Figure 2.8 to define and
execute various data cleaning tasks. Unlike the prior relational database
approaches, Mayfield et al. [46] model data as a graph consisting of
nodes and links. They, then, provide an SQL-based, declarative frame-

DEFINE [rule name]
ON [table name]
FROM [table name]

CLUSTER BY [cluster key]
SEQUENCE BY [sequence key]

AS [pattern]
WHERE [condition]
ACTION [DELETE | MODIFY | KEEP]

Figure 2.8. An example of anomaly detection using a SQL statement.
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SELECT spatial_granule, AVG(temp)
FROM data s [Range By 5 min]
(SELECT spatial_granule, avg(temp) as avg,
stdev(temp) as stdev
FROM data [Range By 5 min]) as a
WHERE a.spatial_granule = s.spatial_granule
AND a.avg + (2xa.stdev) < s.temp
AND a.avg - (2*a.stdev) > s.temp

Query 2.2: An example of anomaly detection using a SQL statement.

work that enables data owners to specify or discover groups of attributes
that are correlated, and apply statistical methods that validate and clean
the sensor values using such dependencies.

4. Model-Based Query Processing

In this section we elaborate another important task in sensor data
management — query processing. We primarily focus on in-network and
centralized query processing approaches. We consider different queries
assuming the sensor network described in Section 2.1, and then discuss
how each approach processes these queries. In Section 2, however, we
followed an approach where we chose a singe query (i.e., Query 2.1)
and demonstrated how different techniques processed this query. On the
contrary, in this section, we chose different queries for all the approaches,
and then discuss these approaches along with the queries. We follow this
procedure since, unlike Section 2, the assumptions made by each query
processing technique are different. Thus, for highlighting the impact
of these assumptions and simplifying the discussion, we select different
queries for each approach.

4.1 In-Network Query Processing

In-network query processing first builds an overlay network (like, the
SRT discussed in Section 2.3.1). Then, the overlay network is used
for increasing the efficiency of aggregating sensor values and processing
queries. For instance, while processing a threshold query, parent nodes
send the query to the child nodes only when the query threshold con-
dition overlaps with the range of sensor values contained in the child
nodes, which is stored in the parent node’s local memory.

Consider the threshold query given in Query 2.3. Query 2.3 requests
the sensor identifiers of all the sensors that have sensed a temperature
greater than 10°C at the current time instance. Before answering this
query, we assume that we have already constructed a SRT as described
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in Section 2.2 (refer Figure 2.4). Query 2.3 is sent by the root node of
the SRT to its children that are a part of the query response. The child
nodes check whether the sensor value they have sensed is greater than
10°C. If the sensor value is greater than 10°C at a child node, then
that child node appends its sensor identifier to the query response. The
child node, then, forwards the query to its children and waits for their
response. Omnce all the children of a particular node have responded,
then that node forwards the response of its entire sub-tree to its parent.
In the end, the root node receives all the sensor identifiers s; that have
recorded temperature greater than 10°C.

‘ SELECT s; FROM sensor_values WHERE v;; > 10°C AND ¢; == NOW()

Query 2.3: Return the sensor identifiers s; where v;; > 10°C.

4.2 Model-Based Views

The MauveDB [18] approach proposes standard database views [19] as
an abstraction layer for processing queries. These views are maintained
in a form of a regression model; thus they are called model-based views.
The main advantage of this approach is that the model-based view can
be incrementally updated as fresh sensor values are obtained from the
sensors. Furthermore, incremental updates is an attractive feature, since
such updates are computationally efficient.

Before processing any queries in MauveDB, we have to first create a
model-based view. The query for creating a model-based view is shown
in Query 2.4. The model-based view created by this query is called
RegModel. RegModel is a regression model in which the temperature is
the dependent variable and the sensor position (z;,;) is an independent
variable (refer Figure 2.9). Note that RegModel is incrementally updated
by MauveDB. At time ¢; values from sensors s, s3 and at time to the
value from sensor sy are respectively used to update the view. The view
update mechanism exploits the fact that regression functions can be
updated. Further details regarding the update mechanism can be found
in [18].

CREATE VIEW RegModel AS FIT v OVER 22, zy,y?, .y
TRAINING_DATA SELECT z;,y;,vi; FROM sensor_values
WHERE t; > start AND t; < feng

Query 2.4: Model-based view creation query.

Once this step is performed many types of queries can be evaluated
using the RegModel view. For instance, consider Query 2.5. MauveDB
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evaluates this query by interpolating the value of temperature at fixed
intervals on the x- and y-axis; this is similar to database view material-
ization [19]. Then the positions (x,y) where the interpolated tempera-
ture value is greater than 10°C are returned.

Admittedly, although updating the model-based view is efficient, but
for processing queries the model-based view should be materialized at
a certain fixed set of points. This procedure produces a large amount
of overhead when the number of independent variables is large, since it
dramatically increases the number of points where the view should be
materialized.

‘ SELECT z,y FROM RegModel WHERE v > 10°C

Query 2.5: Querying model-based views.

4.3 Symbolic Query Evaluation

This approach is proposed by the FunctionDB [64] system. Func-
tionDB, like MauveDB, also interpolates the values of the dependent
variable, and then uses the interpolated values for query processing.

As discussed before, the main problem with value interpolation is that
the number of points, where the sensor values should be interpolated,
increase dramatically as a function of the number of independent vari-
ables. As a solution to this problem, FunctionDB symbolically executes
the filter (for example, the WHERE clause in Query 2.5) and obtains feasi-
ble regions of the independent variables. These feasible regions are the
regions that include the exact response to the query, at the same time
contain a significantly low number of values to interpolate. FunctionDB

model-based
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Figure 2.9. Example of the RegModel view with three sensors. RegModel is incre-
mentally updated as new sensor values are acquired.
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evaluates the query by interpolating values only in the feasible regions,
followed by a straightforward evaluation of the query.

Moreover, FunctionDB treats the temperature of the sensor s; as a
continuous function of time f;(t), instead of treating it as discrete values
sampled at time stamps t;. An example of a query in the FunctionDB
framework is given in Query 2.6. This query returns the time values ¢
between tgqr+ and t.,q where the temperature of the sensor s is greater
than 10°C. Note that the time values ¢ are not necessarily the time
stamps t; where a particular sensor value was recorded.

SELECT ¢ WHERE f1(t) > 10°C AND ¢ > tssart AND ¢ < tenq GRID t 1s ‘

Query 2.6: Continuous threshold query.

For defining the values of the time axis ¢ (or any continuous variable),
FunctionDB proposes the GRID operator. The GRID operator specifies
the interval at which the function fi(¢) should be interpolated between
time tsqr+ and te,q. For instance, GRID t 1s indicates that the time
axis should be interpolated at one second intervals between time ¢4t
and tenq. To process Query 2.6, FunctionDB first symbolically executes
the WHERE clause and obtains the feasible regions of the time axis (in-
dependent variable). Then, using the GRID operator, it generates time
stamps 17 in the feasible regions. The sensor value is interpolated at
the time stamps 17 using regression functions. Lastly, the query is pro-
cessed on these interpolated values, and time stamps 77 C T where the
temperature is greater than 10°C are returned.

4.4 Processing Queries over Uncertain Data

In this form of query processing the assumption is that sensor data is
inherently uncertain. This uncertainty can arise due to various factors:
loss of calibration over time, faulty sensors, unsuitable environmental
conditions, low sensor accuracy, etc. Thus, the approaches that treat
sensor data as uncertain, assume that each sensor value is associated with
a random variable, and is drawn from a distribution. In this subsection,
we discuss two such methods that model uncertain data by either a
dynamic probabilistic model or a static probability distribution.

4.4.1 Dynamic Probabilistic Models. Dynamic probabilis-
tic models (DPMs) are proposed for query processing in [33, 29]. These
models continuously estimate a probability distribution. The estimated
probability distribution is used for query processing. Mainly, there are
two types of models that are frequently used for estimating dynamic
probability distributions: particle filters and Kalman filters. Particle
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filters are generalized form of Kalman filters. Since we have already
discussed Kalman filters in Section 3.2, here we will focus on particle
filtering.

Consider a single sensor, say si, the particle filtering approach [4], at
each time instant ¢;, estimates and stores p weighted tuples
{(wh,vl),..., (W, vh)}, where the weight w); denotes the probabil-
ity of vill being the sensor value of the sensor s; at time ¢;, and so on.
An example of particle filtering is shown in the pf_sensor _values table
in Figure 2.10.

Now, consider the Query 2.7 that requests the average temperature
AVG(v;;) between time t41qrs and tenq. To evaluate this query, we assume
that we already have executed the particle filtering algorithm at each
time instance ¢; and have created the pf_sensor_values table. We,
then, perform the following two operations:

1. For each time t; between tgq-+ and t.,q, we compute the expected
temperature v;; =y ), wﬁl -vﬁl. The formal SQL syntax for com-
puting the expected values using the pf_sensor_values table is as
follows:

SELECT ¢;, Zle wél . U£1 FROM pf_sensor_values WHERE #; > tsqrt
AND t; < tenqg GROUP BY t;

2. The final result is the average of all the v;; that we computed in
Step 1.

Essentially, the tuples {(w};,v};), ..., (wh,v?)} represent a discretized
pdf for the random variable V;;. Moreover, the most challenging tasks
in particle filtering are to continuously infer weights w},, ... ,wh and to
select the optimal number of particles p, keeping in mind a particular
scenario and type of data [4].

|t S Xy PV w
1101:00[ 134|721 (11|01
1101:00| 13472 | 2 |3.0/0.6
1101:00| 1/34|72| 3 [52(0.3
2 101:.05| 2(52|85|1 |3.1|04
2 /01:05| 2|52|85|2 |79/|03
2 101:.05| 2(52|85| 3 |6.4/0.3
W

Figure 2.10. Particle filtering stores p weighted sensor values for each time instance
ti.
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‘ SELECT AVG(v;1) FROM pf_sensor_values WHERE ¢ > tstart AND t < tend ‘

Query 2.7: Compute the average temperature between time tgq¢ and
tend-

4.4.2 Static Probabilistic Models. Cheng et al. [9-11]
model the sensor value as obtained from an user-defined uncertainty
range. For example, if the value of a temperature sensor is 15°C, then
the actual value could vary between 13°C and 17°C. Furthermore, the
assumption is that the sensor value is drawn from a static probability
distribution that has support over the uncertainty range.

Thus, for each sensor s; we associate an uncertainty range between
l;; and u;j, in which the actual sensor values can be found. In addition,
the pdf of the sensor values of sensor s; is denoted as p;;(v). Note that
the pdf has non-zero support only between /;; and u;;. Consider a query
that requests the average temperature of the sensors s; and s9 at time
t;. Since the values of the sensors s; and sy are uncertain in nature, the
response to this query is a pdf, denoted as pgyg(v). This pdf gives us the
probability of the sensor value v being the average. pgyq(v) is computed
using the following formula:

man (Ui v—1;,)
Pavg(v) = / pi1(y)pi2(v — z)dz. (2.12)

maz(li1,v—u;)

Naturally, Eq. (2.12) becomes more complicated when there are many
(and not only two) sensors involved in the query. Additional details
about handling such scenarios can be found in [9].

4.5 Query Processing over Semantic States

The MIST framework [5] proposes to use Hidden Markov Models
(HMMs) for deriving semantic meaning from the sensor values. HMMSs
allow us to capture the hidden states, which are sometimes of more in-
terest than the actual sensor values. Consider, as an example, a scenario
where the sensors S are used to monitor the temperature in all the rooms
of a building. Generally, we are only interested to know which rooms
are hot or cold, rather than the actual temperature in those rooms. We,
then, can use a two-state HMM with states Hot (denoted as H) and
Cold (denoted as C) to continuously infer the semantic states of the
temperature in all the rooms.

Furthermore, MIST proposes an in-network index structure for in-
dexing the HMMs. This index can be used for improving the perfor-
mance of query processing. For instance, if we are interested in finding
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the rooms that are Hot with probability greater than 0.9, then the in-
network model index can efficiently prune the rooms that are surely not
a part of the query response. Due to the lack of space, we shall not
cover the details of index construction and pruning. We encourage the
interested reader to read the following paper [5].

4.6 Processing Event Queries

Event queries are another important class of queries that are proposed
in the literature. These queries continuously monitor for a particular
event that could probably occur in sensor data. Consider a setup con-
sisting of RFID sensors in a building. An event query could monitor
an event of a person entering a room or taking coffee, etc. Moreover,
event queries can also be registered, not only to monitor a single event,
but a sequence of events that are important to the user. Again, due to
space constraints, we shall not cover any of the event query processing
approaches in detail. The interested reader is referred to the prior works
on this subject [55, 65, 68, 45].

5. Model-Based Sensor Data Compression

Recent advances in sensor technology has resulted in the availability
of a multitude of (often privately-held) sensors. Embedded sensing func-
tionality (e.g., sound, accelerometer, temperature, GPS, RFID, etc.) is
now included in mobile devices, like, phones, cars, or buses. The large
number of these devices and the huge volume of raw monitored data
pose new challenges for sustainable storage and efficient retrieval of the
sensor data streams. To this end, a multitude of model-based regression,
transformation and filtering techniques have been proposed for approxi-
mation of sensor data streams. This section categorizes and reviews the
most important model-based approaches towards compression of sensor
data. These models often exploit spatio-temporal correlations within
data streams to compress the data within a certain error norm; this is
also known as lossy compression. Moreover, several standard orthogonal
transformation methods (like, Fourier or wavelet transform) reduce the
amount of storage space required by reducing the dimensionality of data.

Unlike the assumptions of Section 2, where we assumed a sensor net-
work consisting of several sensors, here we assume that we only have
a single sensor. We have dropped the several sensors assumption to
simplify the notation and discussion in this section. Furthermore, we
assume that the sensor values from the single sensor are in a form of a
data stream. Let us denote such a data stream as a sequence of data
tuples (¢;,v;), where v; is the sensor value at time ¢;.
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5.1 Overview of Sensor Data Compression
System

The goal of the sensor data compression system is to approximate a
sensor data stream by a set of functions. Data compression methods
that we are going to study in this section permit the occurrence of ap-
proximation errors. These errors are characterized by a specific error
norm. Furthermore, a standard approach to sensor data compression is
to segment the data stream into data segments, and then approximate
each data segment, so that a specific error norm is satisfied. For exam-
ple, if we are considering the L., norm, then each sensor value of the
data stream is approximated within an error bound e.

Let us assume that we have K segments of a data stream. We denote

these segments as g%, ¢2,...,¢", where ¢' approximates the data tu-
ples ((t1,v1),..., (ti,vs;)), while g¥, where k = 2,..., K, approximates
the data items ((tik71+1, Uik71+1), (tik,1+27 Uik71+1), “eey (tik, Uzk)) Simi-

lar to [20], we distinguish between two classes of the segments used for
approximation, namely connected segments and disconnected segments.
In connected segments, the ending point of the previous segment is the
starting point of the new segment. On the contrary, in disconnected
segments, the approximation of the new segment starts from the sub-
sequent data item in the stream. Disconnected segments offer more
approximation flexibility and may lead to fewer segments; however, for
linear approximation [35], they necessitate the storage of two data tu-
ples (i.e., start tuple and end tuple) per data segment, as opposed to
connected segments.

Since functions are employed for approximating data segments, only
the approximated data segments are stored in the database, instead
of the raw sensor values of the data stream [64, 50]. A schema for
linear segments is presented in [64], consisting of a table, referred to
as FunctionTable, where each row represents a linear model with at-
tributes start_time, end_time, slope and intercept (i.e., base) of the
segment. In case of connected segments [20], the end_time attribute can
be omitted.

A more generic schema for storing data streams, approximated by
multiple models, was proposed in [50]. It consists of one table, referred
to as the (SegmentTable) for storing data segments, and a second table
(ModelTable) for storing the model functions, as depicted in Figure
2.11. A tuple of SegmentTable contains the approximation data for a
segment in the time interval [start_time, end_time]. The attribute
id stands for identification of the model that is used in the segment.
The primary key in the SegmentTable is the start_time, while in the
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Figure 2.11. 'The database schema for multi-model materialization.

ModelTable it is id. When, both, linear and non-linear models are
employed for approximation, left_value is the lowest raw sensor value
encountered in the segment, and right_value is the highest raw sensor
value encountered in the segment. In this case, start_time, end_time,
left _value and right_value define a rectangular bucket that contains
the values of the segment.

The attribute model_params stores the parameters of the model asso-
ciated with the model identifier id. For example, regression coefficients
are stored for the regression model. The attribute model_params has
variable length (e.g., VARCHAR or VARBINARY data types in SQL) and it
stores the concatenation of the parameters or their compressed repre-
sentation, by means of standard lossless compression techniques (refer
Section 5.7) or by a bitmap coding of approximate values, as proposed
in [3]. Each tuple in the ModelTable corresponds to a model with a
particular id and function. The attribute function represents the
name of the model and it maps to the names of two user defined func-
tions (UDFs) stored in the database. The first function implements the
mathematical formula of the model, and the second function implements
the inverse mathematical formula of the model, if any. Both the UDFs
are employed for answering value-based queries. While the first function
is used for value regeneration over fixed time steps (also referred to as
gridding), the second function is used for solving equations.
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5.2 Methods for Data Segmentation

In [34], the piecewise linear approximation algorithms are categorized
in three groups: sliding window, top-down and bottom-up. The slid-
ing window approach expands the data segment as long as the data
tuples fit. The bottom-up approach first applies basic data segmenta-
tion employing the sliding window approach. Then, for two consecutive
segments, it calculates merging cost in terms of an approximation error.
Subsequently, it merges the segments with the minimum cost within the
maximum allowed approximation error, and updates the merging costs
of the updated segments. The process ends when no further merging
can be done without violating the maximum approximation error. The
top-down approach recursively splits the stream into two segments, so
as to obtain longest segments with the lowest error until all segments
are approximated within the maximum allowed error.

Among these three groups, only the sliding window approach can be
used online, but it employs look-ahead. The other two approaches per-
form better than the sliding window approach, but they need to scan
all data, hence they cannot be used for approximating streaming data.
Based on this observation, Keogh et al. [34] propose a new algorithm
that combines the online processing property of the sliding window ap-
proach and the performance of the bottom-up approach. This approach
needs a predefined buffer length. If the buffer is small, then it may
produce many small data segments; if the buffer is large, then there is
a delay in returning the approximated data segment. The maximum
look-ahead size is constrained by the maximum allowed delay between
data production and data reporting or data archiving.

5.3 Piecewise Approximation

Among several different data stream approximation techniques, piece-
wise linear approximation has been the most widely used [34, 39]. Piece-
wise linear approximation models the data stream with a separate linear
function per data segment. Piecewise constant approximation (PCA) ap-
proximates a data segment with a constant value, which can be the first
value of the segment (referred to as the cache filter) [47], the mean value
or the median value (referred to as poor man’s compression - midrange
(PMC-MR) [39)).

In the cache filter, for all the sensor values in a segment ¢*, the fol-
lowing condition should be satisfied:

Vi y4p — Vip_ 41| <€ forp=1,...,10, (2.13)
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Figure 2.12. Poor Man’s Compression - MidRange (PMC-MR).

where € is the maximum allowed approximation error according to the
Lo norm. Also, for PMC-Mean and PMC-MR the sensor values in a
segment ¢* should satisfy the following condition:

max v; — min v; < 2¢. 2.14
1<p<ty, PP 1gp<y, P S (2.14)

Furthermore, for PMC-Mean, the approximation value for the segment

g* is given by the mean value of the sensor values in segment g*. But,

for PMC-MR it is given as follows:

Max1<p<iy Vig_1+p — MMN1<p<iy Vig_ 1 4p
2 .

The data segmentation approach for PMC-MR is illustrated in Figure
2.12.

Moreover, the linear filter [34] is a simple piecewise linear approxi-
mation technique in which the sensor values are approximated by a line
connecting the first and second point of the segment. When a new data
tuple cannot be approximated by this line with the specified error bound,
a new segment is started. In [20], two new piecewise linear approxima-
tion models were proposed, namely Swing and Slide, that achieve much
higher compression compared to the cache and linear filters. We briefly
discuss the swing and slide filters below.

5.3.1 Swing and Slide Filters. The swing filter is capable of
approximating multi-dimensional data. But, for simplicity, we describe
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its algorithm for one-dimensional data. Given the arrival of two data
tuples (t1,v1) and (t2,v2) of the first segment of the data stream, the
swing filter maintains a set of lines, bounded by an upper line u' and a
lower line I'. u! is defined by the pair of points (t1,v1) and (t2,vs + €),
while I! is defined by the pair of points (¢1,v1) and (t2,vs — €), where € is
the maximum approximation error bound. Any line segment between u'
and [! can represent the first two data tuples. When (t3,v3) arrives, first
it is checked whether it falls within the lines ', u'. Then, in order to
maintain the invariant that all lines within the set can represent all data
tuples so far, I! (respectively u!) may have to be adjusted to the higher-
slope (respectively lower-slope) line defined by the pair of data tuples
((t1,v1), (t3,v3 —€)) (respectively ((t1,v1), (t3,v3+¢€))). Lines below this
new [! or above this new u' cannot represent the data tuple (¢3,v3). The
segment estimation continues until the new data tuple falls out of the
upper and lower lines for a segment. The generated line segment for the
completed filtering interval is chosen so as to minimize the mean square
error for the data tuples observed in that interval. As opposed to the
slide filter (described below), in the swing filter the new data segment
starts from the end point of the previous data segment.

In the slide filter, the operation is similar to the swing filter, but upper
and lower lines uw and [ are defined differently. Specifically, after (¢1,v;)
and (t2,v2) arrive, u' is defined by the pair of data tuples (t1,v; —
€) and (t2,v9 + €), while ! is defined by (t1,v1 + €) and (tg, vy — €).
After the arrival of (t3,v3), I* (respectively u') may need to be adjusted
to the higher-slope (respectively lower-slope) line defined by ((¢;,v; +
€), (ts,vs—¢)) (respectively ((t;,v;—e€), (t3,v3+¢€))), where i € [1,2]. The
slide filter also includes a look-ahead of one segment, in order to produce
connected segments instead of disconnected segments, when possible.

Palpanas et al. [48] employ amnesic functions and propose novel tech-
niques that are applicable to a wide range of user-defined approximating
functions. According to amnesic functions, recent data is approximated
with higher accuracy, while higher error can be tolerated for older data.
Yi and Faloutsos [70] suggested approximating a data stream by dividing
it into equal-length segments and recording the mean value of the sen-
sor values that fall within the segment (referred to as segmented means
or as piecewise aggregate approximation (PAA)). On the other hand,
adaptive piecewise constant approximation (APCA) [6] allows segments
to have arbitrary lengths.

5.3.2 Piecewise Linear Approximation. The piecewise
linear approximation uses the linear regression model for compressing
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data streams. The linear regression model of a data segment is given as:
v =51+, (2.15)

where b and s are known as the base and the slope respectively. The
difference between v; and t; is known as the residual for time ¢;. For
fitting a linear regression model of Eq. (2.15) to the sensor values v; :
ti € [ty; te], the ordinary least squares (OLS) estimator is employed. The
OLS estimator selects b and s such that they minimize the following sum
of squared residuals:

RSS(b,s) = Ze [v; — (s t; + b)]*.

ti=ty

Therefore, b and s are given as:

b= : 2 V;
~ lptte &
ti=ty Zthtb (ti b2 )t

Zt;tb Vi btb + te
te —tp+1 2

(2.16)

Here, the storage record of each data segment of the data stream consists
of ([tb, c); b, s), where [tp; tc] is the segment interval, and s and b are the
slope and base of the linear regression, as obtained from Eq. (2.16).

Similarly, instead of the linear regression model, a polynomial regres-
sion model (refer Eq. (2.9)) can also be utilized for approximating each
segment of the data stream. The storage record of the polynomial regres-
sion model is similar to the linear regression model. The only difference
is that for the polynomial regression model the storage record contains
parameters aq, ..., aq instead of the parameters b and s.

5.4 Compressing Correlated Data Streams

Several approaches [14, 42, 24] exploit correlations among different
data streams for compression. The GAMPS approach [24] dynami-
cally identifies and exploits correlations among different data segments
and then jointly compresses them within an error bound employing a
polynomial-time approximation algorithm. In the first phase, data seg-
ments are individually approximated based on piecewise constant ap-
proximation (specifically the PMC-Mean described in Section 5.3). In
the second phase, each data segment is approximated by a ratio with
respect to a base segment. The segment formed by the ratios is called
the ratio segment. GAMPS proposes to store the base segment and the
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ratio segment, instead of storing the original data segment. The idea
here is that, in practice, the ratio segment is flat and therefore can be
significantly compressed as compared to the original data segment.

Furthermore, the objective of the GAMPS approach is to identify a
set of base segments, and associate every data segment with a base seg-
ment, such that the ratio segment can be used for reconstructing the
data segment within a L, error bound. The problem of identification
of the base segments is posed as a facility location problem. Since this
problem is NP-hard, a polynomial-time approximation algorithm is used
for solving it, and producing the base segments and the assignment be-
tween the base segments and data segments.

Prior to GAMPS, Deligiannakis et al. [14] proposed the self-based
regression (SBR) algorithm that also finds a base-signal for compressing
historical sensor data based on spatial correlations among different data
streams. The base-signal for each segment captures the prominent fea-
tures of the other signals, and SBR finds piecewise correlations (based
on linear regression) to the base-signal. Lin et al. [42] proposed an algo-
rithm, referred to as adaptive linear vector quantization (ALVQ), which
improves SBR in two ways: (i) it increases the precision of compres-
sion, and (ii) it reduces the bandwidth consumption by compressing the
update of the base signal.

5.5 Multi-Model Data Compression

The potential burstiness of the data streams and the error introduced
by the sensors often result in limited effectiveness of a single model for
approximating a data stream within the prescribed error bound. Ac-
knowledging this, Lazaridis et al. [39] argue that a global approximation
model may not be the best approach and mention the potential need for
using multiple models. In [40], it is also recognized that different ap-
proximation models are more appropriate for data streams of different
statistical properties. The approach in [40] aims to find the best model
approximating the data stream based on the overall hit ratio (i.e., the
ratio of the number of data tuples fitting the model to the total number
of data tuples).

Papaioannou et al. [50] aim to effectively find the best combination
of different models for approximating various segments of the stream
regardless of the error norm. They argue that the selection of the most
efficient model depends on the characteristics of the data stream, namely
rate, burstiness, data range, etc., which cannot be always known a priori
for sensors and they can even be dynamic. Their approach dynamically
adapts to the properties of the data stream and approximates each data
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segment with the most suitable model. They propose a greedy approach
in which they employ multiple models for each segment of the data
stream and store the model that achieves the highest compression ratio
for the segment. They experimentally proved that their multi-model
approximation approach always produces fewer or equal data segments
than those of the best individual model. Their approach could also be
used to exploit spatial correlations among different attributes from the
same location, e.g., humidity and temperature from the same stationary
Sensor.

5.6 Orthogonal Transformations

The main application of the orthogonal transformation approaches
has been in dimensionality reduction, since reducing the dimensional-
ity improves performance of indexing techniques for similarity search
in large collections of data streams. Typically, sequences of fixed length
are mapped to points in an N-dimensional Euclidean space; then, multi-
dimensional access methods, such as R-tree family, can be used for fast
access of those points. Since, sequences are usually long, a straightfor-
ward application of the above approach, which does not use dimension-
ality reduction, suffers from performance degradation due to the curse
of dimensionality [56].

The process of dimensionality reduction can be described as follows.
The original data stream or signal is a finite sequence of real values or co-
efficients, recorded over time. This signal is transformed (using a specific
transformation function) into a signal in a transformed space. To achieve
dimensionality reduction, a subset of the coefficients of the orthogonal
transformation are selected as features. These features form a feature
space, which is simply a projection of the transformed space. The basic
idea is to approximate the original data stream with a few coefficients of
the orthogonal transformation; thus reducing the dimensionality of the
data stream.

5.6.1 Discrete Fourier Transform (DFT).  The Fourier trans-
form is the most popular orthogonal transformation. It is based on the
simple observation that every signal can be represented by a superposi-
tion of sine and cosine functions. The discrete Fourier transform (DFT)
and discrete cosine transform (DCT) are efficient forms of the Fourier
transform often used in applications. The DFT is the most popular
orthogonal transformation and was first used in [1, 22]. The Discrete
Fourier Transform of a time sequence r = xg,...,zN_1 iS a sequence
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X = Xg,...,Xn_1 of complex numbers given by:
N-lo
Xp=> e i, (2.17)
=0

The original signal can be reconstructed by the inverse Fourier transform
of X, which is given by:

N-1
zj= Y Xpe?mw, (2.18)
k=0

In [1], Agrawal et al. suggest using the DFT for dimensionality re-
duction of long observation sequences. They argue that most real sig-
nals only require a few DFT coefficients for their approximation. Thus
similarity search can be performed only over the first few DFT coeffi-
cients, instead of the full observation sequence. This provides an effi-
cient and approximate solution to the problem of similarity search in
high-dimensional spaces. They use the Euclidean distance as the dis-
similarity measure.

5.6.2 Discrete Wavelet Transform. Wavelets can be thought
of as a generalization of the Fourier transform to a much larger family of
functions than sine and cosine. Mathematically, a wavelet is a function
;i defined on the real numbers R, which includes an integer transla-
tion by k, also called a shift, and a dyadic dilation (a product by the
powers of two), known as stretching. The functions v, play a similar
role as the exponential functions in the Fourier transform: 1); form an
orthonormal basis for the L?(R) space. The L?(IR) space consists of all
the functions whose Lo norm is finite. Particularly, the functions ; ,
where j and k are integers are given as follows:

Wi x(t) = 272(27t — k). (2.19)

Similar to the Fourier transform, by using the orthonormal basis func-
tions 1); 1, we can uniquely express a function f € LQ(R) as a linear
combination of the basis functions v} as follows:

F=>" <fbjn> ik (2:20)

k€T

where < f,g >:= |  Jgdz is the usual inner product of two functions in
L?(R).
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The Haar wavelets are the most elementary example of wavelets. The
mother wavelet 1 for the Haar wavelets is the following function:

1, if0<t<0.5,
VHaar(t) = —1, if 0.5 <t <1, (2.21)
0, otherwise.

Ganesan et al. [26, 25] proposed in-network storage of wavelet-based
summaries of sensor data. Recently, discrete wavelet transform (DWT)
was also proposed in [53, 7] for sensor data compression. For sustainable
storage and querying, they propose progressive aging of summaries and
load sharing techniques.

5.6.3 Discussion. The basis functions of some wavelet trans-
forms are non-zero only on a finite interval. Therefore, wavelets may
be only able to capture local (time dependent) properties of the data,
as opposed to Fourier transforms, which can capture global properties.
The computational efficiency of the wavelet transforms is higher than the
Fast Fourier transform (FFT). However, while the Fourier transform can
accurately approximate arbitrary signals, the Haar wavelet is not likely
to approximate a smooth function using few features.

The wavelet transform representation is intrinsically coupled with ap-
proximating sequences whose length is a power of two. Using wavelets
with sequences that have other lengths require ad-hoc measures that
reduce the fidelity of the approximation, and increase the complexity of
the implementation. DFT and DCT have been successfully adapted to
incremental computation [72]. However, as each DFT/DCT coefficient
makes a global contribution to the entire data stream, assigning less
significance to the past data is not obvious with these transformations.

5.7 Lossless vs. Lossy Compression

While lossless compression is able to accurately reconstruct the origi-
nal data, lossy compression techniques approximate data streams within
a certain error bound. Most lossless compression schemes perform two
steps in sequence: the first step generates a statistical model for the
input data, and the second step uses this model to map input data to
bit sequences. These bit sequences are mapped in such a way that fre-
quently encountered data will produce shorter output than infrequent
data. General-purpose compression schemes include DEFLATE (em-
ployed by gzip, ZIP, PNG, etc.), LZW (employed by GIF, compress,
etc.), LZMA (employed by 7zip). The primary encoding algorithms used
to produce bit sequences are Huffman coding (also used by DEFLATE)
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and arithmetic coding. Arithmetic coding achieves compression rates
close to the best possible, for a particular statistical model, which is
given by the information entropy. On the other hand, Huffman com-
pression is simpler and faster but produces poor results.

Lossless compression techniques, however, are not adequate for a num-
ber of reasons: (a) as experimentally found in [39], gzip lossless compres-
sion achieves poor compression (50%) compared to lossy techniques, (b)
lossless compression and decompression are usually more computation-
ally intensive than lossy techniques, and (c¢) indexing cannot be employed
for archived data with lossless compression.

6. Summary

In this chapter, we presented a comprehensive overview of the various
aspects of model-based sensor data acquisition and management. Pri-
marily, the objectives of the model-based techniques are efficient data
acquisition, handling missing data, outlier detection, data compression,
data aggregation and summarization. We started with acquisition tech-
niques like TinyDB [45], Ken [12], PRESTO [41]. In particular, we
focused on how acqusitional queries are disseminated in the sensor net-
work using routing trees [44]. Then we surveyed various approaches for
sensor data cleaning, including polynomial-based [73], probabilistic [21,
63, 52, 65] and declarative [31, 46].

For processing spatial, temporal and threshold queries, we detailed
query processing approaches like MauveDB [18], FunctionDB [64], par-
ticle filtering [33], MIST [5], etc. Here, our primary objective was to
demonstrate how model-based techniques are used for improving various
aspects of query processing over sensor data. Lastly, we discussed data
compression techniques, like, linear approximation [34, 39, 48], multi-
model approximations [39, 40, 50] and orthogonal transformations [1,
22, 53, 7.

All the methods that we presented in this chapter were model-based.
They utilized models — statistical or otherwise — for describing, simpli-
fying or abstracting various components of sensor data acquisition and
management.
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Abstract

Recently, with the fast development of sensing and wireless communi-
cation technology, wireless sensor networks (WSNs) have been applied
to monitor the physical world. A WSN consists of a set of sensor nodes,
which are small sensing devices with limited computational resources
able to communicate with each other located in their radio range. Net-
work protocols ensure the effectiveness of communication between sensor
nodes and provide the foundation for WSN applications. The charac-
teristics of WSNs; including the limited energy supply and computa-
tional resources, render the design of WSN algorithms challenging and
interesting. Both the Database and Network communities have dedi-
cated considerable efforts to make WSNs more effective and efficient.
In this chapter, we survey the problems arisen in practical applications
of WSNs, focusing on various query processing techniques over captured
sensing data.

Keywords: Query Processing, Wireless Sensor Networks
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1. Introduction

With the fast development of sensing and wireless communication
technology, wireless sensor networks (WSNs) become popular tools to
capture the physical worlds. A sensor is a device with one or several sens-
ing devices, a radio component, and limited computational resources.
It takes physical measurements of the environment, e.g., temperature,
light, sound, and humidity. A wireless sensor network (WSN) consists
of a base station and a set of sensor nodes. Each node is able to di-
rectly communicate with others within its radio coverage. The base
station, also called the data sink, is equipped with a radio component so
that it is able to communicate with the nearby sensor nodes and collect
their captured data. Sensors far away from the sink will transmit the
data to the sensors near the sink first, and then the data are relayed
to the sink. Depending on the size of a monitoring area, data captured
by the sensors located on the boundary of the monitor area may need
to relay multiple hops (sensors) before they reach the sink. To query
the sensing data, users submit queries at the base station, which then
reports the query results. WSNs were first applied in military and sci-
entific projects. Applications of WSNs flourish as the cost of sensors
drop, while the capabilities increase. In the past few years, WSNs have
attracted considerable interest from both the Network and Database
communities. Assume, for instance, a WSN that monitors the physical
status of a forest. An environmentalist is interested in the temperature
readings, while a biologist is interested in the level of soil moisture. In
order to capture different requirements, they submit queries at the base
station. In many applications, the query language is declarative and sim-
ilar to SQL. @1 shows a typical of an extreme value monitoring query
[4 5 6], which monitors the maximum temperature readings of the forest.

Q1: SELECT  MAX TEMPARTURE
FROM SENSORS
WHERE SAMPLE INTERVAL=5 mins

()1 treats the sensor data as a relational table and the temperature
reading as an attribute of this table. The SAMPLE INTERVAL clause
specifies the cycle length of this network, i.e., the interval between two
data collecting activities. Since sensors are battery-powered, it is cru-
cial to minimize their energy consumption in order to prolong the life
time of the network, especially when the sensors are deployed in harsh
or difficult-to-access environments, e.g., wildlife tracking [2] and habit
monitoring [3]. Making sensor nodes working in cycles is a standard way
for energy saving in WSNs. Within a cycle, a sensor
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m collects measurements from the environment
m receives data from other sensors in its network neighborhood

m  possibly performs some computations on the received and collected
data

m broadcasts data to the WSN

m enters the sleep mode until it wakes up for the next cycle

Two major challenges in WSNs refer to the effectiveness of communi-
cation between sensor nodes and the efficiency of data processing. The
first challenge spawns the design space of network protocols. Various
protocols ensure the smooth and automatic communication between sen-
sor nodes [4]. A network protocol specifies when a sensor node samples
the environment, to whom it reports to and from whom it receives data.
There are three categories of protocols, according to how they organize
the network: i) tree-based topologies, ii) multi-path-based topologies
and iii) the hybrid ones that combine the first two approaches. The sec-
ond challenge, i.e., the efficiency of data processing, is mostly the focus
of the Database community. Several observations realize this task from
different aspects. Firstly, in most applications, only a small part of the
data is interested by the user. Using descriptive queries like @)1 helps
drop uninteresting data as soon as possible. Secondly, sensor data often
exhibit strong spatial-temporal correlations [40]. It is reasonable to pre-
dict the sensor readings with certain confidence, based on historical and
easily observable sensor readings. Finally, when imprecise answers are
allowed, returning approximated ones (with error bounds) often lead
to large energy savings. This survey focuses on query processing for
WSNs, mostly from the database point of view. The remainder of this
chapter is organized as follows. Section 2 introduces the characteristics
and limitations of sensor nodes, which motivate the challenges involved
in designing WSN systems. Section 3 surveys common topologies of
WSNs; different algorithms optimize certain topologies. Section 4 intro-
duces the data storage techniques in WSNs; some applications require
the data generated by sensor nodes to be stored inside the network for
a period of time. Section 5 discusses data acquisition and aggregation
techniques in WSNs; a topic widely investigated in the Database com-
munity. Section 6 studies the model-based data acquisition, probabilistic
queries and event detection in WSNs. Finally, Section 7 concludes this
chapter.
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2. Limitations of Sensor Nodes

A sensor is a small device, whose volume is only a few cubic centime-
ters [7]. It is capable of sensing the environment, communicating with
other sensors, and performing simple computations. Section 2.1 intro-
duces energy constraints on sensors, while Section 2.2 summarizes other
restrictions such as unreliable transmission, and limited computational
resources.

2.1 Energy Constraint

Sensors are powered by batteries. A sensor is dead once it runs out of
battery power. The energy constraint is usually the bottleneck for most
WSNs. A sensor node consumes extremely low power during the sleep
mode, when most of its components are inactive. However, the use of
radio component, sensing unit and CPU is extremely power-consuming
[8]. A practical WSN, which is expected to be functioning for months [2
3], requires algorithms that properly use the components of sensors. For
instance, a Mica node, powered by two AA batteries, runs out of energy
in a few days if its components are constantly active. On the other
hand, it achieves six months of lifetime when it is properly programmed
[7]. The radio component is the most energy-consuming. It serves the
three functions of sending messages, receiving messages, and listening
for transmission requests from other nodes.

In order to execute a query that has been submitted to the base
station, the network protocol spreads it to the (selected) sensor nodes,
which transmit their measures back to the base station. The commu-
nication cost of query execution includes the total number of messages
transmitted in the network in order to answer this query. In particu-
lar, it covers functions i) and ii) listed in the above paragraph. There
are various algorithms to reduce the communication cost [9][10][11][12].
However, recent research shows that the time that the radio is active
dominates the energy cost, rather than the number of messages trans-
mitted. When the radio is on, the sensor is either sending/receiving
messages, or listening for incoming transmissions. Table 3.1 shows the
typical power consumptions of the radio in different modes. We observe
that message transmitting and listening cost substantial energy. There-
fore, to reduce the energy consumption, WSN algorithms should have
the radio in sleep mode as long as possible.
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Table 3.1. Energy consumption of radio in different status

Radio Status | Power
Sending 60mW
Receiving 45mW
Listening 45mW
Sleeping 90umW

2.2 Other Constraints

Sensors have limited computational and communication resources.
The technology of sensors has evolved for several generations. Mica [37]
is a popular series of second-generation commercial sensors. A Mica node
has a 4 MHz, 8 bit Atmel microprocessor and a 40 Kbits/second radio
device. More advanced sensors, such as Mica2, a third generation com-
mercial sensor, are equipped with 7 MHz processors, 128 Kbytes program
flash memory and radio devices with bandwidth 38.4 Kbits/sec. Even for
Mica2, the computational and communication resources are extremely
valuable; i.e., it is undesirable for an algorithm on sensor nodes to store
large amounts of data and perform complex computations. During data
transmission, there is always an upper bound on the packet size. A large
message is divided to fit in the packet before transmission. Similar to
other wireless radios, the radio devices of Mica nodes are half-duplex;
i.e., they are not able to listen to the incoming signals during message
transmission. In order to avoid collisions, before sending a message, the
nodes listen and detect whether the transmitting channel is in use. If
so, they delay their own transmissions for a random period of time and
then try again. In general, unreliability in WSNs is attributed to the
following aspects:

m  Sensor nodes are unreliable. A sensor may occasionally take wrong
sample readings. Errors may occur during message transmission.
More severely, a node may stop functioning for a short period of
time and come back again.

m  The links between sensors are unreliable. Since the links are wire-
less, they are sensitive to the physical status of the environment.
Turbulences in the environment (e.g., some object passing through,
the change of humidity, etc.) may affect the link quality.

Thus, an important parameter in a WSN is its packet loss rate, which
indicates the average probability that a packet gets lost in the path to the
base station. Algorithms developed for wireless sensor networks should
be able to handle message losses and possibly recover the missing data.
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3. Topologies of WSNS

The connectivity graph is a common tool to represent the connec-
tions between sensors of a WSN. A WSN consists of a set of sensors,
V, each of which acts as a node of the graph. We hereupon use the
terms sensor and node interchangeably. A node n; € V connects to
another node n; € V if n; is within the radio range of n;, that is, n;
directly communicates with n;. For such pair of nodes, we add an edge
ei; from n; to n;. The set of sensors along with the connections con-
sist the connectivity graph G =< V, E > of the network [38]. In most
applications, the sensors are of the same type and have the same radio
range. Thus, the connectivity between n; and n; is bidirectional. For
simplicity, it is a common practice to treat the connectivity of a WSN
as an undirected graph. A naive approach for message transmitting
is called flooding. In flooding, whenever a node receives a message, it
broadcasts the message to its neighbor sensors (i.e., sensors are within
the radio range). However, this simple approach is extremely energy
consuming due to the large amount of redundant transmissions. In or-
der to facilitate effective messages transmission, the network protocols
organize WSNs into certain topologies. Network protocols for WSNs
follow various approaches depending on the desired trade-off between
communication overhead and robustness. There are mainly three types
of topologies: the tree-based topology, the multi-path-based topology
and the hybrid topology. In tree-based topologies [4 13], every pair of
nodes communicate through a single path. This minimizes the trans-
mission cost, but is very sensitive to packet loss and node failures, which
happen frequently in WSNs. Specifically, when a transmission or a node
fails, the data from the corresponding sub-tree are lost. On the other
hand, multi-path-based topologies [12 14] allow a message to propagate
through multiple paths until it reaches the base station, so that even if
it gets lost in one path, it is able to be successfully delivered through
another one. The trade-off is the higher communication cost and possi-
bly duplicated results compared to the tree-based approaches. Hybrid
approaches [9] organize part of the WSN (e.g., reliable nodes with stable
communication links) using a tree-based topology, and the rest accord-
ing to a multi-path approach. In the following, we discuss the three
kinds of topologies in Sections 3.1, 3.2 and 3.3, respectively.

3.1 Tree-Based Topology

Given the connectivity graph G, a tree-based topology [4][13] con-
structs a spanning tree T' of G rooted at the base station. The base
station acts as the data sink and the entrance of the network. On re-
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ceiving a query, the base station propagates it to its children. This query
continues propagating level by level between parent-child links until it
reaches the leaf nodes. Suppose the query never affects parts of the net-
work, it is energy-efficient to stop the query from being propagated into
leaf levels as early as possible. TinyDB [7] achieves this by building the
semantic routing tree, SRT, to guide the query dissemination. SRT is a
routing tree embedded with a semantic index, which is an index on each
node n; built according to the sensor readings in the sub-tree rooted at
n;. In particular, the user specifies the queried sensors by restricting
their attribute(s), A, e.g., ID, location, etc. Conceptually, SRT is an
overlay index upon 7 and is maintained over time. In order to build
SRT, for each attribute a, in A, a node n; collects and keeps a,’s range
(i.e., an aggregation of a, readings in the sub-tree rooted at n;) as the
index. When a query arrives, n; checks whether the ranges kept in the
index intersects with the query range. If there is no intersection, the
query does not overlap with the range represented by its sub-tree and
it is dropped at n;. On receiving the query, a node senses the environ-
ment retrieves the physical readings and performs local computation.
The query results are transmitted bottom up on 7. If the query asks
for an aggregation, e.g., maximum value, sum, average, etc., in-network
aggregation is performed in order to reduce the sizes of the transmitted
messages [4 13]. The advantage of tree-based topology is energy effi-
ciency, since each node sends messages only to its parent. Figure 3.1(a)
gives a tree-based WSN topology, where the black node represents the
base station and gray nodes are sensors. The solid and dashed lines con-
necting nodes are bidirectional physical radio connections. However, the
latter are conceptually removed by the routing protocol, i.e., there are
no data transmissions on those connections. Several works aim at en-
hancing the robustness of tree-based topologies. A common approach is
to make the routing tree recoverable when some nodes stop functioning.
Specifically, each node n; maintains a table of neighboring nodes and
it periodically examines the link quality with its current parent. Once
the link is broken, n; sends requests to its neighbors asking for a new
parent and reports to the new parent once the request is accepted. How-
ever, algorithms have to consider the possible duplications of the sensor
readings during the handing over stage. Another approach to partially
overcome the vulnerability of the tree-based topology is to build multi-
ple trees on the wireless sensors. Each piece of data is able to reach the
base station through multiple paths. Obviously, this approach sacrifices
energy efficiency for robustness.

The routing tree can be optimized according to different criteria [15
16 17], e.g., link quality, energy efficiency, responsiveness, etc. However,
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(a) Tree-bazed topol ogy (b)) Malti-path-basedtopology  (¢) Hybrid topol ogy

Figure 3.1. Network topologies

most of the data processing techniques do not depend on the specific
routing tree. Instead, the resulting network should have the following
two properties:

1 It should be able to deliver query requests to all nodes in the
network.

2 It should be able to transmit data from every node to the base
station.

TinyDB [7], TAG [13], CONCH [10] and HAT [11] are based on the tree-
based topologies. In addition, some algorithms require that the routing
protocol generates no data duplication during transmission [13].

3.2 Multi-Path-Based Topology

In a multi-path-based topology [12], each node has multiple children
and parents. A sensor receives data from its children, processes the data
and broadcasts the partial results to all its parents. Consequently, a
message reaches the base station through multiple paths, increasing the
possibility for data to be successfully delivered. However, if several copies
of a reading reach the base station through different paths, duplication
arises and the algorithm has to take care of it. A popular multi-path-
based topology is Rings [14], where each node works in a certain level.
The topology is constructed iteratively starting from the base station
ng, which is in level [y = 0. To initiate the construction procedure, ng
broadcasts a signal mg, which contains the level information of itself,
i.e., mo.level = 0. On hearing mg, a node n; checks the level I; of itself.
If [; has not been assigned yet, n; assigns [; as mg.level 4+ 1, i.e., one
level lower than its parent. Otherwise, [; is already assigned, n; sets ;
to min{l;, mg.level + 1}, i.e., to be as close to the base station ng as
possible. After updating its level information, n; broadcasts a signal g;
with g;.level = [; to its neighborhood. This procedure keeps propagating
until the level information of all nodes is stable. As a result, each node
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n; is in a level whose value equals to the minimum number of hops
from n; to ng. This is called minimum-hop routing [39]. If there is a
fixed packet loss rate for each hop, minimum-hop routing minimizes the
message losses. Figure 3.1(b) shows an example of the Rings topology.
As before, the black node represents the base station while other nodes
are sensors. We omit the physical connections and only present the
connections maintained in the routing protocol. The sensors are divided
into two levels, which are represented by different gray scales. In order
for n; to transmit a message m; to ng, it attaches its level information
along with my, i.e., m;.level = l;, and broadcasts m;. A node n; hears m;
checks whether [; equals to m;.level — 1. If so, it is one of the parents of
n; and broadcasts m; after setting m;.level to [;; the process is repeated
until m; eventually reaches ng through multiple paths.

3.3 Hybrid Topology

In a network with high link quality, trees are preferable to multi-path
topologies because of their energy efficiency. On the other hand, if the
network suffers low link quality, it is better to use a multi-path-based
topology for robustness. Manjhi et al. [9] propose a hybrid topology,
called the Tributaries and Deltas, which adjusts the topology in different
areas of the network according to the local link qualities. The motiva-
tion is to reduce energy consumption in low-packet-loss-rate areas, while
increasing robustness in high-packet-loss-rate areas. Figure 3.1(c) shows
an example of the Tributaries and Deltas topology. The black node
represents the base station while gray ones correspond to sensors. The
nodes located in the gray area apply a multi-path-based topology, while
the rest form trees. The overall network topology is a directed graph,
where the direction of an edge agrees with the direction of the data flow,
i.e., from outer nodes towards the base station. The nodes labeled with
T (resp. M) run the tree-based (resp. multi-path-based) topology. An
edge is assigned with the same label as its source node. Generally, trees
incur no duplicate data transmissions, as opposed to multi-path-based
topologies. In order to ensure the correctness of the aggregation results,
the authors propose two constraints:

m  Edge Correctness: An M edge can never be incident on a T vertex,
i.e., an M edge is always between two M vertices.

s Path Correctness: In any path in the directed graph, a T edge can
never appear after an M edge.

The two constraints are actually equivalent. KEither of them ensures
that a multi-path partial result can only be received by a node in the
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multi-path topology (and hence equipped to handle duplication). An
implication from the constraints is that the region running multi-path-
topology will finally be a sub-graph of the connectivity graph including
the base station. As shown in Figure 3.1(c), the outer regions form trees,
while the region around the base station is multi-path-based. The nodes
at the boundary of the multi-path region are the switchable M nodes,
meaning that they can be switched to T nodes without violating the
correctness constraints. Also, the T nodes at the boundary of multi-path
region are called switchable T nodes, meaning that they can be switched
to M nodes freely. In order to adaptively adjust the topology of the
network according to the packet loss rates in different areas, an aggregate
on the data loss rate is maintained by each node n;. Specifically, n;
computes the packet loss rate in its sub-tree. Once the packet loss rate
exceeds a user specifies threshold ¢, the sub-tree rooted at n; suffers high
packet loss rate and applies the multi-path-based topology. Otherwise,
tree-based topology is applied. Changing between the two topologies is
accomplished by switching certain sensors between T and M nodes, so
that the multi-path region expands towards the areas with high packet
loss rate, while tree-based regions expand towards areas with low packet
loss rate.

4. Data Storage

Some applications do not involve a base station. For instance, often
scientists deploy sensors in the wild to monitor the habitat of animals
[2][3]. In such applications, the nodes form a WSN, which do not have
a base station. In order to collect data, scientists drive a vehicle with a
data collecting device through the monitoring territory. During the life
time of the network, the nodes store readings until they are contacted
by the collector. There are two main challenges for such applications:
i) due to the limited storage capacity, sensors memories may overflow
and ii) workload varies on different areas of the network, e.g., sensors in
the areas with frequent activities generate more data than those in areas
with rare activities. These issues raise challenges on how to store data
evenly in each node, and how to retrieve relevant data in different parts
of the network with low cost. [18] divides WSN storage techniques into
two categories: centralized and decentralized. In the centralized storage,
data are stored on the node that generates them. As an example, in
TinyDB, in order to perform certain kinds of aggregated queries, sensors
may store a small set of data locally [7]. This technique is not suitable
for an environment with frequent burst activities since they quickly drain
the valuable memory resource. A popular decentralized storage approach
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is the data-centric storage [19 20 21 22 23 24 25]. In data-centric storage,
the location to store a piece of data is determined by a set of attributes
of the data. The benefit of such scheme is that all the related data could
be stored together. Sophisticated algorithms are needed to determine
where a piece of data should be stored so as to balance the storage cost
of all nodes. A. Omotayo et al. [18] build a model for a data-centric
storage scheme with respect to the energy cost for storing and retrieving
data in WSNs. Suppose a piece of data d is generated by node ngyc
and is stored at node nges. The total cost of storing d contains three
components: (i) Reading d from the memory of ng.., (ii) transmitting
d t0 Ngest, and (iii) writing d to the memory of nges. The total cost of
retrieving d contains three components: (i) Routing the retrieval request
t0 Ngest, (ii) reading d from the memory of ngest, and (iii) returning d to
the base station.

Suppose a node n; stores part of its data (with size M; ;) at another
node nj. The energy cost of storing and retrieving data increases along
with the following parameters: i) the distance of ni from the base station,
ii) the size of M, j, iii) the distance between n; and n;, and iv) the
distance of n; from the base station. These critical parameters are crucial
to reducing the energy cost for data-centric storage.

5. Data Acquisition and Aggregation

This section surveys data acquisition and aggregation techniques. Sec-
tions 5.1 and 5.2 introduce query models and general frameworks for
data aggregation and acquisition. Section 5.2 surveys efficient algorithms
for specific applications. Section 5.3 investigates secure aggregation in
WSNs. Section 5.4 discusses an extension of the general frameworks to
support efficient in-network joins.

5.1 Query Models

Since sensors acquire samples of the environmental parameters peri-
odically, the data from the WSNs are streams. There are two query
models in WSNs: push-based and pull-based. In the push-based model,
the user registers a continuous query at the base station ng. The query
is then disseminated by ng and stored in the network for a relatively
long period of time, during which the sensors continuously generate the
results that satisfy the query and push them to the base station. This
model is the most common and practical one in WSNs. A typical query
over the WSN contains the following information: (i) The sampling fre-
quency: how often the sensors take samples, e.g., once per minute, (ii)
the affected attributes: which attributes should be sampled, e.g., tem-
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perature, and (iii) constraints on the returned values: filter out undesired
values, e.g., temperature readings above 100°C' should be dropped for
an application monitoring the water temperatures.

For the pull-based model, a snap shot result is returned for a query.
Specifically, ny disseminates a query into the network. On receiving the
query, a sensor n; returns its current reading. After ng receives all the
responses, it generates and returns the final result at the current time
stamp to the user. As an example, a query in the pull-based model is
“reporting the current temperature on the node with ID = 2”. The
main difference between these two models is that the push-based one
returns a stream of results, while the pull-based one returns only one
result which is the snap shot of the current network status.

5.2 Basic Acquisition and Aggregation

In early WSNs, the collected data were transferred to and processed
at the base station, regardless of their usefulness. Such systems lack
flexibility and scalability [7] because: they take samples in a fixed man-
ner and, they transmit large amounts of raw data. Consequently, they
have no control on which attributes to retrieve, the range of the returned
readings, etc. Current systems provide control on the sensor’s behavior
and offer various optimization opportunities. A WSN can be consid-
ered as a database that includes two sets of data: sensor meta data
and sensor sensing data. sensor meta data refer to information about
the sensors, such as the sensors’ IDs, locations, and other physical char-
acteristics. Sensor sensing data are measurements collected from the
sensors over time. In COUGAR [27 28], the meta data form a relational
table R(sensor_node,location) at the base station, where sensor_node
indicates the ID of a sensor n; while location records the physical coor-
dinates of n;. The sensing data are generated by sensors at each time
stamp. COUGAR follows the sequence model introduced by Seshadri et
al. [26] and embeds each reading with the time stamp when it is gener-
ated. Given a set of tuples embedded with time stamps, a time series of
the readings is constructed by sorting the records according to the time
stamps.

COUGAR includes an SQL-like declarative language. As an example,
a query is specified in the following form:

QR2: SELECT R.sensor.attribute(range)
FROM R
WHERE condition AND $every(period)

The “SELECT” clause specifies that the sensors sample the specific
attribute and return only those readings falling in range. The “WHERE”
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clause constrains the sensors affected by the query. “every(period)” is a
new expression introduced in COUGAR, indicating a continuous query
where each sensor should return a sample every period of time. As an
example, the query ”every minute, return the abnormal temperatures
(i.e., greater than 40°C') measured by nodes in the 4th floor” can be
written as follows:

Q3: SELECT R.sensor.temperature>40
FROM R
WHERE R.S.floor AND $every(l minute)

The first version of COUGAR does not support aggregation queries
based on time windows. For instance, the query “return the average tem-
perature on each floor over the last 10 minutes” cannot be translated into
the above declarative language. Bonnet et al. [27] enhance COUGAR to
support window queries. COUGAR is suitable for both data acquisition
and aggregation in WSNs. However, several applications only require
aggregations, without the raw data. Madden et al. [13] develop TAG
(short for the Tiny AGgregation service) for aggregation in low-power,
distributed, wireless environments. Their goal is to retrieve aggregation
information from the WSNs with low energy consumption. TAG devel-
ops a declarative language for continuous aggregate queries, similar to
COUGAR. Madden et al. [7] introduce another sophisticated system
called TinyDB. Similar to the above two systems, TinyDB allows user
to specify the data collecting manner using a declarative language. It
focuses on reducing the energy cost for acquiring and transmitting data.
The data generated by sensors form a single conceptual table called sen-
sors. Each kind of measurement, e.g., humidity, temperature or light
strength, forms a field in sensors. A tuple contains the samples of differ-
ent measurements acquired by a sensor at a single time-stamp. Newly
acquired tuples are appended at the end of sensor. A query in TinyDB
consists of SELECT, FROM, WHERE and GROUPBY clauses. In ad-
dition, TinyDB incorporates new key words “SAMPLE PERIOD” and
"FOR” to specify the frequency of taking samples and the life time of
the query, respectively. An example of a typical query is as follows:

Q4: SELECT nodeid,light, temperature
FROM sensors
WHERE SAMPLE PERIOD $every(1l s)

This query requires the sensors to take samples of light and temper-
ature every 1 second for a period of 10 seconds. Each time a set of
samples is acquired, the sensor should return it to the base station to-
gether with its node id. The results are streams, one for each sensor,
lasting for 10 seconds. They will be finally forwarded to the base station
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via a multi-hop topology. Each tuple of each stream includes a time
stamp corresponding to the time it was produced. In some applications,
the lifetime of the network is much more important than the sampling
frequency. For example, in a wild life habitat monitoring application,
scientists may not be aware of how the sampling frequency will affect
the life time of the network. However, they want the network work at
least one month. The keyword "LIFETIME” is introduced in TinyDB
to specify at least how long the network should function:

Q5: SELECT nodeid,movements
FROM sensors
LIFETIME 30 days

In this case, TinyDB performs life time estimation to adjust the sam-
pling frequency (at the same time, the frequency of sending and receiving
messages), so that the remaining energy can last until the specified life
time. According to the energy costs of accessing sensors, the selectiv-
ity of the query, the expected communication rates and the remaining
energy, a sampling frequency is computed to ensure the expected life
time.

Silberstein et al. [10] propose CONstrain CHaining (CONCH) for
data acquisition. The main idea of their approach is to provide effec-
tive spatio-temporal suppression and use a minimum spanning forest of
the network for data transmission. The CONCH method is an edge
monitoring approach that exploits spatial-temporal correlations in sen-
sor readings and effectively reduces the message transmission based on
such correlation. As data transmission dominants the energy consump-
tion, CONCH exhibits considerable energy reduction during the empiri-
cal evaluation. CONCH is based on the tree topology. The base station
directly monitors the readings of a selected portion of sensors, which
report their readings to the base station. For a remaining node n;, it
reports to its parent, which computes the difference on the reading be-
tween itself and n;. The parent then reports to the base station if and
only if the difference changes. The base station monitors such differences
on chains of nodes. It assumes the difference between the correspond-
ing pair of nodes does not change if no report is received. Knowing
the global topology of the network, the base station is able to recover
each node’s reading from the readings of the directly monitored nodes
and the chained differences. Due to the spatio-temporal correlation, the
readings of nearby sensors always share the same trend and the differ-
ences between them do not change frequently. So a large amount of
transmissions are suppressed and CONCH has good performance.
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5.3 Secure Aggregation

A WSN generates huge amount of data. Computing aggregations on
these data may bring significant cost to the owner of the network. For-
tunately, there are third-party aggregators, who have the advantage of
expertise consolidation, are able to provide aggregation service on the
raw data with lower cost and better performance. Figure 3.2 shows the
model of outsourced aggregation. The aggregator lies between sensors
and the portal, which are both facilities belonging to the data owner.
The portal, acting as a proxy, delivers data, i.e., queries and results,
between user and the aggregator. Since the aggregator is usually un-
trusted, the portal has to verify the results. The verification ensures the
results are: i) correct: the results are indeed originated from the sensors,
not faked by the aggregator. ii) complete: all data belong to the result
set are returned, none is dropped.

ey

A "%
“\ 3
: . __d"" =
B -
-
portal
1 ——

Figure 3.2. Outsourced aggregation model

As a general setting, each sensor n; shares a secret k; with the por-
tal, which is unknown to the aggregator. The approach to ensure the
correctness is straightforward. For each raw data d, n; computes a Mas-
sage Authentication Code (MAC for short) md using k;. n; then sends
the pair < d,myg > to the aggregator. The aggregator cannot generate
proper MAC for a message since it is not aware of k;, while the por-
tal is able to verify the correctness using the shared keys. However,
to ensure the completeness is much more challenging. Nath et al. [41]
propose SECOA for secure aggregation on the maximum value and its
derivatives. SECOA defines a one-way rolling function H, computing the
digest of an input. To implement secure MAX aggregation, each sensor
n; computes a seed s; from k;. Suppose the reading of n; is an integer v;.
n; then applies H by v; times on s; (let the resulting digest be h;) and
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send the pair < v;, h; > to the aggregator. On receiving all pairs from
sensors, the aggregator computes the maximum value v,,. For any other
value v; < vy, the aggregator further applies H by v, — v; times on h;
and get the new digest, which is the result of applying H by v,, times on
s;. SECOA then defines folding function F' that combines all digest into
one, h. The aggregator sends the pair < v,,,h > to the portal. Since
the portal is aware of all k;, it can compute the corresponding s; and the
digests by applying H v,, times on s;. Using F' to combine the digest
together, the portal will get identical h if the aggregator did not cheat.
Assume that node n; has the maximum value v,, and the aggregator
reports a value v;,, < vp,. Since the aggregator does not know k; and H
is applied in one-way, it is not able to generate the correct digest for n;
and h. Thus, by this one-way chain technique, the completeness of the
aggregation is ensured in a communication-efficient way.

5.4 Efficient Algorithms for Specific
Aggregations

As discussed in previous sections, COUGAR is a general framework
for both acquisition and aggregation queries. TAG is optimized for ag-
gregation queries, while TinyDB is acquisition-query oriented. CONCH
further explores the spatial-temporal correlation among sensor readings
to reduce the communication cost. However, for some specific aggre-
gations, more efficient algorithms exist. This section surveys energy-
efficient algorithms for continuous extreme and top-k value monitoring.

5.4.1 Extreme Value Monitoring. Extreme value monitor-
ing in a WSN is extensively studied recently. TAG [8] supports MAX
queries in a straightforward way. When a query comes, each leaf node
in the routing tree sends its parent the current reading. An intermedi-
ate node sends its parent the maximum reading among all its children
and itself. In the end, the maximum value propagates to the base sta-
tion, which is the root of the routing tree. For a continuous query, such
procedure is repeated in every cycle.

Rather than TAG, A. Silberstein et al. [11] propose a set of threshold-
based algorithms for extreme value monitoring. The Hierarchical Adap-
tive Thresholds (HAT), which follows the tree topology, is the most
energy-efficient. HAT maintains a threshold for each node, indicating
the upper bound of the maximum value in its sub-tree. It is satisfied
that a parent’s threshold never falls below those of its children and the
root’s threshold is the current maximum value. For continuous queries,
the root periodically issues signals requesting updates from the nodes.
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On receiving the signal, a node sends its current reading to the parent.
The benefit of the hierarchical thresholds is that when a reading with
value v reaches a node having its threshold € > v, the transition stops.
It is because the global maximum value, which equals to the threshold
maintained at the root, is at least €. Since v is less than €, v cannot be
the global maximum value.

5.4.2 Continuous Top-k Queries

Top-k monitoring is a generalized version of the extreme value
monitoring. Babcock et al. [30] address the problem of monitoring top-
k values among distributed datasets. The idea is to align local top-k
lists to global top-k list through some adjustment factors. However, the
setting of the distributed datasets is quite different from that of the
WSN applications. Wu et al. [29] propose FILA for top-k monitoring
in WSNs. The basic idea is to install a local filter [l7,ui] at each node
n;, indicating that sensor readings of n; do not affect the global top-k
ranking if they fall in this filter and it is not necessary to report them. On
the other hand, once a reading falls outside of the filter, it may affect the
global top-k ranking and n; reports to the base station ng. ng maintains
a synchronized copy for each filter. It reevaluates the filters once top-
k values change and sends the new filters with corresponding nodes.
By suppressing unnecessary updates, FILA outperforms straightforward
approach implemented in TAG.

5.5 Join Processing

In-network JOIN operation (e.g. joining two records in the WSN that
are within a specified time window) is not efficiently supported in TAG.
The following shows a scenario of join in WSNs: In a volcano moni-
toring project, after noticing that the volcanic activity of the mountain
has increased, scientists want to know whether the pressures detected
have crossed a certain threshold and is continuously increasing within
some period of time. An SQL-like query Q¢ is submitted to the network:

Q6: SELECT P_1.pressure, P_1l.time, P_2.pressure, P_2.time

FROM Pressure AS P_1, Pressure AS P_2
WHERE P_1.pressure > threshold (¢)

AND P_2.pressure > P_l.pressure

AND P_2.time > P_1.time

AND P_2.time-P_1.time > h

where Pressure is the relation represents the sensor data on which self-
join is performed. Specifically, two tuples of Pressure that fall in a time
window are joined. Since a sensor does not know beforehand which nodes
it may join with, a naive way is to let very node flood its tuples all over
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the network, so as to discover possible joins partners. This causes huge
communication cost which is a disaster for an energy critical setting. An
alternative is let all nodes send their tuples to the base station, where
JOIN operations are performed. Although reduced, the transmission
amount of such approach is still considerable. Besides, the base station
may become a bottleneck for massive data processing [36]. Yang et al.
[18] propose Two-Phase Self Join (TPSJ), processing the above join in
two phases. TPSJ is energy-effective and is applicable on queries having
the following three properties:

1 The join involves two copies of the same relation.
2 The tuples joined are within a specific time window.
3 There is a selection predicate in the ”WHERE” clause.

TPSJ decomposes the original query into two sub-queries, which are
executed sequentially. As an example, the previous query Qg is decom-

posed into:
Q7: SELECT P.pressure, P.time INTO R_1
FROM Pressure AS P

WHERE P.pressure > threshold (e)

Q8: SELECT P.pressure, P.time

FROM R_1, Pressure AS P
WHERE P.pressure > R_1.pressure
AND window(R_1.time, P.Time, h)

First, the base station issues (J7 to the sensors. After Q7 is executed,
a table Rj, that contains all tuples satisfying the select predicates, is
obtained at the base station. Then the base station issues (Js. Ry is
also injected into the network along with Qg. Since R; contains all
join candidates, the correctness and completeness of the join results
are ensured. The benefit TPSJ brings is to reduce the unnecessary
transmissions of the useless tuples that do not join. The drawback is that
the table Ry has to be transmitted twice for one JOIN operation (first
transmitted to the root and then injected into the network). Since the
size of R1 is expected to be small, the overall reduction of transmission
is substantial. Mihaylov et al. [44] summarize three classes of join
strategies, i.e., the grouped join, through-the-base join and the pair-wise
join. In the grouped join, the joined tuples are sent to a specific node
using distributed/geographic hash table. In the through-the-base join,
the tuples from one join party are routed to the join partner through the
base station. In the pair-wise join, the algorithm first establishes a path
between two join partners and then selects a node along this path to
perform the join operation. Furthermore, the authors build cost models
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Figure 3.3. The correlation between different measurements

for the three join strategies, according to which the optimizer chooses
the optimal query plan.

6. Other Queries

This section further investigates the model-driven data acquisition,
probabilistic/approximation queries and event detection in WSNss.

6.1 Model-Driven Data Acquisition and
Probabilistic Queries

In WSNs, correlations exist between different kinds of measurements.
Figure 3.3(a) shows the temperature readings in a period of time, while
Figure 3.3(b) shows the voltage level of a sensor in the same duration
in the Intel Berkeley Data Set. It is obvious that there is strong cor-
relation between the two measurements. The two curves are so similar
that we can use one of them to predict the other. Another observation
is that the energy cost of sampling temperature is much larger than that
of retrieving the battery voltage. In order to reduce energy cost, in-
stead of sampling temperature directly, we may first acquire the battery
voltage and then predict the temperature reading. Motivated by this,
Deshpande et al. [31] propose the model-driven data acquisition system
called BBQ, a Tiny-Model Query System.

BBQ handles probabilistic queries. A probabilistic query typically
includes two more parameters than the general queries:

1 . An error bound indicating how much bias from the real value is
acceptable

2 . The confidence threshold of the returned value
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A typically probabilistic query in BBQ is:

QR9: SELECT nodeID, temperature 0.1, confidence(0.95)
FROM Pressure AS P
WHERE P.pressure > threshold )

In the above query, the user asks for the temperature readings of
nodes with ID from 1 to 8. The user specifies an error bound 0.1°C
on temperature, meaning it is acceptable if the difference between the
result r and the real value r* is no more than 0.1°. In addition, the user
requires the probability that r* falls in the range [r — 0.1°C,r 4 0.1°C]
is at least 95%, which is defined by the confidence parameter. BBQ
builds a probability density function (pdf), for each attribute, according
to the historical data. Suppose the sensor measures n attributes. The
pdfis a function with n variables with the form p(Xi, X2, , X,,). When a
query on attribute att; arrives, BBQ first marginalizes pdf with respect
to att;. It uses the marginalized pdf to compute the most possible value
r of att;, i.e., the expected att; value. Then it calculate the probability
pr that the real value of att; falls in the range [r — e, r + €], where € is the
given error bound. If pr satisfies the confidence parameter, r is returned.
Otherwise, BBQ physically retrieves a new sample of att; from sensors.

BBQ also handles probabilistic range queries. For instance, “check if
the temperature at the 2nd node falls in the range [20°C,25°C]”. The
procedure is similar. First, BBQ computes the marginalized pdf with
respect to the temperature attribute. It then computes the probability
that the expected temperature reading falls in the query range. If the
probability is high (low) enough, BBQ is confident to returns true (false).
Otherwise, BBQ is not confident enough to make the decision and it
physically retrieves new samples from sensors to answer the query.

6.2 Event Detection

Event detection is an important application in WSNs. In forests, peo-
ple use event detection to predict potential fire disasters. In factories,
event detection is used to monitor abnormal machinery activities. Ad-
vised by the historical data, users of a WSN gain knowledge on the range
of the sensor readings. For instance, in a factory, the temperature near
machines is normally from 30°C' to 60°C and the humidity in a barn
is from 30% to 50%. If sensors report temperatures higher than 60°C
or humidity below 30%, then somewhere in the factory is in danger of
catching fire. Condition-based maintenance detects sensor readings fall
out of the normal range, where conditions define the normal ranges of
sensor readings. A condition consists of three attributes:
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1 The attributes of the sensor, e.g., physical location and ID
2 The type of measurement, e.g., temperature and humidity

3 The range of the reading, e.g., temperature [30°C, 60°C| and hu-
midity [30%, 50%]

Tuples from related conditions form a table. For a complex monitoring
application, there could be multiple condition tables. The goal is to
collect sensor readings satisfying some condition predications [32]. As an
example, consider the following scenario. In a factory, three machines are
equipped with sensors for monitoring their temperatures. The condition
tuple is in the form of < MACHINE_ID,range,time >, indicating
the range of normal temperature on different machines in different time
slots. Table 3.2 shows a fraction of the condition table.

Table 3.2. A sample condition table

ID Range Time

1 50°C,70°C 6am — 1pm
1 30°C, 60°C 1pm — Tpm
1 10°C,30°C Tpm — 6am
2 60°C,70°C 8am — 6pm

|
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Range Time
20°C, 30°C 6pm — 8am
30°C, 60°C 8am — 3pm
40°C,70°C 3pm — 10am
20°C,40°C 10pm — 8am

Tuple < 1, [50°C 70°C], 6am — 1pm > indicates that the normal tem-
perature of the first machine varies in range < 1,[50°C 70°C], 6am —
1pm > | during 6am-1pm. If its temperature falls outside of the range
during this time slot, it is abnormal and the system generates an event.
Following shows a typical query which returns abnormal readings over

all nodes:
Q10: SELECT a.temperature
FROM sensorAS a, condition_table AS t
WHERE a.temperature < t.min_temp
AND a.temperature > t.max_temp
AND a.nodeid = t.nodeid

The key in implementing this query is the JOIN operation that joins
the condition table and the sensor readings. If the sensor memory is large
enough for a condition table, it is straightforward to store the tables in
selected nodes, retrieve them when tuple come and perform the join.
However, it is always the case that the size of a condition table exceeds
the sensor’s memory capacity. Consequently, a condition table has to be
split and stored multiple nodes. To tackle this challenge, Abadi et al.
[32] propose an algorithm based on grouping sensors and partitioning
condition tables. The idea is to horizontally partition a table and store
the partial tables in a set of sensors. Due to table partitioning and
distributed storage, a tuple t must be sent to all nodes containing the
partial tables in order to complete the join. To make this procedure
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communication-efficient, nodes are organize into groups. Sensors of the
same group are within the broadcast range of each other, so that they
can effectively exchange t and the partial join results. Protocols are
proposed for group formation and join operation. Since connections
in WSNs are unreliable, the protocols also detect sensor failures and
develop recovering mechanism.

W. Xue et al. [33] defines events in a different way and develop cor-
responding detection techniques. Their work is motivated by coal mine
applications. Events are defined by patterns of contour maps and are
detected by matching the contour map of the current sensor readings
with predefined patterns. A contour line of a function is a curve along
which the function has a constant value [35]. In cartography, a contour
line joins points of equal elevation above a given level, such as mean
sea level. A contour map is a map consists of contour lines, for exam-
ple a topographic map, which shows valleys and hills, and the steepness
of slopes. Figure 3.4(a) illustrates how a contour map is created while
Figure 3.4(b) shows a contour map of a hill.
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Figure 3.4. The Contour maps

In the coal mine application, the abnormal distribution of the oxygen
or gas density and the humidity concern the researchers. The distribu-
tion of sensor readings (e.g., gas density) over the monitoring area is
represented by a contour map. The authors observe that when some
events happen, the shapes of the contour maps exhibit certain patterns.
[33] follows the tree topology. During transmission, a sensor generates
its partial contour map by combining all partial maps from its chil-
dren. Since contour maps are typically of large size, the authors propose
compressing techniques to optimize the map transmission. Another ob-
servation is that the contour maps are mostly stable over time. For
continuous event monitoring, instead of transmitting contour maps at
each time stamp, only the updates upon the previous ones are transmit-
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ted. Maps are updated incrementally at the base station, which matches
the maps against the predefined patterns and reports the events.

6.3 Approximation Queries

Approximation is a common approach to achieve data reduction if
no exact answers are required. In applications such as military surveil-
lance, in order to achieve high responsiveness, it is desirable that the
system quickly returns a coarse result for the overall battlefield, and
then refines the result on specific areas iteration by iteration, similar to
zoom in operation on image viewing. [42] proposes data shuffling algo-
rithm to tackle this problem. The purpose of data shuffling algorithm
is to determine the reporting order of sensor readings so that the al-
gorithm is able to compute the approximated result from the first few
reports and then refine the result on receiving the additional reports.
[43] proposes another approach, called the multi-resolution compression
and query (MRCQ). In MRCQ), sensors are conceptually organized in a
layered structure where a node may work in multiple layers. The raw
readings are stored at the bottom layer in the form of matrices. A bot-
tom layer node applies the discrete cosine transform on its matrix and
gets i) the compressed representation of its matrix and ii) the stored
data. The major characteristics of the matrix are stored in i), which
is transferred to the upper layer node as the approximation, i.e., the
low resolution result. In order to recover the original data, both i) and
ii) are necessary. In case refinements are required later, a bottom node
caches the stored data locally. The same procedures are repeated in the
intermediate nodes, until the compressed data reach the base station.
In order to refine the query result, the base station requests the stored
data cascading down. MRCQ achieves different resolutions of the result
by stopping the cascading at different levels of the layered structure.

7. Conclusion

In this chapter, we survey the recent works in WSNs under a database
point of view. Starting by investigating the characteristics of sensors,
it addresses the common issues in designing algorithms in the WSNs.
It follows to introduce the network topologies of WSNs, which are the
foundation of data transmission. Then we investigate the general data
acquisition and aggregation frameworks and shows the common query
languages and query types in WSNs. More specific applications, query
types, and various approaches are also discussed.
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Abstract

Sensors including RFID tags have been widely deployed for measur-
ing environmental parameters such as temperature, humidity, oxygen
concentration, monitoring the location and velocity of moving objects,
tracking tagged objects, and many others. To support effective, efficient,
and near real-time phenomena probing and objects monitoring, stream-
ing sensor data have to be gracefully managed in an event processing
manner. Different from the traditional events, sensor events come with
temporal or spatio-temporal constraints and can be non-spontaneous.
Meanwhile, like general event streams, sensor event streams can be gen-
erated with very high volumes and rates. Primitive sensor events need
to be filtered, aggregated and correlated to generate more semantically
rich complex events to facilitate the requirements of up-streaming ap-
plications. Motivated by such challenges, many new methods have been
proposed in the past to support event processing in sensor event streams.
In this chapter, we survey state-of-the-art research on event processing
in sensor networks, and provide a broad overview of major topics in
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complex RFID event processing, including event specification languages,
event detection models, event processing methods and their optimiza-
tions. Additionally, we have presented an open discussion on advanced
issues such as processing uncertain and out-of-order sensor events.

Keywords: Sensor streams, RFID streams, event processing

1. Events and Event Processing

We first present an overview of events and event processing in the con-
text of sensor streams, including semantics of events, event processing,
and use cases of sensor event processing.

1.1 Semantics of Events

An “event” is a happening of interest [77]. In database applications,
the interest in events comes mostly from the state changes that are
produced by data manipulation operations [54]. Example events in real
world include a financial trade, a web click, a sensor reading and a
social or natural significant happening, and many others. In a monitored
environment deployed with sensors, flows of observation data can be seen
as streams of observable events. When an event takes place, we refer
to its occurrence; and when an event is recognized by the system, we
refer to its detection.

Events are often interrelated and form complex relationships, such
as temporal, spatial, causal or abstract (or composite) relationships.
A temporal, spatial or causal relationship of events can determine the
partial order between events, and abstract or composite relationship can
be represented as an event that represents or summarizes a collection of
events.

Events can be categorized as atomic events and composite events.
Atomic events or primitive events are the simplest events in a sys-
tem, which are defined to occur at a certain time point or not occur
at all. A composite event or complex event is a high-level derived
event, and it is defined by applying an event operator to constituent
events that are primitive events or other composite events [54].

Events can have their attributes such as type, ID, and time; an event
attribute can have a simple or complex data type. Similar events can be
grouped into an event type, and an event type is denoted by an event
expression. A primitive event (type) name itself is an event expression.
If E1, Eo, ..., E, are event expressions, an application of any event
operator over the event expressions is an event expression. An atomic
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event is defined to occur at a point of time, usually called as a point
event; while a composite event can always span a period of time, i.e.,
an tnterval event [72]. Any dimension of attributes of an event can
be either certain or uncertain. An event with one or multiple uncertain
attributes is an uncertain event or a probabilistic event [53]; other-
wise, it is a certain event. If an event cannot detect its occurrence by
itself unless it either gets expired or is explicitly queried, we name it as a
non-spontaneous event [73]. RFID applications and sensor applica-
tions can generate non-spontaneous events such as negated events and
temporal constrained events. Such non-spontaneous events pose new
challenges for event processing.

It is common that real-world events are associated with time and spa-
tial or location dimensions, which mirror the most common inquiries
about such events, i.e., when and where. However, events can contain
more information than these two well-known dimensions entail. Orig-
inally, other semantic properties such as genealogy, identification and
others can describe partitional information of an event. All these prop-
erties of an event can be viewed as its context, namely event context,
and event context can be temporal, spatial, semantic, or even social.
Contexts of events can significantly affect the semantics for event pro-
cessing, and it is critical to identify the context and the type of context
to process events effectively and semantically.

1.2 Event Processing

Vast amounts transaction data and monitoring data can be constantly
generated as event streams, which have to be fully processed to support
automated business decisions or time-critical actions. Basically, events
cannot be entirely foreseen [62], and we cannot predict whether a critical
event will happen, or when it will happen. In reality, what we can do is to
ensure that the interested events can be detected in a real-time or quasi-
real-time manner; this is the main purpose of event processing. Thus
timeliness is among the top priorities in event processing applications.

Generally speaking, event processing can be broadly defined to be any
computing that performs operations on events, including reading, creat-
ing, transforming and deleting events [28]. The main idea of event pro-
cessing is to process events to gather meaningful or valuable information
and then deriving actions from them. The main functional capabilities
required by event processing applications include data filtering, aggrega-
tion, transformation, pattern detection, pattern discovery and pattern
prediction. Non-functional requirements include performance, response
time and throughput.
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A strong connection exists between the event-condition-action (ECA)
paradigm [64] and event processing (EP). EP applies three basic ECA
concepts, i.e., events, conditions and actions. However, EP considers
more complex events, conditions, and actions, and traditional ECA rules
are insufficient for more complex conditions and actions. The differences
between stream processing (SP) [65] and event processing (EP) are
some blurry. Both SP and EP have the ability to to efficiently process
long-running continuous queries over sequences of events. SP tends to
place a higher emphasis on managing large volumes of data with rela-
tively fewer queries; whereas EP tends to consider the effect of sharing
across many queries or many patterns and focus on response generation
[63].

Complex event processing (CEP) [66] refers to effective detection
and evaluation of the specified meaningful event patterns such as op-
portunities, exceptions, or threats over event streams. It is also often
referred to as complex pattern matching. The goal of CEP is to identify
meaningful events such as opportunities or threats and generate timely
responses. Based on Mythbusters [67], EP is analogous to signal process-
ing and CEP is more aligned with higher level situational inferencing.

1.3 Applications of Sensor Event Processing

In the era of smart planet, a variety of sensors including RFID have
been widely deployed within wired or wireless networks to produce mea-
surements and observations. The sensor data can be viewed as events
(i.e., sensor events) and can be utilized for the purposes of probing and
monitoring. Sensor network applications can be categorized into areas
such as military intelligence, environment monitoring, municipal admin-
istration, industry production, health-care assistance, smart home and
so on. Next we summarize some common event-driven sensor-enabled
example applications, which generates huge volume of observing events
to be handled with EP mechanisms.

Military Intelligence Applications: Military intelligence is inher-
ently based on an information-rich environment. Nowadays, the number
of sensors, satellites, and soldiers is pervasive, and the need to present
a timely, correct, aggregated and integrated view based on the multiple
sensing information sources is critical for effective and precise decision
making.

Environment Monitoring Applications: Multiple sensors can be
deployed at different sites on the mountain-side for the prediction of geo-
logical disasters such as avalanche at the monitored mountain. There are
several influential parameters including static ones such as the steepness
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of the mountain and dynamic ones such as temperature, air pressure and
snow depth. The measurements and their history values play a critical
role for correct and timely event processing.

Municipal Administration Applications: A traffic monitoring
system can gather GPS data transmitted by cars, including the 1D, po-
sition, and speed of cars. Besides, vast amount of sensors can also be
deployed at main routes and key junctions to collect real-time traffic
conditions. Each car transmits a packet of data periodically. The mon-
itoring system can introduce event processing to correlate the data in
order to detect traffic problems, recommend ideal driving routes, or send
route in real-time.

Industry Production Applications: Subtle electronic products
such as chips should be manufactured in a finely controlled production
environment. Many conditions of the plants such as the vibration of
equipment parts need to be carefully monitored. In such case, corre-
sponding sensors which measure mechanical vibrations can be used to
avoid inefficient manual measuring and patrolling. Recently, RFID has
been widely adapted for tracking the exact locations of items or tallying
the number of items in the same category in a modern warehouse.

Health-care Assistance Applications: Sensors are often deployed
to track and monitor doctors and patients inside a hospital. We can
imagine such a scenario: Each patient can be attached a small and light
weight sensor node for detecting the heart rate or the blood pressure.
Doctors may also carry sensor nodes so their location inside the hospital
can be quickly identified. Similarly, sensors can be mounted at some
critical areas to facilitate more effective monitoring. For the sake of
reasonable diagnosis or prediction, sensor events from multiple monitors
should be correlated, and knowledge of the patient’s condition and dis-
ease history should also be considered during this type of sensor event
processing.

Smart Home Applications: For home automation, smart sensor
nodes and actuators can be embedded in appliances such as vacuum
cleaners, microwaves, ovens, refrigerators, and VCRs. Sensors for mea-
suring temperature, humidity, percentages of air components and others
can also be deployed in the home to monitor indoor conditions or actuate
adjustments through smart appliances such as air conditioners. These
sensor nodes can interact with each other, and can be conveniently mon-
itored and managed by end users through via the Internet or satellites.

To support effective, efficient, and near real-time phenomena prob-
ing and objects monitoring, streaming sensor data have to be gracefully
managed in an event processing manner. Different from the traditional
events in active databases, sensor events come with temporal or even
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spatio-temporal constraints and can be non-spontaneous. Meanwhile,
like general event streams, sensor event streams can be generated with
very high volumes and rates. Primitive sensor events need to be filtered,
aggregated and correlated to generate more semantically rich complex
events to facilitate the requirements of up-streaming applications. Mo-
tivated by such challenges, many new methods have been proposed in
the past to support event processing in sensor event streams. In this
chapter we will mainly focus on complex event processing over sensor
streams including RFID data streams, as the trends show that primi-
tive event processing is gradually moved to the edges of event sources.
Next we will present an overview of sensor event processing techniques,
including event specification languages, event detection models, event
processing methods and their optimizations. During the discussion, we
will pay special attention to the distinct challenges of event processing
over sensor streams and RFID streams.

2. Event Processing in Sensor Streams

Event detection approaches in sensor networks can be categorized
into statistical methods [1], topographical techniques [2-4], and edge
detection algorithms [5-7].

Statistical methods. A statistical method is presented in [1] for
detecting generic homogeneous regions without the benefit of an a priori
predicate to identify events. Instead, it uses a kernel density estimator
to approximate the probability density function of the observations. It is
suggested that the detection routine be rerun periodically to accommo-
date the scenario of any new regions or holes that evolve in the midst of
tracking. Even so, there is not an elegant way to handle new detections
and persistent tracking at the same moment.

Topographical methods. An example of the topological and con-
tour mapping technique is Iso-Map [2], which builds contour maps based
solely on the reports collected from intelligently selected “isoline nodes”
in the network. This approach is limited to a plane. Another technique
[3] collects time series of data maps from the network and detects com-
plex events through matching the gathered data to spatio-temporal data
patterns. Essentially the work provides a basic infrastructure and then
outsources the problem solution to the user, instead of directly solving
the event tracking problem. SASA [4] uses a hole detection algorithm
to monitor the inner surface of tunnels, where sensor nodes may be dis-
placed due to collapses of the tunnels.
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Edge detection methods. In edge detection based event detec-
tion and tracking, the challenge is to devise a method for nodes to be
identified as “edge nodes” that are near the boundary of a region, and
from that, calculate an approximate boundary for the region in ques-
tion. Three methods guided by statistics, image processing techniques,
and classifier technology are developed and compared in [5]. A novel
method for edge detection of region events makes use of the duel-space
principle [6, 7]. The algorithm is fundamentally centralized, but it can
be distributed among backbone nodes in a two-tier architecture. This
approach, like [5], does not accomplish event labeling.

Existing research on point event detection includes various protocols
such as Distributed Predictive Tracking [8], Dynamic Convoy Tree-based
Collaboration (DCTC) [9] and theoretical contributions [10]. One of the
most notable contributions is DCTC [9]. It uses a “Dynamic Convoy
Tree” protocol to accomplish both event tracking and communication
structure maintenance. DCTC essentially forms and maintains a span-
ning tree over the nodes which senses the event. This is perhaps the most
obvious and straightforward method of detecting events within the net-
work. Moreover, many of the existing high level event detection services
either cite DCTC directly or at least assume a spanning tree structure
like it as part of the middleware needed for their query support.

2.1 Event Models for Sensor Streams

Next we consider two application scenarios of event models for sensor
streams. The first is an offline variant in which event detection happens
at the database that stores the measurements collected by the network.
This detection method is used to automatically identify “interesting”
regions within the swaths of data acquired by the sensor network. In
the other online application, motes in the network use events and models
to alter their behavior.

Offline event detection. The offline event detection provides a
model suitable for querying events from noisy and imprecise data. Both
database systems [12, 13] and sensor networks [14-16] have explored
model-based queries as a method for dealing with irregular or unreliable
data. Models in these systems include Gaussian processes [14], inter-
polation [17, 18], regression [14-19] and dynamic-probabilistic models
[13-15]. PCA (Principal Component Analysis) based model is specifi-
cally suited to event detection [11]. MauveDB [13] provides a user-view
interface to model-based queries, which greatly extends the utility and
usability of models.
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Online event detection. In the online case, sensor networks
reduce the bandwidth requirements of data collection by suppressing re-
sults that conform to the model or compressing the data stream through
a model representation. This has coincident benefits on resource and en-
ergy usage within the network. If sensors measure spatially correlated
values, values collected from a subset of nodes can be used to materialize
the uncollected values from other nodes [20, 21]. Similarly, temporally-
correlated values may be collected infrequently and missing values can
be interpolated [15, 22]. By placing models in the mote itself, the mote
may transmit model parameters in lieu of the data, compressing or sup-
pressing entirely the data stream [23-25].

There is also work on defining a common conceptual model of event
processing based on event driven architectures [27] and event processing
networks [28]. In PCA model [11], the notion of event history or event
flow is different from those used in [19, 20] such that the event history
flow takes embedded uncertainty. In fact it contains observations (event
clusters), which consist of multiple possible events. In those models
an event history itself is considered deterministic and the uncertainty
on event history is expressed as there can be multiple possible event
histories. Due to this difference, the rule semantics is totally different
from the conditional representation in [19]. Ganeriwal et al. [26] dis-
cuss the reputation-based framework for high integrity sensor networks.
The model evaluates the trustworthiness of the nodes and various mis-
behavior types of nodes in the network. The model uses the Bayesian
formulation and updates the trust with direct and indirect trust calcu-
lations.

2.2 Sensor Event Detection

Much work has been done in sensor networks on composite event
detection. Directed Diffusion [29] is among the earliest event-based ap-
proaches. In this approach, a node would request data by sending inter-
ests, which is conceptually similar to subscriptions in a publish /subscribe
system. Data found to match those interests are then sent towards that
node. A different framework based on event classification is the Online
State Tracking [30] approach. This technique consists of two phases:
the first phase is the learning process where new sensor readings are
classified to states, and the second phase is the online status monitor-
ing phase where nodes are collaborating to update the overall status of
the network. The work is quite unique in the sense that it moves away
from individual node readings and views the whole network as a state
machine.
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Another event-based technique based on threshold is Approximate
Caching [31] whereby nodes only report readings if they satisfy a condi-
tion. A more recent paper [32] suggests a mixture of hardware and soft-
ware as a solution for detecting rare and random events. The event types
they consider are tracking and detecting events using the eXtreme Scale
Platform (XSM) motes equipped with infrared, magnetic and acoustic
sensors. Central to their architecture is the concept of passive vigi-
lance, which is inspired from sleep states of humans where the slightest
noise can wake us up when we are asleep. This is implemented with
Duty Cycling and recoverable retask. A similar approach [33] proposes
a sleep-scheduling algorithm that minimizes the surveillance delay (event
detection delay) while it maximizes energy conservation. Sleep schedul-
ing is coordinated locally in a fair manner, so all nodes get their fair
share of sleep. A minimal subset that ensures coverage of the sensing
field is always awake in order to be able to capture rare events.

The earliest work that addresses the need for complex event detection
is the one by Girod et al [34]. It suggests a system that would treat a
sequence of samples (a signal segment) as a basic data type and would
offer a language (WaveScript) to express signal processing programs as
declarative queries over streams of data. The language would be able
to execute both on PCs and distributed sensors. The data stream man-
agement system (called WaveScope) combines event-stream and data
management operations.

REED [35] is an approach that falls under both the Event-Based and
the Query-Based subcategories. REED is an improvement on TinyDB
[36]. Basically it extends TinyDB with the ability to support joins be-
tween sensor data and building static tables outside the network. The
tables outside the network describe events in terms of complex predi-
cates. These external tables are joined with the sensor readings table,
and returned tuples that satisfy the predicates indicate readings of in-
terest, for example, where an event has occurred.

Abstract Regions [37, 38] is a somewhat different method that sup-
ports geographic grouping of sensor nodes. Abstract Regions is essen-
tially a family of spatial operators for TinyOS that allows nodes to
form groups with the objective of data sharing and reduction within
the groups by applying aggregate operators such as min, max, sum, and
others. The work by [39] extends the types of aggregates supported
by introducing (approximate) quantiles such as the median, the consen-
sus, the histogram and range queries. Support for spatial aggregation is
also suggested by [40] where sensor nodes would be grouped and aggre-
gates would be computed using Voronoi diagrams. Another approach
[41] models the sensor network as a distributed deductive declarative
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database system. The method allows for composite event detection, and
the declarative language used (SNLog) is a variant of Datalog.

3. Event Processing over RFID Streams

One essential goal for RFID applications is to map objects and their
behaviors in the physical world into the virtual counterparts and their
virtual behaviors in the applications by semantically interpreting and
transforming RFID data. Application logic can often be devised and
engineered as complex RFID events, and once such complex events are
detected, the semantics can be automatically interpreted. Based on the
purposes of RFID data processing, RFID applications can be generally
classified as two categories: i) history-oriented object tracking supported
through temporal database or data warehousing based solutions [75, 76],
and ii) real-time oriented monitoring and stream processing through
complex RFID event processing techniques. Complex RFID event pro-
cessing plays a critical role on interpreting the semantics of RFID data
and supporting real-time monitoring applications.

Basic theory of complex event processing has been intensively studied
in the area of active database. There exist several processing models,
including automata-based, Petri net- based, matching tree- based and
directed graph- based. As these processing models did not fully consider
the characteristics and complex semantics of RFID events, they can not
be applied to RFID complex event processing immediately.

Different from the events in traditional active databases [54, 55] and
message-based processing systems [56], RFID events have their own
unique characteristics. First, RFID events are temporally constrained:
both the temporal distance between two events and the interval of a
single event are critical for the event detection. In addition, RFID ap-
plications can also generate non-spontaneous events - events that cannot
detect their occurrences by themselves unless they either get expired or
are explicitly queried. These include negated events (an event which
does not occur) and temporal constrained events, for example, an event
that occurs within a certain period. Such non-spontaneous events pose
new challenges for event processing. Moreover, the actions from RFID
events are quite different: they are normally database updates and mes-
sages, and neither trigger new primitive events for the system, nor lead
to a cascade of rule firings as in active databases.

Some large-scale IT application providers [57—60] and academic in-
stitutions [61] had provided many platforms to collect data from RFID
readers and pump the collected data to upper down-streaming systems.
However, these platforms currently only support simple event process-
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ing, for example, filtering or simple composition of primitive events, yet
can not be used for answering complex queries.

There is much work on complex RFID event processing, and represen-
tative ones include SASE [42] and RCEDA [73]. Next we will describe in
detail on the two frameworks in terms of event specification languages,
event detection models, event detection methods and their optimiza-
tions.

3.1 RFID Events

An RFID event is an occurrence of interest in time, and it can be
either a primitive event or a complex event.

A Primitive RFID event (also as atomic RFID event) is an event
generated during the interaction between a reader and a tagged object.
A primitive event is simple-semantic and represented as a triplet with the
form of observation(r, o, t), where r represents the reader EPC, o
represents the object EPC and ¢ represents the observation timestamp.
The Electronic Product Code is an industry standard that defines unique
code to identify an object around the world. The unique identification
of each tagged RFID object through EPC code provides more semantics
for RFID events.

For example, observation(rl, ol, tl) represents an event gener-
ated for an object with EPC o1 from a reader with EPC rI at time t¢1.
Primitive events are instantaneous, i.e., given any primitive event e, its
staring time equals to its ending time. Primitive events are also atomic:
a primitive event either happens completely or does not happen at all.

A complex RFID event or composite RFID event is usually defined
by applying event constructors to its constituent events, which are either
primitive events or other complex events. There are two types of RFID
event constructors: non-temporal and temporal, and the latter contains
order, temporal constraints, or both. While complex events defined with
non-temporal event constructors can be detected without considering the
orders among constituent events, complex events defined with temporal
event constructors cannot be detected without checking the orders, or
other temporal constraints among their constituent events, or both.

For example, shoplifting can be represented as a complex RFID event:
an item was picked at a shelf and then taken out of the store without
being checked out. This complex RFID event consists of three primitive
RFID events: two occurrences of the tagged item being detected at a
shelf and the exit respectively, and the non-occurrence of the item being
read by any check-out reader in-between.
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3.2 RFID Complex Event Specifications

Major RFID event processing frameworks use expressive languages to
specify complex RFID events. As an RFID complex event specification
language, SASE [42, 68] language is SQL-like, and supports sequencing,
negation operation (!), parameterized predicates and sliding windows.
The SASE language can be used to filter, correlate and transform prim-
itive RFID events into complex events to answer semantic queries. The
overall structure of SASE language is:

EVENT <event pattern>
[WHERE <qualification>]
[WITHIN <window>]

The EVENT clause describes a sequence pattern, and its components
are occurrence or non-occurrence of component events in a temporal
order. The WHERE clause specifies constraints on those events. The
WITHIN clause specifies the sliding window for the whole sequence of
events. For example, the complex event corresponding to shoplifting in
a retail store can be specified as Q:

Q:1: EVENT SEQ(SHELF x, !|(COUNTER y), EXIT z)
WHERE x.0id=y.0Oid=z.0id
WITHIN a hour

In @1, SEQ denotes sequence pattern. SHELF, COUNTER and EXIT
are different event types. The sign ‘/” denotes non-occurrence of an event
(also called as a negation event).

To enhance its expressibility and adaptability, the SASE language has
been extended to support Kleene closure [69]. NEEL [71] is a complex
event specification language for the definition of embedded sequences (or
nested sequences) of RFID events, and is essentially an extension of the
SASE language.

Based on Snoop [72], an expressive event specification language for
active databases, Wang and et al [73, 74] formalize the semantics and
specification language of RFID events, and propose powerful rules for
RFID data filtering, transformation, aggregation, and real-time moni-
toring. For clarity and convenience, here we refer to this specification
language as RCEDA (i.e., RFID Complex Event Detection Algorithm)
language.

The RCEDA language defines three basic non-temporal constructors
including OR (V), AND (A) and NOT (=), and five temporal constructors
including SEQ(;), TSEQ(:), SEQT(;*), TSEQ+(: ™) and WITHIN. Most
temporal constructors come with two types of temporal constraints: the
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distance constraint and the interval constraint. Such fundamental event
constructors can be combined to form complex RFID events.

For example, a company uses RFID tags to identify asset items and
employees in the building, and only authorized users (superusers) can
move the asset items out of the building. When an unauthorized em-
ployee or a criminal takes a laptop (with an embedded RFID tag) out
of the building, the system will send an alert to the security personnel
for response. Such complex RFID event pattern (()2) can be expressed
in the RCEDA language as follows:

WITHIN(EL A - E2, 5sec)

Here events E1 and E2 are two primitive events:
El = observation(‘r2’, ol,tl), type(ol)= ‘laptop’
E2 = observation(‘r2’, 02, t2), type(o2) = ‘superuser’.

Based on the event specification described above, RFID rules can be
defined to support data filtering, data transformation, data aggregation
and real-time monitoring. The RFID rule for event ()2 is shown below:

DEFINE E4 = observation(‘r4’, 04, t4), type(o4) = ‘laptop’
DEFINE E5 = observation(‘r5’, 05, t5), type(o5) ‘superuser’
CREATE RULE r5, asset_monitoring_rule

ON WITHIN(E4 N = E5, 5sec)

IF true

DO send_alarm

Here r5 and asset_monitoring_rule are unique rule id and rule name
respectively. WITHIN(E4 A — Eb, 5sec) is the event part of the rule.
send_alarm is an action to be performed while the specified event occurs.
According to the defined rule, an alert alarm will be issued when an
unauthorized employee takes a laptop out of the building.

3.3 RFID Complex Event Detection Models

While RFID event specification languages provide an expressive way
to specify complex RFID events, the detection of such events is much
more challenging. The detection models in active databases have lim-
itations on supporting RFID events. Automata-based model [77] and
the PetriNet-based model [78, 79] require that all the timestamps of the
constituted events are in total order. Tree-based model [54] and graph-
based model [80] does not support time constraints. All these traditional
models can not be directly used for RFID complex event detection.

An NFA-based complex RFID event detection model supplemented
with Partitioned Active Instance Stacks (PAIS) [42] is proposed to sup-
port complex RFID event detection, especially for event backtracking
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Figure 4.1. An NFA structure and PAIS for sequence Q3.

and value constraint evaluation during the process of complex event de-
tection. For example, Figure 4.1 shows the NFA structure and the PAIS
for Query @3 (SEQ(A, B, D)).

(SEQ(A, B, D)) is illustrated in Figure4.1.

A SASE extended model which combines a finite automaton with
versioned match buffers is proposed in [70] to support event backtracking
and value constraint evaluation during complex RFID event detection
and general pattern matching.

Traditional tree based event detection modes take an bottom-up ap-
proach (e.g., Snoop [72]), which is inapplicable to detecting RFID events.
Many temporal constrained RFID events such as those generated from
SEQ™ and NOT constructors are non-spontaneous and can never be trig-
gered by the bottom-up approach. As summarized in [73, 74], there are
three event detection modes such as Pull (1), Push(}) and Mixed (J)
generalized in the RCEDA framework.

RCEDA model [73, 74] extends tree-based detection model for tempo-
ral constraints handling. Fundamental event constructors form basic tree
operators (Figure4.2), and complex events can be represented by com-
bining these tree operators to form more complex tree based representa-
tions. For example, Figure 4.3b illustrates the graphical representation
of a complex event E = WITHIN(TSEQT (E1VE2, 0.1sec, 1sec) ; E3,
10min) after interval propagating from Figure 4.2. We use vE.within
to represent the interval constraint on event E. To support both pull
and push modes, RCEDA provides two way detections through the tree
model: bottom-up event propagation through the tree to trigger parent
events, and top-down event querying to support the detection of non-
spontaneous events. The detection of non-spontaneous events is sup-
ported through the introduction of “pseudo-events”. A pseudo event
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Figure 4.2. Graphical representations of the seven complex event constructors.

Figure 4.3. Graphical representations of an interval-constrained complex event E =
WITHIN(TSEQ* (E1VE2, 0.1sec, 1sec); E3, 10min)

is a special artificial event used for querying the occurrences of non-
spontaneous events during a specific period, and is scheduled to happen
at an event node’s expiration time.

3.4 RFID Complex Event Detection Methods
and Optimizations

Based on the defined specification language for complex RFID events,
the SASE framework [42] takes a query plan based method for complex
RFID event detection. SASE defines several operations including tem-
poral relationship, numerical constraints, negation and sliding window,
and six operators such as Sequence Scan and Construction (SSC), Se-
lection (¢), Window (WD), Negation (NG) and Transformation (TF).
These operations and operators are used to form complex RFID event
query plan in a bottom-up manner. An illustration for processing com-
plex event query ()4 is shown in Figure 4.4.

Qs4: EVENT SEQ(A x1, B x2, = (C x3), D x4)
WHERE [attrl, attr2] A xl.attr3 =1’ A x1.attr4 > x4.attr4
WITHIN T

Meanwhile, SASE also proposes some related query optimization strate-
gies, including Pushing Predicates Down (PPD) and Pushing Windows
Down (PWD) to tackle the issues of huge intermediate results and sliding
window constraints.
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Figure 4.4. An Execution Plan for Query Q4.

The work in [43] tries to to improve the efficiency of complex RFID
event detection with SASE framework where the domains of event at-
tributes (e.g. tag ID) are quasi-infinite. Methods proposed include a
delay matching method based on selectivity of injected events and two
sliding window strategies based on time-slot and B+ tree. As an ex-
tension of SASE, SASE+ [70] employs an optimization strategy based
on pattern match buffer sharing to support sharing among intermediate
results, thus reduces the maintenance cost of intermediate results.

In RCEDA, to process RFID rules, the events from the rules are
first constructed into an event graph, and then the event graph will be
initialized as follows: i) propagate interval constraints in a top-down way;
ii) assign event detection modes bottom-up based on event constructors
and interval constraints; and assign pseudo event generation flags top-
down based on the event detection modes. When pseudo events are
created, they are placed in a sorted pseudo event queue based on their
scheduled execution timestamps. The incoming RFID event queue is
ordered based on observation timestamps. When the event is processed,
the event engine fetches the earliest event from the two queues.

4. Advanced Topics on Complex Event
Processing for Sensor Streams

In real world problems, complex event processing faces more chal-
lenges, such as the effect of event uncertainty and the disorder of events.
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4.1 Probability of Events

Uncertainty of events is among the most important challenges of com-
plex event detection, and there can be various reasons that produce prob-
abilistic event data. Typical cases include conflicting readings, missed
readings, or granularity mismatch.

Complex event detection on probabilistic data can be divided into two
categories: local uncertainty detection and global uncertainty detection.
When an tuple or object is independent of others, and the event de-
tection only concerns with the uncertainty of itself, it is called local
uncertainty detection. On the other hand, when the event detec-
tion must consider the combined uncertainty among objects, it is called
global uncertainty detection. Generally, if the decision on whether
an object satisfies a detection condition depends on other objects not
involved in the same generation rule, global uncertainty has to be con-
sidered. Semantically, we have to examine the possible worlds one by
one and count the probability that a combination of objects or tuples is
an answer.

Probabilistic event processing has been studied in the context of query
processing over probabilistic data streams. Jayram et al. [48] introduce
a probabilistic stream model. Jayram et al. [48, 49] and Garofalakis [50]
propose efficient algorithms for computing aggregate functions over un-
certain data streams, where correlations across time are not considered.
A hidden Markov model is used in [51] to support queries over probabilis-
tic streams produced. The queries are limited to selections, projections,
and aggregations. The method proposed in the Data Furnace project
[53] extracts probabilistic events from imprecise sensor data. Its design
relies on exploiting an inference engine to compute event probabilities,
for example, using the work in [52].

Lahar[52] is an event processing system for probabilistic event streams.
Lahar supports a much richer query model over probabilistic streams in-
cluding sequences and joins. By exploiting the probabilistic nature of the
data, Lahar yields a much higher recall and precision than deterministic
techniques operating over only the most probable tuples.

4.2 Disorder of Events

The tuples in an event flow may be ordered or disordered on some
attributes. When an order exists, some operations become easier and
can be performed without the need of arbitrary storage; however, when
this order is violated, it will be called “event disorder”. Poset pro-
cessing consists of performing operations on a set of tuples that may not
be related by a total ordering. Any partially ordered set of tuples can
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be processed in arbitrary ways within an event flow processing system
by storing those tuples and retrieving as needed to match desired pat-
terns. Most current research assumes events are ordered, and do not
consider the concurrence and overlapping of events. However, in many
real applications this assumption may not be valid.

Meanwhile, the real-time processing in temporal orders of event streams
generated from distributed devices is a primary challenge for today’s
monitoring and tracking applications. In pervasive computing environ-
ments, event sequences might be out-of-order at the processing engine
due to machine failure or network latency. Most systems [44, 45], either
event-based or stream-based, assume a total ordering among event ar-
rivals. Such existing technologies are likely to fail in such circumstances,
either missing correct matches (i.e., false negatives) or producing incor-
rect matches (i.e., false positives). Supporting both in-order as well as
out-of-order events efficiently and in real-time is an important research
topic for complex event detection.

Based on the summary of different scenarios, the existing work on
event disorder can be categorized into two types, one focusing on real
time where the output is unordered, and another one focusing on the
correctness where the output is ordered. If the input event stream to the
query engine is unordered, it is reasonable to produce unordered output
events. The method in [46] permits unordered sequence output based
on an aggressive strategy. The aggressive strategy produces maximal
output under the assumption that out-of-order event arrival is rare. In
the case when out-of-order data arrival occurs, the results that have
already been erroneously output will be corrected. One requirement here
is that, for traditionally append-only streams, data cannot be updated
once it is placed on a stream. Thus, a traditional append-only event
model is no longer adequate. Another requirement is that, to enable the
correction at any time, the access to historical operator states are needed
until safe purging is possible. The upper bounds of K-slack could be used
for periodic safe purging of the states of WinSeq and WinNeg operators
when event instances are out of Window size K. This ensures that data
are preserved so that any prior computation can be re-computed from
its original input as needed. The approach extends the common append-
only stream model to support the correction of prior released data on a
stream. Two types of stream messages are used: Insertion tuple < +,¢ >
is induced by an out-of-order positive event, where ¢ is a new sequence
result. Deletion tuple < —,¢ > is induced by an out-of-order negative
event, such that ¢ consists of the previously processed sequence. Deletion
tuples cancel previous sequence results through the appearance of an
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out-of-order negative event. Applications can thus distinguish between
the types of tuples they receive.

If ordered output is needed, additional semantic information such as
K-Slack factor or punctuation is needed to “unblock” the on-hold can-
didate sequences from being output. Two techniques are introduced to
support this. A native approach [44, 45] on handling out-of-order event
stream uses K-Slack as a priori bound on the out-of-order in the input
streams. It buffers incoming events in the input queue for K time units
until the ordering can be guaranteed. The major drawback of K-slack is
the rigidity of the K parameter that cannot adapt to the variance in the
network latencies existing in a heterogeneous RFID reader network. For
example, one reasonable setting of K may be the maximum of the aver-
age latencies in the network. However, as the average latencies change,
K may become either too large (thereby buffering unneeded data and
introducing unnecessary inefficiencies and delays for the processing), or
too small (thereby becoming inadequate for handling the out-of-order
processing of the arriving events and resulting in inaccurate results). It
also requires additional space and introduces more latency before allow-
ing events being evaluated.

Another solution proposed to handle out-of-order data arrival is apply-
ing punctuation, namely, assertions inserted directly in the data stream
confirming that, for instance, a certain value or time stamp will no
longer appear in the future input streams [47, 46]. Permanent valid
is achieved because results are only reported when they are known to
be final. Relative small memory consumption is achieved by employ-
ing purging as early as possible. To safely purge data, meta-knowledge
is needed to guarantee the nonoccurrence of future out-of-order data.
A general method for meta-knowledge in streaming is to interleave dy-
namic constraints into the data streams, sometimes called punctuation.
Based on this, a conservative method is proposed in [46]. It works under
the assumption that out-of-order data may be common, and it produces
output only when its correctness can be guaranteed. A partial order
guarantee (POG) model is proposed to guarantee the correctness. Such
techniques do require some services to be created first and appropriately
inserting such assertions. Using POGs provides a simple and highly
flexible solution. If the network latency were to fluctuate over time, it
could be naturally captured by adjusting the POG generation without
requiring any change of the query engine. Also, the query engine de-
sign can be agnostic to particularities of the domain or the environment.
While it is conceivable that POGs themselves can arrive out-of-order,
a punctuate operator could conservatively determine when POGs are
released into the stream based on acknowledged receival of the events
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in question. Hence, in practice, out-of-order POG may be delayed but
would not arrive prematurely. Clearly, such delay or even complete loss
of a POG would not cause any errors (such as incorrect purge of the
operator state), rather it would in the worst case cause increased output
latency. Fortunately, no incorrect results will be generated because the
WinNeg operator would simply keep blocking until the subsequent POG
arrives.

5. Conclusions and Summary

Sensor streams generated from sensor and RFID applications provide
rich observations of physical objects. Event based processing of sensor
data enables tracking and monitoring of physical objects and seman-
tically interpreting complex event patterns. Event processing engines
are essential to provide effective, efficient, and near real-time complex
event processing of sensor data streams. Driven by the semantics of
sensor events and event processing, and example use cases, we discuss
two scenarios on event processing: event processing in sensor networks
and event processing in RFID applications. For event processing in sen-
sor networks, we present three major categories of approaches: statisti-
cal methods, topographical techniques, and edge detection algorithms.
RFID events have their unique characteristics, and we discuss event
specification languages, event detection models, event processing meth-
ods and their corresponding optimizations. Finally, we discuss two major
challenges in practice, the effect of event uncertainty and the disorder of
events.
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Abstract  This chapter surveys fundamental tools for dimensionality reduction
and filtering of time series streams, illustrating what it takes to apply
them efficiently and effectively to numerous problems. In particular, we
show how least-squares based techniques (auto-regression and principal
component analysis) can be successfully used to discover correlations
both across streams, as well as across time. We also broadly overview
work in the area of pattern discovery on time series streams, with ap-
plications in pattern discovery, dimensionality reduction, compression,
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forecasting, and anomaly detection. We aim to provide a unified view
of time series stream mining techniques for dimensionality reduction
(analysis and data reduction across streams) and filtering (analysis and
data reduction across time).

We describe methods that capture correlations and find hidden vari-
ables that describe trends in collections of streams. Discovered trends
can then be used to quickly spot potential anomalies and do efficient
forecasting. We describe a method which can incrementally find these
correlation patterns and hidden variables, which summarize the key
trends in the entire stream collection, with no buffering of stream val-
ues and without directly comparing pairs of streams. Moreover, it is
any-time and dynamically detects changes. We also describe efficient
online methods for quick forecasting (estimation of future values) and
imputation (estimation of past, missing values) on multiple time series
streams. Finally, we describe methods that can capture and summarize
auto-correlations (correlations within a single series, across time), that
also describe key trends. We also briefly explain how these techniques
relate to others, and illustrate various trade-offs that are available to
practitioners.

Keywords: streams, time series, filtering, dimensionality reduction, forecasting

1. Introduction

In this chapter, we consider the problem of capturing correlations
both across multiple streams, as well as across time (auto-correlations).
As we shall see, these two problems are inherently related, and similar
techniques are applicable to both, even though the interpretation of the
results may be different. In the first case, correlations across different
streams allow us to find hidden variables that can summarize collections
of time series data streams. In the second case, auto-correlations sum-
marize patterns across time, that can capture regular or periodic trends
in time series streams.

First we consider the case of correlations across many different streams.
In general, we assume for simplicity that values from all streams are ob-
served together; if that is not the case, then additional pre-processing
or analysis may be necessary. Streams in a large collection are often
inherently correlated (e.g., temperatures in the same building, traffic in
the same network, prices in the same market, etc.) and it is possible to
reduce hundreds of numerical streams into just a handful of hidden vari-
ables that compactly describe the key trends and dramatically reduce
the complexity of further data processing. We will present an approach
to do this incrementally.
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Figure 5.1. Tllustration of problem. Sensors measure chlorine in drinking water and
show a daily, near sinusoidal periodicity during phases 1 and 3. During phase 2, some
of the sensors are “stuck” due to a major leak. The extra hidden variable introduced
during phase 2 captures the presence of a new trend. SPIRIT can also tell us which
sensors participate in the new, “abnormal” trend (e.g., close to a construction site).
In phase 3, everything returns to normal.

We describe a motivating scenario, to illustrate the problem we want
to solve. Consider a large number of sensors measuring chlorine concen-
tration in a drinkable water distribution network (see Figure 5.1, showing
15 days worth of data). Every five minutes, each sensor sends its mea-
surement to a central node, which monitors and analyzes the streams in
real time.

The patterns in chlorine concentration levels normally arise from wa-
ter demand. If water is not refreshed in the pipes, existing chlorine
reacts with pipe walls and micro-organisms and its concentration drops.
However, if fresh water flows in at a particular location due to demand,
chlorine concentration rises again. The rise depends primarily on how
much chlorine is originally mixed at the reservoirs (and also, to a small
extent, on the distance to the closest reservoir—as the distance increases,
the peak concentration drops slightly, due to chemical reactions along
the way). Thus, since demand typically follows a periodic pattern, chlo-
rine concentration reflects that (see Figure 5.1a, bottom): it is high when
demand is high and vice versa.

Assume that at some point in time, there is a major leak at some pipe
in the network. Since fresh water flows in constantly (possibly mixed
with debris from the leak), chlorine concentration at the nodes near the
leak will be close to peak at all times.

Figure 5.1a shows measurements collected from two nodes, one away
from the leak (bottom) and one close to the leak (top). At any time, a
human operator would like to know how many trends (or hidden vari-
ables) are in the data and ask queries about them. Each hidden variable
essentially corresponds to a group of correlated streams.
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In this simple example, we first need to discover the correct number of
hidden variables, which may change over time. Under normal operation,
only one hidden variable is needed, which corresponds to the periodic
pattern (Figure 5.1b, top). Both observed variables follow this hid-
den variable (multiplied by a constant factor, which is the participation
weight of each observed variable into the particular hidden variable).
Mathematically, the hidden variables are the principal components of
the observed variables and the participation weights are the entries of
the principal direction vectors (more precisely, this is true under certain
assumptions, which will be explained later).

However, during the leak, a second trend is detected and a new hidden
variable is introduced (Figure 5.1b, bottom). As soon as the leak is fixed,
the number of hidden variables returns to one. If we examine the hidden
variables, the interpretation is straightforward: The first one still reflects
the periodic demand pattern in the sections of the network under normal
operation. All nodes in this section of the network have a participation
weight of = 1 to the “periodic trend” hidden variable and ~ 0 to the
new one. The second hidden variable represents the additive effect of
the catastrophic event, which is to cancel out the normal pattern. The
nodes close to the leak have participation weights ~ 0.5 to both hidden
variables.

Summarizing this example, we find that (Figure 5.1): (i) Under nor-
mal operation (phases 1 and 3), there is one trend. The corresponding
hidden variable follows a periodic pattern and all nodes participate in
this trend. All is well. (ii) During the leak (phase 2), there is a sec-
ond trend, trying to cancel the normal trend. The nodes with non-zero
participation to the corresponding hidden variable can be immediately
identified (e.g., they are close to a construction site). An abnormal
event may have occurred in the vicinity of those nodes, which should be
investigated.

Matters are further complicated when there are hundreds or thousands
of nodes and more than one demand pattern. However, as we show later,
it is still possible to extract the key trends from the stream collection,
follow trend drifts and immediately detect outliers and abnormal events.
Besides providing a concise summary of key trends/correlations among
streams, correlations can be used to successfully deal with missing values
and the discovered hidden variables can be used to do very efficient,
resource-economic forecasting.

There are several other applications and domains in which correlation
analysis and anomaly detection can be fruitfully combined. For exam-
ple, (i) given more than 50,000 securities trading in US, on a second-
by-second basis, detect patterns and correlations [62], (ii) given traffic
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measurements [58], find routers that tend to go down together. In gen-
eral, the discovered correlations and hidden variables have multiple uses.
They provide a succinct summary to the user, they can help to do fast
forecasting and detect outliers, and they facilitate interpolations and
handling of missing values, as we discuss later.

After giving an illustrative example where correlations across many
streams arise, we consider the case of a single stream. KEven in this
case correlations are present. These correlations arise across values of
the same stream at different times, instead across values from different
streams. Values at different times are typically not independent, due to,
for example, periodic or repeating patterns. These auto-correlations can
be leveraged in similar ways, to perform dimensionality reduction (com-
pression or filtering) across time. In fact, the problems of dimensionality
reduction, filtering, and forecasting are closely related, as we shall see.

For purposes of illustration, consider the following example series in
Figure 5.2a, which consists of automobile traffic counts in a large, west
coast interstate. The data exhibit a clear daily periodicity. Also, in
each day there is another distinct pattern of morning and afternoon
rush hours. However, these peaks have distinctly different shapes: the
morning one is more spread out, the evening one more concentrated and
slightly sharper.

What we would ideally like to discover is: (i) The main trend in the
data repeats at a window (“period”) of approximately 4000 timestamps;
(ii) A succinct “description” of that main trend that captures most of
the recurrent information.

Figure 5.2b shows the output of a pattern discovery approach, based
on filtering techniques very similar to those used for cross-stream corre-
lations. These patterns indeed suggest that the “best” window is 4000
timestamps. Furthermore, the first pattern captures the average and the
second pattern correctly captures the two peaks and also their approx-
imate shape (the first one wide and the second narrower). For compar-
ison, in Figure 5.2d shows the output of a fast, streaming computation
scheme. In order to reduce the storage and computation requirements,
our fast scheme tries to filter out some of the “noise” earlier, while retain-
ing as many of the regularities as possible. However, which information
should be discarded and which should be retained is once again decided
based on the data itself. Thus, even though some information is un-
avoidably discarded, Figure 5.2b still correctly captures the main trends
(average level, peaks and their shape).

For comparison, Figure 5.2c shows the best “local patterns” obtained
using fixed bases. For illustration, we chose the Discrete Cosine Trans-
form (DCT) on the first window of 4000 points. First, with the notable
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Figure 5.2. Automobile traffic, best selected window (about 1 day) and correspond-
ing representative patterns.

exception of wavelets, most fixed-basis schemes cannot be easily used
to capture information at arbitrary time scales. Also, any fixed-basis
scheme (e.g., wavelets, Fourier, etc) would produce similar results which
are heavily biased towards the shape of the a priori chosen bases or
approximating functions. On the other hand, when bases are discovered
from the data, we need additional storage space to explicitly represent
them, which is not necessary when the bases are given.

In general, collections of semi-infinite, time-evolving streams can be
modeled as values organized along several “dimensions'”. One “dimen-
sion” corresponds to different streams in the collection. We first start by
describing techniques that apply in this case. Time is another “dimen-
sion,” that is somewhat special since it has an inherent ordering; we see
how techniques for cross-stream analysis can be adapted for “cross-time”
analysis.

We should emphasize that dimensionality reduction, filtering, and
forecasting on time series data has been broadly studied in several dis-
ciplines. However, in this chapter we focus specifically on work in the
context of data mining and knowledge discovery, with a special emphasis
on streams and sensor data.

IHere “dimension” does not have the typical meaning in the linear algebraic sense.



Dimensionality Reduction and Filtering on Time Series Sensor Streams 109

Furthermore, as noted earlier, in this chapter we do not consider the
cases where either inter-arrival times within a single stream vary wildly,
or where arrival times across two different streams are not (approxi-
mately) synchronized. These settings have been studies somewhat less
extensively, and are beyond our scope. Finally, it is possible to orga-
nize collections of streams into more than one “dimensions” (or modes),
leading to tensor stream models [63]; this is also beyond the scope of
this chapter.

The rest of the chapter is organized as follows: Section 2 presents
work on data streams and stream mining, for both single and multiple
time series streams. Section 3 and 4 overview some of the background
of common models to characterize correlations across many series, as
well as across time, respectively. Section 5 describes a method for effi-
cient incremental update of multivariate forecasts, which can be used to
spot unexpected values. Section 6 describes in detail a core method for
anomaly detection based on these principles and Section 7 shows how its
output can be interpreted and immediately utilized, both by humans,
and for further data analysis. Section 8 illustrates the interplay be-
tween filtering and dimensionality reduction, showing how ideas related
to Section 6 can be used for efficient and effective streaming pattern
discovery across time, rather than across series. Finally, the conclusions
are presented in Section 9.

2. Broader Overview

The area of dimensionality reduction and filtering is too extensive
to be fully covered in a single chapter. Therefore, in this section, we
will provide a broader overview of the related techniques, before going
into some of the important techniques in greater detail. As mentioned
before, in this chapter we focus specifically on work in the context of
data mining and knowledge discovery, although correlation analysis has
been both studied and used in numerous disciplines. Broadly speaking,
the correlations can either be across streams (leading to dimensionality
reduction) or across different time units in the same stream (leading
to compression and filtering). Although this division is not perfect, as
techniques are often related, we will next discuss these aspects of cor-
relation analysis separately. Furthermore, for techniques that combine
correlation analysis across streams and across time, interested readers
may consult, e.g., [63].
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2.1 Dimensionality reduction

Much of the work on stream mining has focused on finding interesting
patterns in a single stream, but multiple streams have also attracted
significant interest. Ganti et al. [22] propose a generic framework for
stream mining. Guha et al. [25] propose a one-pass k-median clustering
algorithm. [15] construct a decision tree online, by passing over the
data only once. Later on, [29] and [54] addressed the problem of finding
patterns over concept drifting streams.

The work in [35] propose parameter-free methods for classic data min-
ing tasks (i.e., clustering, anomaly detection, classification), based on
compression. The work in [36] proposes a multi-resolution clustering
scheme for time series data. It uses the average coefficients (low fre-
quencies) of the wavelet transform to perform k-means clustering and
progressively refines the clusters by incorporating higher-level, detail
coefficients. This approach requires much less time for convergence,
compared to operating directly on the very high dimension of the orig-
inal series. Both approaches require the complete data in advance. [4]
propose a framework for Phenomena Detection and Tracking (PDT) in
sensor networks. They define a phenomenon on discrete-valued streams
and develop query execution techniques based on multi-way hash join
with PDT-specific optimizations.

CluStream [1] is a flexible clustering framework with online and of-
fline components. The online component extends micro-cluster infor-
mation [61] by incorporating exponentially-sized sliding windows while
coalescing micro-cluster summaries. Actual clusters are found by the
offline component. StatStream [62] uses the DFT to summarise streams
within a finite window and then compute the highest pairwise corre-
lations among all pairs of streams, at each timestamp. BRAID [49]
addresses the problem of discovering lag correlations among multiple
streams. The focus is on time and space efficient methods for finding
the earliest and highest peak in the cross-correlation functions between
all pairs of streams. Similar to [42] (see below), BRAID employs a rep-
resentation with fidelity that decreases with age. The work in [39] has
studied how to efficiently compute pairwise correlations among large col-
lections of time series, by combining compressed Fourier representations
with graph partitioning techniques. Neither CluStream, StatStream, or
BRAID explicitly focus on discovering hidden variables.

MUSCLES [58] is exactly designed to do forecasting (thus it could
handle missing values). However, it can not find hidden variables and
it scales poorly for a large number of streams n, since it requires at
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least quadratic space and time, or expensive reorganization (selective
MUSCLES).

The problem of principal components analysis (PCA) and SVD on
streams has been addressed in [44] and [24]. Both of these approaches
focus on discovering linear correlations among multiple streams and on
applying these correlations for further data processing and anomaly de-
tection [44]. [24] first does dimensionality reduction with random pro-
jections, and then periodically computes the SVD. However, the method
incurs some overhead because of the SVD re-computation and it can not
easily handle missing values. Also related is the work of [13] which uses
a different formulation of linear correlations and focuses on compressing
historical data, mainly for power conservation in sensor networks. Fi-
nally, the work in [6] proposes an approach to combine segmentation of
multidimensional series with dimensionality reduction. The reduction
is on the segment representatives and it is performed across dimensions
(similar to [44]), not along time, and the approach is not applicable to
streams.

Beyond discovering and leveraging possibly evolving patterns in stream-
ing series in an unsupervised fashion, the work in [55] leverages com-
monalities in a set of given query patterns, in order to discover them
efficiently among streaming data. The work in [53] and [50] studies
“anytime” algorithms for nearest-neighbor classification on streams of
either single items or batches of items. In such a setting, available re-
sources (time or buffer space) can be traded-off for increased accuracy.
The work in [5] develops anytime algorithms for outlier detection on data
streams, based on a hierarchical cluster representation as a reduced rep-
resentation of the incoming data.

Closely related to [48] (see below) is [21], which develops a joint com-
pression framework for collections of time series, while providing guar-
antees on maximum reconstruction error, as well as also allowing queries
to be answered using indices directly on the compressed representation.

Sensor streams. A number of related techniques for correlation and
prediction across multiple sensor streams are covered in [2] [57] [11] [51].
Such methods can be used in order to improve the power efficiency of a
sensor network, because only the non-redundant sensors need to transmit
their data at higher sampling rates.

2.2 Compression and filtering

Initial work on time series representation [3, 19] uses the Fourier trans-
form. Even more recent work uses fixed, predetermined bases or approx-
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imating functions. APCA [8] and other similar approaches approximate
the time series with piecewise constant or linear functions. DAWA [28]
combines the DCT and DWT. However, all these approaches focus on
compressing the time series for indexing purposes, and not on pattern
discovery. AWSOM [43] first applies the wavelet transform. As the au-
thors observe, just a few wavelet coefficients do not capture all patterns
in practice, so AWSOM subsequently captures trends by fitting a linear
auto-regressive model at each time scale.

The seminal work of [12] for rule discovery in time series is based
on sequential patterns extracted after a discretization step. Other work
has also focused on finding representative trends [32]. A representative
trend is a subsequence of the time series that has the smallest sum of
distances from all other subsequences of the same length. The proposed
method employs random projections and FFT to quickly compute the
sum of distances. This does not apply directly to streams and it is not
easy to extend, since each section has to be compared to all others. Our
approach is complementary and could conceivably be used in place of
the FFT in this setting. Related to representative trends are motifs
[45, 10]. Intuitively, these are frequently repeated subsequences, i.e.,
subsequences of a given length which match (in terms of some distance
and a given distance threshold) a large number of other subsequences
of the same time series. More recently, vector quantization has been
used for time series compression [38, 37]. The first focuses on finding
good-quality and intuitive distance measures for indexing and similarity
search and is not applicable to streams, while the second focuses on
reducing power consumption for wireless sensors. Finally, other work
on stream mining includes approaches for periodicity [18] and periodic
patterns [17] discovery.

More recently, [48] have studied how efficiently store time series,
while allowing computation of several quantities (e.g., correlations, his-
tograms) directly in the compressed domain, by leveraging multi-scale
analysis to obtain sparse time/frequency representations of time series.
The work of [47] considers the problem of discovering patterns on a single
time series by clustering series from one time series stream, and proposes
an MDL-based framework for efficiently discovering good clusters.

Approaches for regression on time series and streams include [9] and
amnesic functions [42]. Both of these estimate the best fit of a given
function (e.g., linear or low-degree polynomial), they work by merging
the estimated fit on consecutive windows and can incorporate exponential-
size time windows placing less emphasis on the past. However, both of
these approaches employ a fixed, given set of approximating functions.
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(a) Original wy (b) Update process (c) Resulting w;

Figure 5.3. Illustration of updating wi when a new point x:41 arrives.

Our approach might better be described as agnostic, rather than am-
nesic.

A very recent and interesting application of the same principles is on
correlation analysis of complex time series through change-point scores
[31]. Finally, related ideas have been used in other fields, such as in
image processing for image denoising [40, 30] and physics/climatology
for nonlinear prediction in phase space [59]. However, none of these
approaches address incremental computation in streams. More generally,
the potential of this general approach has not received attention in time
series and stream processing literature. We demonstrate that its power
can be harnessed at very small cost, no more than that of the widely
used wavelet transform.

The recently developed theory of compressed sensing (e.g., [16] and
[26]) studies the problem of signal summarization and reconstruction
based on observation of a subset of its values. More precisely, this work
develops a framework for estimating the projections of a signal into a
given set of basis functions from a small set of samples of its values.

3. Principal Component Analysis (PCA)

Here we give a brief overview of PCA [33], explaining the main in-
tuition. We use standard matrix algebra notation: vectors are lower-
case bold, matrices are upper-case bold, and scalars are in plain font.
The transpose of matrix X is denoted by X”. In the following, x; =
[Tt Teo - - xtm]T € R"™ is the column-vector. of stream values at time
t. We adhere to the common convention of using column vectors and
writing them out in transposed form. The stream data can be viewed as
a continuously growing t x n matrix X; := [x; Xa - - x¢]7 € R™", where
one new row is added at each time tick f. In the chlorine example, x;
is the measurements column-vector at ¢ over all the sensors, where n is
the number of chlorine sensors and ¢ is the measurement time-stamp.
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Typically, in collections of n-dimensional points x; = {24 ... ,xm]T,
t =1,2,..., there exist correlations between the n dimensions (which
correspond to streams in our setting). These can be captured by prin-
cipal components analysis (PCA). Consider for example the setting in
Figure 5.3. There is a visible linear correlation. Thus, if we represent
every point with its projection on the direction of wy, the error of this
approximation is very small. In fact, the first principal direction w1, is
the optimal in the following sense.

DEFINITION 5.1 (FIRST PRINCIPAL COMPONENT) Given a collection of
n-dimensional vectors x, € R", 7 =1,2,...,t, the first principal direc-
tion wi € R™ s the vector minimizing the sum of squared residuals,
1.€.,

t
Wi = argminz %, — (wwl)x,|?.
lwi=1 7=
The projection of x; on wy is the first principal component (PC) y, 1 :=
T _
wiXr, T=1,...,t

Note that, since ||w1| = 1, we have (w1w? )x, = (Wl x,)w1 = yr 1wy =
Xr, where X, is the projection of y, 1 back into the original n-D space.
That is, X, is the reconstruction of the original measurements from the
first PC y,.1. More generally, PCA will produce k vectors wi, wa, ..., wy,
such that, if we represent each n-D data point x; := [x¢; -+ ¢, with
its k-D projection y; := [wix; --- wlx;|T, then this representation min-
imises the squared error > _||x;—X¢|*>. Furthermore, the principal direc-
tions are orthogonal, so the principal components y,;,1 < ¢ < k are by
construction uncorrelated, i.e., if y® = [Yiis- s Ytis-- )T is the stream

of the i-th principal component, then (y(i))Ty(j ) =0if i # j.

OBSERVATION 3.1 (DIMENSIONALITY REDUCTION) If we represent each
n-dimensional point x, € R™ using all n principal components, then the
error ||x, —X.|| = 0. However, in typical datasets, we can achieve a very
small error using only k principal components, where k < n.

In the context of the chlorine example, each point in Figure 5.3 would
correspond to the 2-D projection of x, (where 1 < 7 < ¢) onto the
first two principal directions, wi and ws, which are the most impor-
tant according to the distribution of {x, | 1 < 7 < t}. The principal
components y,1 and y, o are the coordinates of these projections in the
orthogonal coordinate system defined by wy and wa.

However, batch methods for estimating the principal components re-
quire time that depends on the duration ¢, which grows to infinity. In
fact, the principal directions are the eigenvectors of X] X;, which are



Dimensionality Reduction and Filtering on Time Series Sensor Streams 115

Table 5.1. Description of notation.

Symbol Description

X, Column vectors (lowercase boldface).

A, ... Matrices (uppercase boldface).

P The n stream values x¢ := [z¢,1 - ®¢,n]T at time ¢.

n Number of streams.

Wi The i-th participation weight vector (i.e., principal direction).

k Number of hidden variables.

Vi Vector of hidden variables (i.e., principal components) for x¢, i.e.,
ye = [yen - yer]” = [wixe - wiixe] T

Xt Reconstruction of x¢ from the £ hidden variable values, i.e.,
Xt =Yt AW1 + o+ Y kWi

Ey Total energy up to time t.

Et,i Total energy captured by the i-th hidden variable, up to time t.

fe, Fg Lower and upper bounds on the fraction of energy we wish to maintain via

SPIRIT’s approximation.

best computed through the singular value decomposition (SVD) of X;.
Space requirements also depend on t. Clearly, in a stream setting, it
is impossible to perform this computation at every step, aside from the
fact that we don’t have the space to store all past values. We will ad-
dress this problem in Section 6, where we present a solution that works
without buffering any past values.

4. Auto-Regressive Models and Recursive Least
Squares

In this section we review some of the background on popular forecast-
ing methods for time series.

4.1 Auto-Regressive (AR) Modeling

Auto-regressive models are the most widely known and used—more
information can be found in, e.g., [7]. The main idea is to express z; as
a function of its previous values, plus (filtered) noise ¢;:

Ty = P1T—1 + ...+ dwTiw + &, (5.1)

where W is a the forecasting window size. Seasonal variants (SAR,
SAR(I)MA) also use window offsets that are multiples of a single, fixed
period (i.e., besides terms of the form y;_;, the equation contains terms
of the form y;_g; where S is a constant).

If we have a collection of n time series z;;, 1 < ¢ < n then multivariate
AR simply expresses x;; as a linear combination of previous values of
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all streams (plus noise), i.e.,

Ti; = Q11011 + ... + dLwTi—w, +
ot
¢n,lxt—1,n + ...+ ¢n,Wxt—W,n + €. (52)

4.2 Recursive Least Squares (RLS)

Recursive Least Squares (RLS) is a method that allows dynamic up-
date of a least-squares fit. The least squares solution to an overdeter-
mined system of equations Xb =y where X € R™*¥ (measurements),
y € R™ (output variables) and b € R¥ (regression coefficients to be
estimated) is given by the solution of X?Xb = XTy. Thus, all we need
for the solution are the projections

P=X"X and q=X"Ty

We need only space O(k? + k) = O(k?) to keep the model up to date.
When a new row X, 1 € RF and output y,,41 arrive, we can update
PP+ xm+1x%+1 and
q < 9+ Ym+1Xm41-
In fact, it is possible to update the regression coefficient vector b without
explicitly inverting P to solve Pb = P~1q. In particular (see, e.g., [60])
the update equations are
G+ G- (1+x) ., Gxpi1) ' Gxpy1xt G (5.3)
b b — Gxpi1(Xt 1D — Ymi1), (5.4)

where the matrix G can be initialized to G < €I, with € a small positive
number and I the k£ x k identity matrix.

RLS and AR In the context of auto-regressive modeling (Eq. 5.1), we
have one equation for each stream value xy41,...,2¢,..., i.e., the m-th
row of the X matrix above is

X = [-’Emfl Tm—2 xmfw]T e RY

and z,, = Ty, fort—w =m =1,2,... (t > w). In this case, the solution
vector b consists precisely of the auto-regression coefficients in Eq. 5.1,
ie.,

b=[p1 2 - du) €ERY.

RLS can be similarly used for multivariate AR model estimation.
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5. MUSCLES

MUSCLES (MUlti-SequenCe LEast Squares) [58] tries to predict the
value of one stream, x;; based on the previous values from all streams,
2415, 1 > 1,1 < j < n and current values from other streams, z; ;,
j # 4. It uses multivariate autoregression, thus the prediction Z;; for a
given stream ¢ is, similar to Eq. 5.2

Tr; = 010711 + P1174-11 + ... + OLwTi—w +
.+
Gi—1,0Ti-1,i—1 + Gi—1,1T¢—1,i—1 + ... + i1 wTi—W,i-1 +
GiaTi—1; + ...+ GiwTiow, +
¢+ 1,0z501 + Git11T-1441 + o0+ DirlwTi-witl +
¢n,0xt,n + ¢n,1xt—1,n + o+ ¢n,Wxt—W,n + €.

and employs RLS to continuously update the coefficients ¢; ; such that

the prediction error
t

Z(-’iﬂi - -TT,Z')2

=1
is minimized. Note that the above equation has one dependent variable
(the estimate #;;) and v = W*n+n —1 independent variables (the past
values of all streams plus the current values of all other streams except

Ezponentially forgetting MUSCLES employs a forgetting factor 0 <
A < 1 and minimizes instead

t
S N (@ — ar)
=1

For A < 1, errors for old values are down-weighted by an exponential fac-
tor, hence permitting the estimate to adapt as sequence characteristics
change.

5.1 Selective MUSCLES

In case we have too many time sequences (e.g., n = 100,000 nodes
in a network, producing information about their load every minute),
even the incremental version of MUSCLES will suffer. The solution
to this problem is based on the conjecture that we do not really need
information from every sequence to make a good estimation of a missing
value. Much of the benefit of using multiple sequences may be captured
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by using only a small number of carefully selected other sequences. We
can thus do some preprocessing of a training set, to find a promising
subset of sequences, and to apply MUSCLES only to those (hence the
name Selective MUSCLES).

Assume that sequence ¢ is the one notoriously delayed and we need
to estimate its “delayed” values x;;. For a given tracking window span
W, among the v = W xn +n — 1 independent variables, we have to
choose the ones that are most useful in estimating the delayed value of
x¢ ;. More generally, we want to solve the following

PROBLEM 5.1 (SUBSET SELECTION) Given v independent variables
T1,T9,...,T, and a dependent variable y with N samples each, find the
best b (< v) independent variables to minimize the mean-square error
for g for the given samples.

We need a measure of goodness to decide which subset of b variables
is the best we can choose. Ideally, we should choose the best subset
that yields the smallest estimation error in the future. Since, however,
we don’t have future samples, we can only infer the expected estimation
error (EEE for short) from the available samples as follows:

N

EEE(S) = Y (ylt] — dis[t])?

t=1

where S is the selected subset of variables and gs[t] is the estimation
based on S for the ¢-th sample. Note that, thanks to Eq. 5.3, EEE(S)
can be computed in O(N - ||S]|?) time. Let’s say that we are allowed
to keep only b = 1 independent variable. Which one should we choose?
Intuitively, we could try the one that has the highest (in absolute value)
correlation coefficient with y. It turns out that this is indeed optimal:
(to satisfy the unit variance assumption, we will normalize samples by
the sample variance within the window.)

LEMMA 5.2 Given a dependent variable y, and v independent variables
with unit variance, the best single variable to keep to minimize EEE(S)
is the one with the highest absolute correlation coefficient with y.

Proof. For a single variable, if a is the least squares solution, we can
express the error in matrix form as

EEE({z:}) = lyllI* — 2a(y" x:) + a*|[x|*.

Let d and p denote ||x;]|?> and (xTy), respectively. Since a = d~1p,
EEE({z;}) = |ly||> — p?d~'. To minimize the error, we must choose z;
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which maximize p? and minimize d. Assuming unit-variance (d = 1),
such z; is the one with the biggest correlation coefficient to y. This
concludes the proof. O

The question is how we should handle the case when b > 1. Normally,
we should consider all the possible groups of b independent variables,
and try to pick the best. This approach explodes combinatorially; thus
we propose to use a greedy algorithm. At each step s, we select the inde-
pendent variable z; that minimizes the EEE for the dependent variable
vy, in light of the s — 1 independent variables that we have already chosen
in the previous steps.

The bottleneck of the algorithm is clearly the computation of EEE.
Since it computes EEE approximately O(v - b) times and each computa-
tion of EEE requires O(NN -b?) in average, the overall complexity mounts
to O(N - v - b%). To reduce the overhead, we observe that intermediate
results produced for EEE(S) can be re-used for EEE(S U {z}).

LEMMA 5.3 The complexity of the greedy selection algorithm is O(N -
v-b?).

Proof. Let ST be SU{z}. The core in computing EEE(S™) is the inverse
of Dg+ = (Xg+ Xs+). Thanks to block matrix inversion formula [34] (p.
656) and the availability of Dgl from the previous iteration step, it can
be computed in O(N - |S| + |S|?). Hence, summing it up over v — |S|
remaining variables for each b iteration, we have O(N - v - b% + v - b3)
complexity. Since N > b, it reduces to O(N - v - b?). O

Subset-selection can be done infrequently and off-line, say every N = W
time-ticks. The optimal choice of the reorganization window is beyond
the scope of this chapter. Potential solutions include (a) doing reorga-
nization during off-peak hours, (b) triggering a reorganization whenever
the estimation error for by increases above an application-dependent
threshold etc. Also, by normalizing the training set, the unit-variance
assumption in Theorem 1 can be easily satisfied.

6. Tracking Correlations and Hidden Variables:
SPIRIT

In this section we present a framework for discovering patterns in
multiple streams. In the next section, we show how these can be used
to perform effective, low-cost forecasting. We use auto-regression for its
simplicity, but our framework allows any forecasting algorithm to take
advantage of the compact representation of the stream collection.
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Problem definition Given a collection of n co-evolving, semi-infinite
streams, producing a value x;;, for every stream 1 < j < n and for
every time-tick ¢t = 1,2,..., SPIRIT does the following: (i) Adapts the
number k of hidden variables necessary to explain/summarise the main
trends in the collection. (ii) Adapts the participation weights w; ; of the
j-th stream on the i-th hidden variable (1 < j <nand 1 <i < k), so as
to produce an accurate summary of the stream collection. (iii) Monitors
the hidden variables y;;, for 1 < i < k. (iv) Keeps updating all the
above efficiently.

More precisely, SPIRIT operates on the column-vectors of observed
stream values x; = [x¢1,... ,:ct,n]T and continually updates the par-
ticipation weights wj; ;. The participation weight vector w; for the i-
th principal direction is w; = [w;1 - -- wm]T. The hidden variables
Vi = [Ye1,--- ,ytﬁk]T are the projections of x; onto each w;, over time
(see Table 5.1), i.e.,

Yt = Wi 1T¢1 + Wi 2Tt 2 + -+ + Wi nTtn,

SPIRIT also adapts the number k of hidden variables necessary to cap-
ture most of the information. The adaptation is performed so that the
approximation achieves a desired mean-square error. In particular, let
Xt = [Tr1 -+ T1n)? be the reconstruction of x;, based on the weights
and hidden variables, defined by

Tpj = W1 Y1 + W2 Y2 + 0+ Wk Yk,

or more succinctly, X; = Zle Yi t Wi

In the chlorine example, x; is the n-dimensional column-vector of
the original sensor measurements and y; is the hidden variable column-
vector, both at time ¢. The dimension of y; is 1 before/after the leak
(t < 1500 or t > 3000) and 2 during the leak (1500 < ¢ < 3000), as
shown in Figure 5.1.

DEFINITION 5.4 (SPIRIT TRACKING) SPIRIT updates the participa-
tion weights w; j so as to guarantee that the reconstruction error ||X; —
x¢||? over time is predictably small.

This informal definition describes what SPIRIT does. The precise cri-
teria regarding the reconstruction error will be explained later. If we
assume that the x; are drawn according to some distribution that does
not change over time (i.e., under stationarity assumptions), then the
weight vectors w; converge to the principal directions. However, even if
there are non-stationarities in the data (i.e., gradual drift), in practice
we can deal with these very effectively, as we explain later.
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An additional complication is that we often have missing values, for
several reasons: either failure of the system, or delayed arrival of some
measurements. For example, the sensor network may get overloaded
and fail to report some of the chlorine measurements in time or some
sensor may temporarily black-out. At the very least, we want to continue
processing the rest of the measurements.

6.1 Tracking the Hidden Variables

The first step is, for a given k, to incrementally update the k partic-
ipation weight vectors w;, 1 < i < k, so as to summarise the original
streams with only a few numbers (the hidden variables). In Section 6.2,
we describe the complete method, which also adapts k.

For the moment, assume that the number of hidden variables k is
given. Furthermore, our goal is to minimise the average reconstruction
error Y, |X¢—x¢||>. In this case, the desired weight vectors w;,1 <i <k
are the principal directions and it turns out that we can estimate them
incrementally.

We use an algorithm based on adaptive filtering techniques [56, 27],
which have been tried and tested in practice, performing well in a variety
of settings and applications (e.g., image compression and signal tracking
for antenna arrays). We experimented with several alternatives [41,
14] and found this particular method to have the best properties for
our setting: it is very efficient in terms of computational and memory
requirements, while converging quickly, with no special parameters to
tune. The main idea behind the algorithm is to read in the new values
Xpp] = [x(t+1)71,...,x(t+1)7n]T from the n streams at time ¢t 4+ 1, and
perform three steps:

1 Compute the hidden variables y; 4101 <@ < k, based on the
current weights w;, 1 < ¢ < k, by projecting x;41 onto these.

2 Estimate the reconstruction error (e; below) and the energy, based
on the y;, ; values.

3 Update the estimates of w;,1 < ¢ < k and output the actual
hidden variables y;41; for time ¢ + 1.

To illustrate this, Figure 5.3b shows the e; and y; when the new data
x¢4+1 enter the system. Intuitively, the goal is to adaptively update w;
so that it quickly converges to the “truth.” In particular, we want to
update w; more when e; is large. However, the magnitude of the update
should also take into account the past data currently “captured” by w;.
For this reason, the update is inversely proportional to the current energy
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E; ; of the i-th hidden variable, which is E; := % 23:1 yzl Figure 5.3c
shows w after the update for x; 1.

Algorithm 1 TRACKW

Initialise the k hidden variables w; to unit vectors wy = [10---0]T,
wo = [010---0]7 etc.
Initialise d; (i = 1,...k) to a small positive value. Then:
As each point x;4; arrives, initialise X1 := xy41.
for 1 <i<kdo

yi = W;TXZ {(yt+1,; = projection onto w;}

di < Ad; + y? {energy o< i-th eigenval. of X7 X;}

e, .= )’(Z — Y;W; {error, €e; 1 Wz}

wW; < W; + diiyiei {update PC estimate}

Xi+1 = X; — y;w; {repeat with remainder of x;}
end for

The forgetting factor \ will be discussed in Section 6.3 (for now, as-
sume \ = 1). For each i, d; = tE;; and X; is the component of x;; in the
orthogonal complement of the space spanned by the updated estimates
w;, 1 < i’ < i of the participation weights. The vectors w;,1 < i < k are
in order of importance (more precisely, in order of decreasing eigenvalue
or energy). It can be shown that, under stationarity assumptions, these
w; in these equations converge to the true principal directions.

Complexity We only need to keep the k weight vectors w; (1 < i < k),
each n-dimensional. Thus the total cost is O(nk), both in time and of
space. The update cost does not depend on t. This is a tremendous
gain, compared to the usual PCA computation cost of O(tn?).

6.2 Detecting the Number of Hidden Variables

In practice, we do not know the number k of hidden variables. We
propose to estimate k on the fly, so that we maintain a high percentage
fE of the energy E;. Energy thresholding is a common method to de-
termine how many principal components are needed [33]. Formally, the
energy F; (at time t) of the sequence of x; is defined as

1Nt _ 1\t
Ey =% 2 ore %[ = T Dore1 D fviz
Similarly, the energy E; of the reconstruction x is defined as

Ey o= 1 30 1% 1%
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LEMMA 5.5 Assuming the w;, 1 < i <k are orthonormal, we have

g, = IZT 1HY7'”2 = tT -1+ tHytH

Proof. If the w;,1 < ¢ < k are orthonormal, then it follows easily that

%117 = llyraws + -+ yrgpwil? = y2allwill? + -+ g2 llwell? =
Y+ + yzk = |ly-||> (Pythagorean theorem and normality). The
result follows by summing over 7. O

It can be shown that algorithm TRACKW maintains orthonormality
without the need for any extra steps (otherwise, a simple re-orthonormali-
sation step at the end would suffice).

From the user’s perspective, we have a low-energy and a high-energy
threshold, fr and Fg, respectively. We keep enough hidden variables k,
so the retained energy is within the range [fg - Ey, Fg - E;]. Whenever
we get outside these bounds, we increase or decrease k. In more detail,
the steps are:

1 Estimate the full energy FEiii, incrementally, from the sum of
squares of x ;.

2 Estimate the energy E(k) of the k hidden variables.

3 Possibly, adjust k. We introduce a new hidden variable (update
k < k+1) if the current hidden variables maintain too little energy,
i.e., By < fpE. We drop a hidden variable (update k < k — 1),

if the maintained energy is too high, i.e., E(k) > FpkE.

The energy thresholds fr and Fg are chosen according to recommenda-
tions in the literature [33, 20]. We use a lower energy threshold fg = 0.95
and an upper threshold Fr = 0.98. Thus, the reconstruction x; retains
between 95% and 98% of the energy of x;.

The following lemma proves that the above algorithm guarantees the
relative reconstruction error is within the specified interval [fg, Fg].

LEMMA 5.6 The relative squared error of the reconstruction satisfies

Ztrzl %, — XT”2

2ot e[

Proof. From the orthogonality of x, and %, — x, we have ||X, — x,||? =
[%-[|* = I%+[|* = [[%-[|* = ly-]|* (by Lemma 5.5). The result follows by
summing over 7 and from the definitions of £ and FE. U

1-Fg <

<1-fg.
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Algorithm 2 SPIRIT
Initialize k£ < 1
Initialize total energy estimates of x; and x; per time tick to £ < 0
and E; < 0. Then,
for each new point that arrives do
Update wy, for 1 <i < k (TRACKW).
Update the estimates (for 1 <i < k)

t—1E 2 s t—1)E; + 2.
TS A e )

E

Let the estimate of retained energy be

E(k) = Zi‘c:l Ez

if £y < fpE then
Start estimating wy; (initialising as in TRACKW)
Initialise Ejpyq < 0
Increase k < k + 1.

end if

if E(k) > FrpFE then
Discard w;. and Ek
Decrease kK +— k — 1

end if

end for

6.3 Exponential Forgetting

We can adapt to more recent behavior by using an exponential forget-
ting factor, 0 < A < 1. This allows us to follow trend drifts over time.
We use the same A for the estimation of both w; and of the AR models
(see Section 7.1). However, we also have to properly keep track of the
energy, discounting it with the same rate, i.e., the update at each step
is:

Mt —1)E 2 . At—=1E; + 2,
( )t+HXtII and E“_( )tz Yii

Typical choices are 0.96 < A < 0.98 [27]. As long as the values of x;
do not vary wildly, the exact value of A is not crucial. We use A\ =
0.96 throughout. A value of A = 1 makes sense when we know that
the sequence is stationary (rarely true in practice, as most sequences
gradually drift). Note that the value of A does not affect the computation
cost of our method. In this sense, an exponential forgetting factor is

FE
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more appealing than a sliding window, as the latter has explicit buffering
requirements.

7. An Application-driven View: Putting
Correlations to Work

We show how we can exploit the correlations and hidden variables to
do (a) forecasting, (b) missing value estimation, (c¢) summarization of
the large number of streams into a small, manageable number of hidden
variables, and (d) outlier detection. We will use SPIRIT because of its
hidden variable-based approach which makes it very convenient for such
tasks, though many of these tasks can also be accomplished by other
methods.

7.1 Forecasting and Missing Values

The hidden variables y; give us a much more compact representation
of the “raw” variables x;, with guarantees of high reconstruction accu-
racy (in terms of relative squared error, which is less than 1— fg). When
our streams exhibit correlations, as we often expect to be the case, the
number k of the hidden variables is much smaller than the number n
of streams. Therefore, we can apply any forecasting algorithm to the
vector of hidden variables y;, instead of the raw data vector x;. This
reduces the time and space complexity by orders of magnitude, because
typical forecasting methods are quadratic or worse on the number of
variables.

In particular, we fit the forecasting model on the y; instead of x;. The
model provides an estimate y;11 = f(y:) and we can use this to get an
estimate for

Xit1 = Gep1, 1 Wt + -+ Jep1,1 Wi [],

using the weight estimates w;[t] from the previous time tick ¢t. We
chose auto-regression for its intuitiveness and simplicity, but any online
method can be used.

Correlations Since the principal directions are orthogonal to one an-
other (w; L wj,i # j), the components of y; are by construction uncor-
related—the correlations have already been captured by the w;, 1 < i <
k. We can take advantage of this de-correlation reduce forecasting com-
plexity. In particular for auto-regression, we found that one AR model
per hidden variable provides results comparable to multivariate AR.

Auto-regression Space complexity for multivariate AR (e.g., MUS-
CLES [58]) is O(n¢?), where £ is the auto-regression window length.
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For AR per stream (ignoring correlations), it is O(nf?). However, for
SPIRIT, we need O(kn) space for the w; and, with one AR model per y;,
the total space complexity is O(kn + k¢?). As published, MUSCLES re-
quires space that grows cubically with respect to the number of streams
n. We believe it can be made to work with quadratic space, but this is
still prohibitive. Both AR per stream and SPIRIT require space that
grows linearly with respect to n, but in SPIRIT £ is typically very small
(k < n) and, in practice, SPIRIT requires less memory and time per
update than AR per stream. More importantly, a single, independent
AR model per stream cannot capture any correlations, whereas SPIRIT
indirectly exploits the correlations present within a time tick.

Missing values When we have a forecasting model, we can use the
forecast based on x; 1 to estimate missing values in x;. We then use
these estimated missing values to update the weight estimates, as well
as the forecasting models. Forecast-based estimation of missing values
is the most time-efficient choice and gives very good results.

7.2 Interpretation

At any given time t, SPIRIT readily provides two key pieces of infor-
mation (aside from the forecasts, etc.): (i)The number of hidden vari-
ables k. (ii) The weights w;;, 1 < i < k, 1 < j < n. Intuitively,
the magnitude |w; ;| of each weight tells us how much the i-th hidden
variable contributes to the reconstruction of the j-th stream.

In the chlorine example during phase 1 (see Figure 5.1), the dataset
has only one hidden variable, because one sinusoidal-like pattern can
reconstruct both streams (albeit with different weights for each). Thus,
SPIRIT correctly identifies correlated streams. When the correlation
was broken, SPIRIT introduces enough hidden variables to capture that.
Finally, it also spots that, in phase 3, normal operation is reestablished
and thus disposes of the unnecessary hidden variable.

8. Pattern Discovery across Time

Many pattern discovery methods first project the data onto “all” bases
in a given family (e.g., Fourier, wavelets, etc) and then choose a few co-
efficients that capture the most information. In contrast, among all
possible bases, we first choose a few bases that are guaranteed to cap-
ture the most information and consequently project the data only onto
those. However, efficiently determining these few bases and incremen-
tally updating them as new points arrive is a challenging problem. To
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that end, we use techniques related to those for discovering correlations
across streams, illustrating the relationship between the two problems.

Let us first assume that someone gives us a window size. Then, the
problem we want to solve is the following:

PROBLEM 8.1 (FIXED-WINDOW OPTIMAL PATTERNS) Given a time se-
ries Ty, t = 1,2,... and a window size w, find the patterns that best
summarize the series at this window size.

The patterns are w-dimensional vectors v; = [v;1,. .. ,vi,w]T € R%, cho-
sen so that they capture “most” of the information in the series (in a
way that we will make precise later).

In practice, however, we do not know a priori the right window size.
Therefore, with respect to the second requirement (multi-scale), we want
to solve the following problem:

PROBLEM 8.2 (OPTIMAL LOCAL PATTERNS) Given a time series x4 and
a set of windows W := {w1, ws,ws, ...}, find (i) the optimal patterns for
each of these, and (ii) the best window w* to describe the key patterns
in the series.

So how do we go about finding these patterns? An elementary concept
we need to introduce is time-delay coordinates. We are given a time series
xy, t =1,2,... with m points seen so far. Intuitively, when looking for
patterns of length w, we divide the series in consecutive, non-overlapping
subsequences of length w. Thus, if the original series is a m x 1 matrix
(not necessarily materialized), we substitute it with a 7% x w matrix.
Instead of m scalar values we now have a sequence of m/w vectors with
dimension w. It is natural to look for patterns among these time-delay
vectors.

DEFINITION 5.7 (DELAY COORDINATES) Given a sequence denoted by
X = [11,22,..., T4 ..., 2m]T and a delay (or window) w, the delay co-

ordinates are a [m/w] X w matriz with the t'-th row equal to XE:,J)) =

T
[x(t’—l)w—f—la Tt —1) w42y« Tyt

Of course, neither x nor X(®) need to be fully materialized at any point
in time. In practice, we only need to store the last row of X (@),

Also, note that we choose non-overlapping windows. We could also
use overlapping windows, in which case X®) would have m —w+ 1 rows,
with row ¢ consisting of values x4, Ty41,. .., Tirw- In this case, there are
some subtle differences [23], akin to the differences between “standard”
wavelets and mazimum-overlap or redundant wavelets [46]. However,
in practice non-overlapping windows are equally effective for pattern
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Figure 5.4. Tlustration of local patterns for a fixed window (here, w = 4).

discovery and also lend themselves better to incremental, streaming es-
timation using limited resources.

More generally, the original time series does not have to be scalar,
but can also be vector-valued itself. We still do the same, only each row
of X(®) is now a concatenation of rows of X (instead of a concatenation
of scalar values). More precisely, we construct the general time-delay
coordinate matrix as follows:

Procedure 1 DELAY (X € R™*™, w)
m’ < [m/w| and n’ + nw
Output is X®) € R™*" {not necessarily materialized}
for t =1 to m’ do
Row X(S) < concatenation of rows

X(-Dyw+1)s X(t-1w+2)>** Xew)
end for

Incremental SVD The SVD update algorithm used in SPIRIT can
be applied incrementally to vectors that represent windows of the same
time series. As we have seen, its accuracy is good, while it does not
need to store the left singular vectors. Since our goal is to find patterns
at multiple scales without an upper bound on the window size, this is a
more suitable choice. Furthermore, if we need to place more emphasis on
recent trends, it is rather straightforward to incorporate an exponential
forgetting scheme, which works well in practice [44]. For each new row,
the algorithm updates k£ - n numbers, so total space requirements are
O(nk) and the time per update is also O(nk). Finally, the incremental
update algorithms need only the observed values and can therefore easily
handle missing values by imputing them based on current estimates of
the singular vectors.
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8.1 Locally Optimal Patterns

We now have all the pieces in place to answer the first question: for
a given window w, how do we find the locally optimal patterns? Fig-
ure 5.4 illustrates the main idea. Starting with the original time series
x, we transfer to time-delay coordinates X (). The local patterns are
the right singular vectors of X(®), which are optimal in the sense that
they minimize the total squared approximation error of the rows XE;L))).

The detailed algorithm is shown below.

Algorithm 3 LOCALPATTERN (x € R™, w, k = 3)

Use delay coord. X(*) <— DELAY (x, w)
Compute SVD of X®) = gy s @)y w)

Local patterns are V(lw), e ,v,(cw)

Power is (@) « Z;”:Hl af/w = (2221 5‘3? - Z§:1 U?)/w
PW) I:J(w)flfw) {low-dim. proj. onto local patterns}
return VW) P @) gpnd 7w

For now, the projections P®) onto the local patterns v(; are not
needed, but we will use them later. Also, note that LOCALPATTERN
can be applied in general to n-dimensional vector-valued series. The
pseudocode is the same, since DELAY can also operate on matrices X €
R™*™  The reason for this will also become clear, but for now it suffices
to observe that the first argument of LOCALPATTERN may be a matrix,
with one row x(;) € R" per timestamp ¢t =1,2,...,m.

When computing the SVD, we really need only the highest & singular
values and the corresponding singular vectors, because we only return
V@) and P®) ., Therefore, we can avoid computing the full SVD and use
somewhat more efficient algorithms, just for the quantities we actually
need.

Also, note that () can be computed from P®) since by construc-
tion

of = Ipill* = 27y v (5.5)

However, we return these separately, which avoids duplicate computa-
tion. More importantly, when we later present our streaming approach,
we won'’t be materializing P®) . Furthermore, Equation (5.5) does not
hold exactly for the estimates returned by INCREMENTALSVD and it is
better to use the estimates of the singular values o? computed as part
of INCREMENTALSVD.
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Figure 5.6. Multi-scale pattern discovery (hierarchical, wo =4, W =2, k = 2).

8.1.1 Power Profile. Next, let us assume we have optimal
local patterns for a number of different window sizes. Which of these
windows is the best to describe the main trends? Intuitively, the key
idea is that if there is a trend that repeats with a period of T', then dif-
ferent subsequences in the time-delay coordinate space should be highly
correlated when w ~ T. Although the trends can be arbitrary, we il-
lustrate the intuition with a sine wave, in Figure 5.5. The plot shows
the squared approximation error per window element, using k = 1 pat-
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tern on a sine wave with period T' = 50. As expected, for window size
w =T = 50 the approximation error drops sharply and essentially cor-
responds to the Gaussian noise floor. Naturally, for windows w = T’
that are multiples of T' the error also drops. Finally, observe that the
error for all windows is proportional to %, since it is per window element.
Eventually, for window size equal to the length of the entire time series
w = m (not shown in Figure 5.5, where m = 2000), we get 7™ = 0
since first pattern is the only singular vector, which coincides with the
series itself, so the residual error is zero.

Formally, the squared approximation error of the time-delay matrix
X®) s

)= X IGy) = IP = X - X,
where X(®) := P(®) (V)T is the reconstruction and ||A % := i a%j
denotes the Frobenius norm of A (sum of squares of matrix entries a;;).
From the definition of the SVD-based approximation error (see Sec-
tion 3), as well as the fact that the sum of squares of the singular values
of a matrix is equal to the sum of squares of its values, we have
) = X — PO F ~ = S (o)

Based on this, we define the power, which is an estimate of the error per
window element.

DEFINITION 5.8 (POWER PROFILE ©(*)) For a given number of pat-
terns (k = 2 or 3) and for any window size w, the power profile is
the sequence defined by

a®) = (5.6)

w

More precisely, this is an estimate of the variance per dimension, as-
suming that the discarded dimensions correspond to isotropic Gaussian
noise (i.e., uncorrelated with same variance in each dimension) [52]. As
explained, this will be much lower when w = T', where T is the period
of an arbitrary main trend.

The following lemma follows from the above observations. Note that
the conclusion is valid both ways, i.e., perfect copies imply zero power
and vice versa. Also, the conclusion holds regardless of alignment (i.e.,
the periodic part does not have to start at the begining of a windowed
subsequence). A change in alignment will only affect the phase of the
discovered local patterns, but not their shape or the reconstruction ac-
curacy.

OBSERVATION 8.1 (ZERO POWER) If x € R! consists of exact copies of
a subsequence of length T' then, for every number of patterns k =1,2,. ..
and at each multiple of T', we have 1) =0,i=1,2,..., and vice versa.
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In general, if the trend does not consist of exact copies, the power will
not be zero, but it will still exhibit a sharp drop. We exploit precisely
this fact to choose the “right” window.

Choosing the window Next, we state the steps for interpreting the
power profile to choose the appropriate window that best captures the
main trends: (i) Compute the power profile 7(*) versus w; (ii) Look
for the first window wyg that exhibits a sharp drop in 7(6) and ignore
all other drops occurring at windows w ~ iwg, ¢ = 2,3,... that are
approximately multiples of wyg; (iii) If there are several sharp drops at
windows w; that are not multiples of each other, then any of these is
suitable. We simply choose the smallest one; alternatively, we could
choose based on prior knowledge about the domain if available, but
that is not necessary; (iv) If there are no sharp drops, then no strong
periodic/cyclic components are present. However, the local patterns at
any window can still be examined to gain a picture of the time series
behavior.

8.2 Multiple-Scale Patterns

In this section we tackle the following question: how do we efficiently
compute the optimal local patterns for multiple windows (as well as the
associated power profiles), so as to quickly zero in to the “best” window
size? First, we can choose a geometric progression of window sizes:
rather than estimating the patterns for windows of length wgy, wg + 1,
wo + 2, wo+ 3, ..., we estimate them for windows of wy, 2wq, 4wy, ... or,
more generally, for windows of length w; := wqy - W! for 1 = 0,1,2,....
Thus, the size of the window set W we need to examine is dramatically
reduced. Still, this is (i) computationally expensive (for each window we
still need O(ktw) time and, even worse, (ii) still requires buffering all the
points (needed for large window sizes, close to the time series length).
Next, we show how we can reduce complexity even further.

8.2.1 Hierarchical SVD. The main idea of our approach to
solve this problem is shown in Figure 5.6. Let us assume that we have,
say k = 2 local patterns for a window size of wy = 100 and we want
to compute the patterns for window w1 = 100 - 2! = 200. The
naive approach is to construct X% from scratch and compute the

SVD. However, we can reuse the patterns found from X199 Using the

(1100) and VélOO) we can reduce the first wy = 100 points

r1,T2,...,T100 into just two points, namely their projections p(ﬂ)o) and

pggo) onto Vgloo) and vgloo)’ respectively. Similarly, we can reduce

k = 2 patterns v
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the next wg = 100 points x101,Z102,---, X200 also into two numbers,

pglfo) and pglgo)’ and so on. These projections, by construction, ap-

proximate the original series well. Therefore, we can represent the first

TOW ng)o) = [w1,...,2000]7 € R¥0 of X (200) with just four numbers,
ng)o,l) = [pggo)’pggo)’pgfo)’pggo)]T € R% Doing the same for the

other rows of X209 we construct a matrix X901 with just n = 4

columns, which is a very good approximation of X209 Consequently,
we compute the local patterns using X(1901) instead of X209, Repeat-
ing this process recursively, we can find the local patterns for a window
w(199:2) =100 - 22 = 400 and so on.

DEFINITION 5.9 (LEVEL-(wp,l) WINDOW) The level-(wy, ) window cor-
responds to an original window size (or scale) w; := wo-W'. Patterns at
each level | are found recursively, using patterns from the previous level

l—1.

In the above example, we have wy = 100 and [ = 0,1. Since wy and
W are fixed for a particular sequence of scales w;, we will simply refer
to level-l windows and patterns. The recursive construction is based on
the level-l delay matrix and corresponding patterns.

DEFINITION 5.10 (LEVEL-l DELAY MATRIX X (oY) Given a starting win-

dow wy and a scale factor W, the level-l delay matriz is simply X (wo:0) .=
X@o) for 1 =0 and for 1 =1,2,... it is recursively defined by

X o) .= DrLay (P =D W),

where P o) .= X(wo.)y(wo.l) s the projection onto the level-l patterns
V@o) which are found based on X@oD) . The level-l delay matriz is an
approzimation of the delay matriz X for window size w; = woW'.

In our example, the patterns extracted from X (1001 are four-dimensional

vectors, V100D R*, whereas the patterns for X2%) would be 200-
(200)

A
i
100,1 100,0
( ) and VE )

i

€ R?%. However, we can appropriately com-
(100) (200)
i

i

dimensional vectors v

to estimate v

bine v

DEFINITION 5.11 (LEVEL-/ LOCAL PATTERN vog““)’”) The level-l pat-
tern vOEwO’l), foralli=1,2,... k, corresponding to a window of w; =
woW! is simply VOEwO’O) = ngo) for 1l =0 and for 1 = 1,2,... it is
defined recursively by
Dy s .
VO [(j = w1 +1: 1] =

Vool =D (vl 1)k + 1 jk]), (5.7)
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forj=1,2,... , W. It is an approximation of the local patterns viv) of

i
the original delay matriz X | for window size w; = woW'.
Consider vogloo’l) in our example. The first £ = 2 out of kW = 4 num-

bers in vgloo’l) approximate the patterns among the 2-dimensional vec-

(100,0)

()
vectors XE:)OO’O) of the original time-delay matrix. Thus, but forming the

(100,0)

tors p , which in turn capture patterns among the 100-dimensional

appropriate linear combination of the 100-dimensional patterns v;

vo!(1000) (i.e., the columns of V(100.0) = v(190.0)) " weighted according

i
to vgloo’l)[l : 2], we can construct the first half of the 200-dimensional

pattern vOElOO’l)[l : 100] (left-slanted entries in Figure 5.6). Similarly, a
linear combination of the columns of V(100:0) = y(100.0) weighted ac-

cording to vgloo’l) [3 : 4] gives us the second half of the 200-dimensional

pattern v0§1°0’1>[101 : 200] (right-slanted entries in Figure 5.6). For
level [ = 2 we similarly combine the columns of vo(100.1) according to
v§100’2)[1 : 2] (for the first half, v0§100’2) [1:200]) and to v{1002)3 . 4] (for

[
the second half, V0§10072) [201 : 400]) and so on, for the higher levels.

LEMMA 5.12 (ORTHONORMALITY OF v0\"*") We have
||v0§w0’l)\| =1 and, fori # j, (vOEwo’l))T(vog-wo’l)) = 0, where i,j =
1,2, .k

Proof. For level [ = 0 they are orthonormal since they coincide with

the original patterns ngo) which are by construction orthonormal. We

proceed by induction on the level [ > 1. Without loss of generality,
assume that & = 2 and, for brevity, let B = vowol=1) and b1 =

ngo’l)[l k], bio = ngo,l)[k +1: k], so that ngo’l) = [bi1,bi2]. Then

V0! |2 = [Bb;,; Bb;a]? = |Bby,[|? + |Bb||?
= [bir ] + [bial? = v{* V)2 = 1,
and
(vol* )T (vol**) = [Bb;; Bb;o|T[Bbj; Bb;,)
= b/ B"Bb;; + b; ,B'Bb;
= b bj1+b{,bj2

= (vi" ) (v{ol) = o,



Dimensionality Reduction and Filtering on Time Series Sensor Streams 135

since B preserves dot products as an orthonormal matrix (by inductive
(wOvl)

hypothesis) and v, are orthonormal by construction. O

The detailed hierarchical SVD algorithm is shown below. In practice,
the maximum level L is determined based on the length m of the time
series so far, L =~ logy, (m/wy).

Algorithm 4 HIERARCHICAL (x € R™, wy, W, L, k = 6)
{Start with level [ = 0, corresponding to window wpg}
V(w070)’ P(w()vo)’ 2(“1070)’71'(“]070) <—

LOCALPATTERN(x, wq, k)
{Levels 1, corresponding to window w; = wg - W'}
for level I =1 to L do
V(UJOJ)’ P(UJOJ)’ S(WOJ)’/]T(UJOJ) —
LOCALPATTERN(P(o!=1) "W, k)
)

Compute patterns vOEwO’l
tion (5.7)
end for

for window size w; are based on Equa-

Choosing the initial window The initial window wgy has some im-
pact on the quality of the approximations. This also depends on the
relationship of k to wy (the larger k is, the better the approximation
and if k = wo then P(®0:) = X(@o) je  no information is discarded at
the first level). However, we want k to be relatively small since, as we will
see, it determines the buffering requirements of the streaming approach.
Hence, we fix k = 6. We found that this simple choice works well for
real-world sequences, but we could also use energy-based thresholding
[33], which can be done incrementally.

If wgy is too small, then we discard too much of the variance too
early. If wg is unnecessarily big, this increases buffering requirements
and the benefits of the hierarchical approach diminish. In practice, a
good compromise is a value in the range 10 < wy < 20.

Finally, out of the six patterns we keep per level, the first two or
three are of interest and reported to the user. The remaining are kept
to ensure that X®o:l) ig a good approximation of X (i),

Choosing the scales As discussed in Section 8.1.1, if there is a sharp
drop of 70 at window w = T, then we will also observe drops at
multiples w = T, i = 2,3,.... Therefore, we choose a few different
starting windows wy and scale factors W that are relatively prime to
each other. In practice, the following set of three choices is sufficient
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to quickly zero in on the best windows and the associated optimal local
patterns:

k=6 and (wo,W) e {(9,2),(10,2),(15,3)}

Complexity For a total of L ~ logy (t/wg) = O(logt) levels we
have to compute the first k singular values and vectors of X (o) ¢

RY/(woWHxWk for | = 1,2,.... A batch SVD algorithm requires time
O(k - (Wk)*- woﬁ/Vl)’ which is O(WVQVI‘;Q':) since k < wp. Summing over

I=1,...,L, we get O(W?2k?t). Finally, for [ = 0, we need O(k~w(2]wio) =
O(kwot). Thus, the total complexity is O(W?2k?t + kwgt). Since W and
wy are fixed, we finally have the following

LEMMA 5.13 (BATCH HIERARCHICAL COMPLEXITY) The total time for
the hierarchical approach is O(k?t), i.e., linear with respect to the time
series length.

This is a big improvement over the O(t3k) time of the non-hierarchical
approach. However, we still need to buffer all the points. We address
this problem in the next section.

8.3 Streaming Computation

In this section we explain how to perform the necessary computations
in an incremental, streaming fashion. We designed our models precisely
to allow this step. The main idea is that we recursively invoke only
one iteration of each loop in INCREMENTALSVD (for LOCALPATTERN)
and in HIERARCHICAL, as soon as the necessary number of points has
arrived. Subsequently, we can discard these points and proceed with the
next non-overlapping window.

Modifying LocalPattern We buffer consecutive points of x (or, in
general, rows of X) until we accumulate w of them, forming one row
of X(®) At that point, we can perform one iteration of the outer loop
in INCREMENTALSVD to update all k local patterns. Then, we can
discard the w points (or rows) and proceed with the next w. Also, since
on higher levels the number of points for SVD may be small and close to
k, we may choose to initially buffer just the first & rows of X(*) and use
them to bootstrap the SVD estimates, which we subsequently update as
described.

Modifying Hierarchical For level [ = 0 we use the modified LOCAL-
PATTERN on the original series, as above. However, we also store the k
projections onto the level-0 patterns. We buffer W consecutive sets of
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these projections and as soon as kW values accumulate, we update the
k local patterns for level [ = 1. Then we can discard the kW projections
from level-0, but we keep the k level-1 projections. We proceed in the
same way for all other levels [ > 2.

Complexity Compared to the batch computation, we need O(k:-Wk:-

W) = O(%) time to compute the first k singular values and vectors
of Xol) for | =1,2,.... For [ = 0 we need O(k-wo . wio) = O(kt) time.
Summing over | = 0,1,...,L we get O(kt). With respect to space,
we need to buffer wg points for [ = 0 and Wk points for each of the
remaining L = O(logt) levels, for a total of O(klogt). Therefore, we

have the following

LEMMA 5.14 (STREAMING, HIER. COMPLEXITY) Amortized cost is O(k)
per incoming point and total space is O(klogt).

Since k = 6, the update time is constant per incoming point and the
space requirements grow logarithmically with respect to the size ¢ of the
series. Table 5.2 summarizes the time and space complexity for each
approach.

Time Space
Non-hier. | Hier. | Non-hier. Hier
Batch O(t’k) | O(tk?) all all
Incremental |  O(t?k) O(tk) O(t) O(klogt)

Table 5.2. Summary of time and space complexity.

9. Conclusions

This chapter surveyed techniques for dimensionality pattern discovery
across multiple streams (correlation detection and streaming dimension-
ality reduction) as well as across time within a single stream (auto-
correlation detection and filtering/compression), presenting a unified
view of these two central problems. The chapter overviewed fundamen-
tal techniques, including auto-regression, principal component analysis,
and the singular value decomposition, and shown what it takes to apply
these ideas consistently yet effectively to tackle both types of problems
on time series stream and sensor data. Furthermore, a discussion of
broadly related work in the area of time series stream mining was pre-
sented.
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Abstract

In recent years, advances in hardware technology have facilitated
new ways of collecting data continuously. One such application is that
of sensor data, which may continuously monitor large amounts of data
for storage and processing. In this paper, we will discuss the general
issues which arise in mining large amounts of sensor data. In many
cases, the data patterns may evolve continuously, as a result of which
it is necessary to design the mining algorithms effectively in order to
account for changes in underlying structure of the data stream. This
makes the solutions of the underlying problems even more difficult from
an algorithmic and computational point of view. In this chapter we
will provide an overview of the problem of data stream mining and the
unique challenges that data stream mining poses to different kinds of
sensor applications.

Keywords: Data Streams, Sensor Data, Sensor Stream Mining

1. Introduction

In recent years, advances in sensor technology have lead to the ability
to collect large amounts of data from sensors in an automated way. When
the volume of the underlying data is very large, it leads to a number of
computational and mining challenges:

m With increasing volume of the data, it is no longer possible to
process the data efficiently by using multiple passes. Rather, one
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can process a data item at most once. This leads to constraints
on the implementation of the underlying algorithms. Therefore,
stream mining algorithms typically need to be designed so that
the algorithms work with one pass of the data.

m In most cases, there is an inherent temporal component to the
stream mining process. This is because the data may evolve over
time. This behavior of data streams is referred to as temporal lo-
cality. Therefore, a straightforward adaptation of one-pass mining
algorithms may not be an effective solution to the task. Stream
mining algorithms need to be carefully designed with a clear focus
on the evolution of the underlying data.

m Data which is collected from sensors is often uncertain and error
prone, as a result of which it is critical to be able to reduce the
effects of the uncertainty in the mining process.

Another important characteristic of sensor data streams is that they are
often mined in a distributed fashion. In some cases, intermediate sen-
sor nodes may have limited processing power, and it may be desirable
to perform in-network sensor processing for a variety of mining applica-
tions. In such cases, the application algorithms need to be designed with
such criteria in mind [30, 60]. This chapter will provide an overview of
the key challenges in sensor stream mining algorithms which arise from
the unique setup in which these problems are encountered.

This chapter is organized as follows. In the next section, we will
discuss the generic challenges which arise in the context of storage and
processing of sensor data. The next section deals with several issues
which arise in the context of data stream management. In section 3,
we discuss several mining algorithms on the data stream model. Section
4 discusses various scientific applications of data streams. Section 5
discusses the research directions and conclusions.

2. Sensor Stream Mining Issues

Since data streams are processes which create large volumes of in-
coming data, they lead to several challenges in both processing the data
as well as applying traditional database operations. Therefore, new de-
signs of data streaming systems are required for handling sensor data
[23]. The challenging issues in sensor stream mining may arise during
different phases including data collection, transmission, storage and pro-
cessing. Some of the these key issues are as follows:
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2.1 Data Uncertainty and Volume

Typical sensor mining applications collect large amounts of data,
which is often subject to uncertainty and errors. This is because sensors
often have errors in data collection and transmission. In many cases,
where the battery runs out, the data may also be incomplete. There-
fore, methods are required to store and process the uncertainty in the
underlying data. A common technique is to perform model driven data
acquisition [36], which explicitly models the uncertainty during the ac-
quisition process. Furthermore, new methods must be constructed in
order to explicitly use these uncertainty models during data processing.
A detailed discussion of a variety of methods for modeling and mining
uncertain data are proposed in [14].

A variety of techniques may be used in order to handle the large vol-
ume of sensor data. One method may be to simply lower the sampling
rate for capturing or transmitting the data. This reduces the granularity
of the data collection process. Many techniques have also been proposed
[34, 35] in order to reduce or compress the volume of the data in the sen-
sor network. Another approach is to discard parts of the data even after
collection and transmission. For example, when the incoming rate of
the data streams is higher than that can be processed by the system,
techniques are required in order to selectively pick data points from the
stream, without losing accuracy. This technique is known as loadshed-
ding. Since sensor generated data streams are generated by processes
which are extraneous to the stream processing application, it is not pos-
sible to control the incoming stream rate. As a result, it is necessary
for the system to have the ability to quickly adjust to varying incoming
stream processing rates. One particular type of adaptivity is the ability
to gracefully degrade performance via “load shedding” (dropping unpro-
cessed tuples to reduce system load) when the demands placed on the
system cannot be met in full given available resources. The loadshedding
can be tailored to specific kinds of applications such as query process-
ing or data mining. A discussion of several loadshedding techniques are
provided in [4]. Finally, a method for reducing the data volume is that
of sensor selection in which data from only a particular set of sensors is
transmitted at a particular time, so that most of the essential informa-
tion is retained. This is also useful for reducing the power requirements
of transmission. We will discuss this method in the next subsection.
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2.2 Power Issues in Sensor Collection and
Transmission

Since sensor nodes have limited battery power, the issue of data col-
lection and transmission is a challenging one for sensor networks. Sensor
nodes have limited battery power, as a result of which it is necessary to
collect and transmit the data on a limited basis. This means that it is
often necessary to collect only a subset of the data for mining purposes.
A classic technique which is often used in order to reduce the amount
of collected data is sensor selection. In data driven sensor selection,
goal-oriented techniques are used in order to reduce the amount of data
collected for mining purposes [19, 2—-1, 45, 61]. In most of these methods,
the idea is to use the massive redundancy across the different sensors in
order to reduce the total data which is collected. For example, in an
environmental monitoring applications, two sensors which are located
physically close together may often have very similar readings. In such
cases, the correlations across the different sensors are leveraged in or-
der to select a small number of sensors from which the data is collected.
The values on the other sensors can be predicted from this small set. We
note that this small set may vary over time, as different sensors may be
inoperative at different times, or the correlations among the data may
change. Methods for power-efficient and dynamic sensor selection are
discussed in [1]. Another technique which is often used in order to re-
duce the power transmission costs is a method referred to as in network
processing. We will discuss this technique in the next subsection.

2.3 In-Network Processing

Since sensor networks may use hundreds and thousands of nodes over
a large area, and all the data from the different nodes may be need to
be fused, this can incur significant communication costs, of all the raw
data is directly transmitted to a central server for processing. While
such a naive solution is easy to implement, its energy costs may be too
large to make it practical for very large scale sensor networks which are
distributed over wide regions. Since the cost of transmission is higher
than computation, it is usually advantageous to organize the sensors into
clusters. In such an environment, the data gathered by the sensors is pro-
cessed within the network and only aggregated information is returned to
the central location. This responsibility is typically provided to certain
nodes in the network, which are referred to as aggregators. Numerous
functions can be designed for such nodes, and the corresponding data
sent may depend upon the relevant aggregate queries which are posed
at the central server. Thus, the underlying assumption is that such em-
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bedded devices in the network are smart enough to be able to compute
functions of modest complexity. Such an approach results in a reduction
of the transmission costs, both because of the smaller distances of trans-
mission in a clustered environment, and also because only the aggregated
data is transmitted (which has much lower volume than the raw data).
It is possible to design different kinds of cluster hierarchies in order to
optimize the transmission costs in the underlying network. A detailed
discussion of the different aspects of in-network query processing may
be found in [63, 78].

3. Stream Mining Algorithms

In this section, we will discuss the key stream mining problems and
will discuss the challenges associated with each problem. We will also
provide a broad overview of the different directions of research for these
problems.

3.1 Data Stream Clustering

Clustering is a widely studied problem in the data mining literature.
However, it is more difficult to adapt arbitrary clustering algorithms to
data streams because of one-pass constraints on the data set. An inter-
esting adaptation of the k-means algorithm has been discussed in [43]
which uses a partitioning based approach on the entire data set. This
approach uses an adaptation of a k-means technique in order to create
clusters over the entire data stream. However, in practical applications,
it is often desirable to be able to examine clusters over user-specified
time-horizons. For example, an analyst may desire to examine the be-
havior of the clusters in the data stream over the past one week, the
past one month, or the past year. In such cases, it is desirable to store
intermediate cluster statistics, so that it is possible to leverage these in
order to examine the behavior of the underlying data.

One such technique is micro-clustering [10], in which we use cluster
feature vectors [81] in order to perform stream clustering. The cluster
feature vectors keep track of the first-order and second-order moments
of the underlying data in order to perform the clustering. These features
satisfy the following critical properties which are relevant to the stream
clustering process:

m  Additivity Property: The statistics such as the first- or second-
order moments can be maintained as a simple addition of statistics
over data points. This is critical in being able to maintain the
statistics efficiently over a fast data stream. Furthermore, addi-
tivity also implies subtractivity; thus, it is possible to obtain the



148 MANAGING AND MINING SENSOR DATA

statistics over a particular time horizon, by subtracting out the
statistics at the beginning of the horizon from the statistics at the
end of the horizon.

s Computational Convenience: The first and second order statis-
tics can be used to compute a vast array of cluster parameters such
as the cluster centroid and radius. This is useful in order to be
able to compute important cluster characteristics in real time.

It has been shown in [10], that the micro-cluster technique is much more
effective and versatile than the k-means based stream technique dis-
cussed in [43]. This broad technique has also been extended to a variety
of other kinds of data. Some examples of such data are as follows:

s High Dimensional Data: The stream clustering method can
also be extended to the concept of projected clustering [5]. A tech-
nique for high dimensional projected clustering of data streams is
discussed in [11]. In this case, the same micro-cluster statistics
are used for maintaining the characteristics of the clusters, except
that we also maintain additional information which keeps track of
the projected dimensions in each cluster. The projected dimen-
sions can be used in conjunction with the cluster statistics to com-
pute the projected distances which are required for intermediate
computations. Another innovation proposed in [11] is the use of
decay-based approach for clustering. The idea in the decay-based
approach is relevant for the case of evolving data stream model,
and is applicable not just to the high dimensional case, but any of
the above variants of the micro-cluster model. In this approach,
the weight of a data point is defined as 2=, where t is the current
time-instant. Thus, each data point has a half-life of 1/, which is
the time in which the weight of the data point reduces by a factor
of 2. We note that the decay-based approach poses a challenge
because the micro-cluster statistics are affected at each clock tick,
even if no points arrive from the data stream. In order to deal with
this problem, a lazy approach is applied to decay-based updates, in
which we update the decay-behavior for a micro-cluster only if a
data point is added to it. The idea is that as long as we keep track
of the last time t; at which the micro-cluster was updated, we only
need to multiply the micro-cluster statistics by 2-Mte—ts)  where t,.
is the current time instant. After multiply the decay statistics by
this factor, it is possible to add the micro-cluster statistics of the
current data point. This approach can be used since the statistics
of each micro-cluster decay by the same factor in each track, and it
is therefore possible to implicitly keep track of the decayed values,
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as long as a data point is not added to the micro-cluster. In the
latter case, the statistics need to be updated explicitly, while other
counts can still be maintained implicitly.

m Uncertain Data: In many cases, such as in sensor networks, the
underlying data may be noisy and uncertain. In such cases, it may
be desirable to incorporate the uncertainty into the clustering pro-
cess. In order to do so, the micro-cluster statistics are appended
with the information about the underlying uncertainty in the data.
This information can be used in order to make more robust clus-
tering computations. The advantages of using the uncertainty into
the clustering process are illustrated in [7].

s Text and Categorical Data: A closely related problem is that
of text and categorical data. The main difference with the quan-
titative domain is the nature of the statistics which are stored for
clustering purposes. In this case, we maintain the counts of the
frequencies of the discrete attributes in each cluster. Furthermore,
we also maintain the inter-attribute correlation counts which may
be required in a variety of applications. In [12], an efficient algo-
rithm has been proposed for clustering text and categorical data
streams. This algorithm also allows for a decay-based approach
as in [11]. Text and categorical streams often arise in the context
of social sensors such as micro-blogging sites, or other tagging or
event detection scenarios.

In addition, a number of density-based methods [25, 28] have also been
proposed for the problem of stream clustering.

In the context of sensor networks, the stream data is often available
only in a distributed setting, in which large volumes of data are col-
lected separately at the different sensors. A natural approach for clus-
tering such data is to transmit all of the data to a centralized server.
The clustering can then be performed at the centralized server in or-
der to determine the final results. Unfortunately, such an approach is
extremely expensive in terms of its communication costs. Therefore, it
is important to design a method which can reduce the communication
costs among the different processors. A method proposed in [32] per-
forms local clustering at each node, and merges these different clusters
into a single global clustering at low communication cost. Two different
methods are proposed in this work. The first method determines the
cluster centers by using a furthest point algorithm, on the current set of
data points at the local site. In the furthest point algorithm, the center
of a cluster is picked as a furthest point to the current set of centers.
For any incoming data point, it is assigned to its closest center, as long



150 MANAGING AND MINING SENSOR DATA

the distance is within a certain factor of an optimally computed radius.
Otherwise, a re-clustering is forced by applying the furthest point algo-
rithm on current set of points. After the application of the furthest point
algorithm, the centers are transmitted to the central server, which then
computes a global clustering from these local centers over the different
nodes. These global centers can ten be transmitted to the local nodes if
desired. One attractive feature of the method is that an approximation
bound is proposed on the quality of the clustering. A second method for
distributed clustering proposed in [32] is the parallel guessing algorithm.
Another method for distributed sensor stream clustering which reduces
the dimensionality and communication cost by maintaining an online
discretization may be found in [68].

3.2 Data Stream Classification

The problem of classification is perhaps one of the most widely stud-
ied in the context of data stream mining. The problem of classification
is made more difficult by the evolution of the underlying data stream.
Therefore, effective algorithms need to be designed in order to take tem-
poral locality into account. The concept of stream evolution is sometimes
referred to as concept drift in the stream classification literature. Some
of these algorithms are designed to be purely one-pass adaptations of
conventional classification algorithms [39], whereas others (such as the
methods in [13, 48]) are more effective in accounting for the evolution of
the underlying data stream. The broad methods which are studied for
classification in the data stream scenario are as follows:

VFDT Method: The VFDT (Very Fast Decision Trees) method has
been adapted to create decision trees which are similar to those con-
structed by a conventional learner with the use of sampling based ap-
proximations. The VFDT method splits a tree using the current best
attribute, taking into consideration the fact that the number of exam-
ples used are sufficient to preserve the Hoeffding bound in a way that
the output is similar to that of a conventional learner. The key question
during the construction of the decision tree is the choice of attributes
to be used for splits. Approximate ties are broken using a user-specified
threshold of acceptable error-measure for the output. It can be shown
that for any small value of §, a particular choice of the split variable is
the correct choice with probability at least 1 — ¢, if a sufficient number
of stream records have been processed. This number has been shown
in [39] to increase at a relatively modest rate of In(1/d). This bound
can then be extended to the entire decision tree, so as to quantify the
probability that the same decision tree as a conventional learner is cre-
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ated. The VFDT method has also been extended to the case of evolving
data streams. This framework is referred to as CVFDT [48], and it
runs VFDT over fixed sliding windows in order to always have the most
updated classifier. Jin and Agrawal [50] have extended the VFDT al-
gorithm in order to process numerical attributes and reduce the sample
size which is calculated using the Hoeffding bound. Since this approach
reduces the sample size, it improves efficiency and space requirements
for a given level of accuracy.

On Demand Classification: While most stream classification meth-
ods are focussed on a training stream, the on demand method is focussed
on the case when both the training and the testing stream evolves over
time. In the on demand classification method [13], we create class-
specific micro-clusters from the underlying data. For an incoming record
in the test stream, the class label of the closest micro-cluster is used in
order to determine the class label of the test instance. In order to han-
dle the problem of stream evolution, the micro-clusters from the specific
time-horizon are used for the classification process. A key issue in this
method is the choice of horizon which should be used in order to obtain
the best classification accuracy. In order to determine the best horizon,
a portion of the training stream is separated out and the accuracy is
tested over this portion with different horizons. The optimal horizon is
then used in order to classify the test instance.

Ensemble-based Classification: This technique [74] uses an ensem-
ble of classification methods such as C4.5, RIPPER and naive Bayes in
order to increase the accuracy of the predicted output. The broad idea
is that a data stream may evolve over time, and a different classifier may
work best for a given time period. Therefore, the use of an ensemble
method provides robustness in the concept-drifting case.
Compression-based Methods: An interesting method for real-time
classification of streaming sensor data with the use of compression tech-
niques has been proposed in [57]. In this approach, time-series bitmaps,
which can be updated in constant time are used as efficient classifiers.
Because of the ability of be updated in constant time, these classifiers
are very efficient in practice. The effectiveness of this approach has been
illustrated on a number of insect-tracking data sets.

In the context of sensor networks, data streams may often have a
significant level of errors and uncertainty. Data uncertainty brings a
number of unique challenges with it in terms of the determination of
the important features to be used for the classification process. In this
context, a number of algorithms have been proposed for classification of
uncertain data streams [14, 15]. In particular, the method discussed in
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[15] constructs a density-based framework to summarize the uncertain
data stream effectively and use it for classification purposes.

3.3 Frequent Pattern Mining

The problem of frequent pattern mining was first introduced in [16],
and was extensively analyzed for the conventional case of disk resident
data sets. In the case of data streams, one may wish to find the frequent
itemsets either over a sliding window or the entire data stream [44, 53].
In the case of data streams, the problem of frequent pattern mining can
be studied under several models:

Entire Data Streamm Model: In this model, the frequent patterns
need to be mined over the entire data stream. Thus, the main difference
from a conventional pattern mining algorithm is that the frequent pat-
terns need to be mined in one pass over the entire data stream. Most
frequent pattern mining algorithms require multiple passes in order to es-
timate the frequency of patterns of different sizes in the data. A natural
method for frequent pattern counting is to use sketch-based algorithms
in order to determine frequent patterns. Sketches are often used in order
to determine heavy-hitters in data streams, and therefore, an extension
of the methodology to the problem of finding frequent patterns is natu-
ral. Along this line, Manku and Motwani [64] proposed the first one lass
algorithm called Lossy Counting, in order to find all frequent itemsets
over a data stream. The algorithm allows false positives, but not false
negatives. Thus, for a given support level s, the algorithm is guaranteed
not to contain all frequent itemsets whose support is greater than s — e.
Another interesting approach in [80] determines all the frequent patterns
whose support is greater than s with probability at least 1 — §, which
the value of § is as small as desired, as long as one is willing to add space
and time complexity proportional to In(1/d).Thus, this model does not
allow false negatives, but may miss some of the frequent patterns. The
main advantage of such a technique is that it is possible to provide a
more concise set of frequent patterns at the expense of losing some of the
patterns with some probability which is quite low for practical purposes.
Sliding Window Model: In many cases, the data stream may evolve
over time, as a result of which it is desirable to determine all the frequent
patterns over a particular sliding window. A method for determining the
frequent patterns over a sliding window is discussed in [29]. The main
assumption of this approach is that the number of frequent patterns are
not very large, and therefore, it is possible to hold the transactions in
each sliding window in main memory. The main focus of this approach
is to determine closed frequent itemsets over the data stream. A new
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mining algorithm called MOMENT is proposed, and the main idea is
based on the fact that the boundary between closed frequent itemsets
and frequent itemsets moves very slowly. A closed enumeration tree is
developed in order to keep track of the boundary between closed frequent
itemsets and the rest of the itemsets. Another method which is able to
mine frequent itemsets over arbitrary time granularities is referred to
as FPSTREAM [42]. This method is essentially an adaptation of the
FP-Tree method to data streams.

Damped Window Model: We note that pure sliding windows are
not the only way by which the evolution of data streams can be taken
into account during the mining process. A second way is to introduce
a decay factor into the computation. Specifically, the weight of each
transaction is multiplied by a factor of f < 1, when a new transaction
arrives. The overall effect of such an approach is to create an exponential
decay function on the arrivals in the data stream. Such a model is quite
effective for evolving data stream, since recent transactions are counted
more significantly during the mining process. An algorithm proposed in
[27] maintains a lattice for recording the potentially frequent itemsets
and their counts. While the counts of each lattice may change upon the
arrival of each transaction, a key observation is that it is sufficient to
update the counts in a lazy way. Specifically, the decay factor is applied
only to those itemsets whose counts are affected by the current trans-
action. However, the decay factor will have to be applied in a modified
way by taking into account the last time that the itemset was touched
by an update. In other words, if ¢, be the current transaction index, and
the last time the count for the itemset was updated was at transaction
index tg < t., then we need to multiply the current counts of that item-
set by f's~! before incrementing the count of this modified value. This
approach works because the counts of each itemset reduce by the same
decay factor in each iteration, as long as a transaction count is not added
to it. We note that such a lazy approach is also applicable to other min-
ing problems, where statistics are represented as the sum of decaying
values. For example, in [11], a similar lazy approach is used in order
to maintain decay-based micro-cluster statistics for a high dimensional
projected stream clustering algorithm.

3.4 Change Detection in Data Streams

As discussed earlier, the patterns in a data stream may evolve over
time. In many cases, it is desirable to track and analyze the nature
of these changes over time. In [8, 37, 59], a number of methods have
been discussed for change detection of data streams. In addition, data



154 MANAGING AND MINING SENSOR DATA

stream evolution can also affect the behavior of the underlying data min-
ing algorithms since the results can become stale over time. The broad
algorithms for change diagnosis in data streams are as follows:
Velocity Density Estimation: In velocity density estimation [8], we
compute the rate of change of data density of different points in the
data stream over time. Depending upon the direction of density rate
of change, one may identify regions of dissolution, coagulation and shift.
Spatial profiles can also be constructed in order to determine the direc-
tions of shift in the underlying data. In addition, it is possible to use
the velocity density concept in order to identify those combinations of
dimensions which have a high level of evolution. Another technique for
change quantification is discussed in [37], which uses methods for prob-
ability difference quantification in order to identify the changes in the
underlying data. In [59], a method is discussed in order to determine
statistical changes in the underlying data. Clustering [10] can be used in
order to determine significant evolution in the underlying data. In [10],
micro-clustering is used in order to determine significant clusters which
have evolved in the underlying data.

A separate line of work is the determination of significant changes in
the results of data mining algorithms because of evolution. For example
in [10], it has been shown how to determine significant evolving clusters
in the underlying data. In [13], a similar technique has been used to
keep a refreshed classification model in the presence of evolving data.
In this respect, micro-clustering provides an effective technique, since it
provides a way to store intermediate statistics of the underlying data
in the form of clusters. In [13], a micro-cluster based nearest neighbor
classifier is used in order to classify evolving data streams. The key
idea is to construct class-specific micro-clusters over a variety of time
horizons, and then utilize the time horizon with the greatest accuracy in
order to perform the classification process. The issue of stream evolution
has been extended to many other problems such as synopsis construc-
tion and reservoir sampling [6]. We will discuss some of the synopsis
construction methods later.

3.5 Synopsis Construction in Data Streams

The large volume of data streams poses unique space and time con-
straints on the computation process. Many query processing, database
operations, and mining algorithms require efficient execution which can
be difficult to achieve with a fast data stream. Furthermore, since it is
impossible to fit the entire data stream within the available space, the
space efficiency of the approach is a major concern. In many cases, it
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may be acceptable to generate approrimate solutions for many problems
by summarizing the data in a time and space-efficient way. In recent
years a number of synopsis structures have been developed, which can
be used in conjunction with a variety of mining and query processing
techniques [41]. Some key synopsis methods include those of sampling,
wavelets, sketches and histograms. The key challenges which arise in the
context of synopsis construction of data streams are as follows:

Broad Applicability: The synopsis structure is typically used as an
intermediate representation, which is then leveraged for a variety of data
mining and data management problems. Therefore, the synopsis struc-
ture should be cOonstructed in such a way that it has applicability across
a wide range of problems.

One-pass constraint: As in all data stream algorithms, the one-pass
constraint is critical to synopsis construction algorithms. We would like
to design all synopsis construction algorithms in one pass, and this is
not the case for most traditional methods. In fact, even simply methods
such as sampling need to be re-designed in order to handle the one-pass
constraint.

Time and Space Efficiency: Since data streams have a very large vol-
ume, it is essential to create the synopsis in a time- and space-efficient
way. In this sense, some of the probabilistic techniques such as sketches
are extremely effective for counting-based applications, since they re-
quire constant-space for provable probabilistic accuracy. In other words,
the time- and space-efficiency depends only upon the accuracy of the
approach rather than the length of the data stream.

Data Stream Evolution: Since the stream evolves over time, a synop-
sis structure which is constructed from the overall behavior of the data
stream is not quite as effective as one which uses recent history. Con-
sequently, it is often more effective to create synopsis structures which
either work with sliding windows, or use some decay-based approach in
order to weight the data stream points.

One key characteristic of many of the above methods is that while
they work effectively in the 1-dimensional case, they often lose their
effectiveness in the multi-dimensional case either because of data spar-
sity or because of inter-attribute correlations. Next, we will discuss the
broad classes of techniques which are used for synopsis construction in
data streams. Each of these techniques have their own advantages in
different scenarios, and we will take care to provide an overview of the
different array of methods which are used for synopsis construction in
data streams. The broad techniques which are used for synopsis con-
struction in data streams are as follows:

Reservoir Sampling: Sampling methods are widely used for tradi-
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tional database applications, and are extremely popular because of their
broad applicability across a wide array of tasks in data streams. A fur-
ther advantage of sampling methods is that unlike many other synopsis
construction methods, they maintain their inter-attribute correlations
across samples of the data. It is also often possible to use probabilistic
inequalities in order to bound the effectiveness of a variety of applica-
tions with sampling methods.

However, a key problem in extending sampling methods to the data
stream scenario, is that one does not know the total number of data
points to be sampled in advance. Rather, one must maintain the sample
in a dynamic way over the entire course of the computation. A method
called reservoir sampling was first proposed in [72], which maintains such
a sample dynamically. This technique was originally proposed in the con-
text of one-pass access of data from magnetic-storage devices. However,
the techniques also naturally extend to the data stream scenario.

Let us consider the case, where we wish to obtain an unbiased sample
of size n from the data stream. In order to initialize the approach, we
simply add the first n points from the stream to the reservoir. Subse-
quently, when the (¢ 4 1)th point is received, it is added to the reservoir
with probability n/(t + 1). When the data point is added to the reser-
voir, it replaces a random point from the reservoir. It can be shown that
this simple approach maintains the uniform sampling distribution from
the data stream. We note that the uniform sampling approach may not
be very effective in cases where the data stream evolves significantly. In
such cases, one may either choose to generate the stream sample over
a sliding window, or use a decay-based approach in order to bias the
sample. An approach for sliding window computation over data streams
is discussed in [20].

A second approach [6] uses biased decay functions in order to construct
synopsis from data streams. It has been shown in [6] that the problem
is extremely difficult for arbitrary decay functions. In such cases, there
is no known solution to the problem. However, it is possible to design
very simple algorithms for some important classes of decay functions.
One of these classes of decay functions is the exponential decay function.
The exponential decay function is extremely important because of its
memory less property, which guarantees that the future treatment of a
data point is independent of the past data points which have arrived.
An interesting result is that by making simple implementation modifi-
cations to the algorithm of [72] in terms of modifying the probabilities
of insertion and deletion, it is possible to construct a robust algorithm
for this problem. It has been shown in [6] that the approach is quite
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effective in practice, especially when there is significant evolution of the
underlying data stream.

While sampling has several advantages in terms of simplicity and

preservation of multi-dimensional correlations, it loses its effectiveness in
the presence of data sparsity. For example, a query which contains very
few data points is unlikely to be accurate with the use of a sampling ap-
proach. However, this is a general problem with most techniques which
are effective at counting frequent elements, but are not quite as effective
at counting rare or distinct elements in the data stream.
Sketches: Sketches use some properties of random sampling in order
to perform counting tasks in data streams. Sketches are most useful
when the domain size of a data stream is very large. In such cases,
the number of possible distinct elements become very large, and it is no
longer possible to track them in space-constrained scenarios. There are
two broad classes of sketches: projection based and hash based. We will
discuss each of them in turn.

Projection based sketches are constructed on the broad idea of ran-
dom projection [54]. The most well known projection-based sketch is
the AMS sketch [17, 18], which we will discuss below. It has been shown
in [54], that by by randomly sampling subspaces from multi-dimensional
data, it is possible to compute e-accurate projections of the data with
high probability. This broad idea can easily be extended to the mas-
sive domain case, by viewing each distinct item as a dimension, and the
counts on these items as the corresponding values. The main problem is
that the vector for performing the projection cannot be maintained ex-
plicitly since the length of such a vector would be of the same size as the
number of distinct elements. In fact, since the sketch-based method is
most relevant in the distinct element scenario, such an approach defeats
the purpose of keeping a synopsis structure in the first place.

Let us assume that the random projection is performed using k sketch
vectors, and 77 represents the jth vector for the ith item in the domain
being tracked. In order to achieve the goal of efficient synopsis construc-
tion, we store the random vectors implicitly in the form of a seed, and
this can be used to dynamically generate the vector. The main idea
discussed in [49] is that it is possible to generate random vectors with
a seed of size O(log(V)), provided that one is willing to work with the
restriction that 7] € {—1,+1} should be 4-wise independent. The sketch
is computed by adding r] to the jth component of the sketch for the ith
item. In the event that the incoming item has frequency f, we add the
value f-r]. Let us assume that there are a total of k sketch components
which are denoted by (s1...sg). Some key properties of the pseudo-
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random number generator approach and the sketch representation are
as follows:

m A given component rg can be generated in poly-logarithmic time
from the seed. The time for generating the seed is poly-logarithmic
in the domain size of the underlying data.

m A variety of approximate aggregate functions on the original data
can be computed using the sketches.

Some example of functions which can be computed from the sketch com-
ponents are as follows:

= Dot Product of two streams: If (s; ... s) be the sketches from
one stream, and (¢;...%;) be the sketches from the other stream,
then sjcdott; is a random variable whose expected value of the dot
product.

m Second Moment: If (s7...s;) be the sketch components for a
data stream, it can be shown that the expected value of 5? is the
second moment. Furthermore, by using Chernoff bounds, it can
be shown that by selecting the median of O(log(1/d) averages of
O(1/€?) copies of s;]cdott;, it is possible to guarantee the accuracy
of the approximation to within 1€ with probability at least 1 — 6.

m Frequent Items: The frequency of the ith item in the data stream
is computed by by multiplying the sketch component s; by 7.
However, this estimation is accurate only for the case of frequent
items, since the error is estimation is proportional to the overall
frequency of the items in the data stream.

More details of computations which one can perform with the AMS
sketch are discussed in [17, 18].

The second kind of sketch which is used for counting is the count-min
sketch [31]. The count-min sketch is based upon the concept of hashing,
and uses k = In(1/9) pairwise-independent hash functions, which hash
onto integers in the range (0...e/e). For each incoming item, the k& hash
functions are applied and the frequency count is incremented by 1. In
the event that the incoming item has frequency f, then the correspond-
ing frequency count is incremented by f. Note that by hashing an item
into the k cells, we are ensuring that we maintain an overestimate on the
corresponding frequency. It can be shown that the minimum of these
cells provides the e-accurate estimate to the frequency with probability
at least 1 — 0. It has been shown in [31] that the method can also be
naturally extended to other problems such as finding the dot product
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Table 6.1. An Example of Wavelet Coefficient Computation
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Figure 6.1. Tllustration of the Wavelet Decomposition

or the second-order moments. The count-min sketch is typically more
effective for problems such as frequency-estimation of individual items
than the projection-based AMS sketch. However, the AMS sketch is
more effective for problems such as second-moment estimation.
Wavelet Decomposition: Another widely known synopsis represen-
tation in data stream computation is that of the wavelet representation.
One of the most widely used representations is the Haar Wavelet. We
will discuss this technique in detail in this section.

This technique is particularly simple to implement, and is widely used
in the literature for hierarchical decomposition and summarization. The
basic idea in the wavelet technique is to create a decomposition of the
data characteristics into a set of wavelet functions and basis functions.
The property of the wavelet method is that the higher order coefficients
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of the decomposition illustrate the broad trends in the data, whereas the
more localized trends are captured by the lower order coefficients.

We assume for ease in description that the length g of the series is
a power of 2. This is without loss of generality, because it is always
possible to decompose a series into segments, each of which has a length
that is a power of two. The Haar Wavelet decomposition defines 2F~1
coefficients of order k. Each of these 2°~! coefficients corresponds to a
contiguous portion of the time series of length ¢/2¢~!. The ith of these
2F=1 coefficients corresponds to the segment in the series starting from
position (i — 1) - ¢/2¥~1 + 1 to position i x ¢/2¥71. Let us denote this
coefficient by @Z),i and the corresponding time series segment by S,i. At
the same time, let us define the average value of the first half of the
S,i‘ by q}; and the second half by b}C Then, the value of 1/)2 is given by
(aj, — b},)/2. More formally, if ®} denote the average value of the S},
then the value of 1)} can be defined recursively as follows:

v = (P — 0F11)/2 (6.1)

The set of Haar coefficients is defined by the \Ilz. coefficients of order 1
to logy(g). In addition, the global average ®1 is required for the purpose
of perfect reconstruction. We note that the coefficients of different order
provide an understanding of the major trends in the data at a particular
level of granularity. For example, the coefficient w,i is half the quantity
by which the first half of the segment S}, is larger than the second half of
the same segment. Since larger values of k correspond to geometrically
reducing segment sizes, one can obtain an understanding of the basic
trends at different levels of granularity. We note that this definition of
the Haar wavelet makes it very easy to compute by a sequence of av-
eraging and differencing operations. In Table 6.1, we have illustrated
how the wavelet coefficients are computed for the case of the sequence
(8,6,2,3,4,6,6,5). This decomposition is illustrated in graphical form
in Figure 6.1. We also note that each value can be represented as a sum
of log,(8) = 3 linear decomposition components. In general, the entire
decomposition may be represented as a tree of depth 3, which represents
the hierarchical decomposition of the entire series. This is also referred
to as the error tree. In Figure 6.2, we have illustrated the error tree for
the wavelet decomposition illustrated in Table 6.1. The nodes in the tree
contain the values of the wavelet coefficients, except for a special super-
root node which contains the series average. This super-root node is not
necessary if we are only considering the relative values in the series, or
the series values have been normalized so that the average is already
zero. We further note that the number of wavelet coefficients in this
series is 8, which is also the length of the original series. The original
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Figure 6.2. The Error Tree from the Wavelet Decomposition

series has been replicated just below the error-tree in Figure 6.2, and it
can be reconstructed by adding or subtracting the values in the nodes
along the path leading to that value. We note that each coefficient in a
node should be added, if we use the left branch below it to reach to the
series values. Otherwise, it should be subtracted. This natural decom-
position means that an entire contiguous range along the series can be
reconstructed by using only the portion of the error-tree which is rele-
vant to it. Furthermore, we only need to retain those coefficients whose
values are significantly large, and therefore affect the values of the un-
derlying series. In general, we would like to minimize the reconstruction
error by retaining only a fixed number of coefficients, as defined by the
space constraints. While wavelet decomposition is easy to perform for
multi-dimensional data sets, it is much more challenging for the case of
data streams. This is because data streams impose a one-pass constraint
on the wavelet construction process. A variety of one-pass algorithms
for wavelet construction are discussed in [41].

Histograms: The technique of histogram construction is closely related
to that of wavelets. In histograms the data is binned into a number of
intervals along an attribute. For any given query, the counts from the
bins can be utilized for query resolution. A simple representation of the
histogram method would simply partition the data into equi-depth or
equi-width intervals. The main inaccuracy with the use of histograms
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is that the distribution of data points within a bucket is not retained,
and is therefore assumed to be uniform. This causes inaccuracy because
of extrapolation at the query boundaries. A natural choice is to use
an equal number of counts in each bucket. This minimizes the error
variation across different buckets. However, in the case of data streams,
the boundaries to be used for equi-depth histogram construction are not
known a-priori. We further note that the design of equi-depth buckets
is exactly the problem of quantile estimation, since the equi-depth par-
titions define the quantiles in the data. Another choice of histogram
construction is that of minimizing the variance of frequency variances of
different values in the bucket. This ensures that the uniform distribution
assumption is approximately held, when extrapolating the frequencies
of the buckets at the two ends of a query. Such histograms are referred
to as V-optimal histograms. Algorithms for V-optimal histogram con-
struction are proposed in [51, 52]. A more detailed discussion of several
algorithms for histogram construction may be found in [4].

3.6 Dimensionality Reduction and Forecasting
in Data Streams

Because of the inherent temporal nature of data streams, the problems
of dimensionality reduction and forecasting and particularly important.
When there are a large number of simultaneous data stream, we can use
the correlations between different data streams in order to make effec-
tive predictions [70, 75] on the future behavior of the data stream. In
particular, the well known MUSCLES method [75] is useful in applying
regression analysis to data streams. The regression analysis is helpful
in predicting the future behavior of the data stream. A related tech-
nique is the SPIRIT algorithm, which explores the relationship between
dimensionality reduction and forecasting in data streams. The primary
idea is that a compact number of hidden variables can be used to com-
prehensively describe the data stream. This compact representation can
also be used for effective forecasting of the data streams. A discussion
of different dimensionality reduction and forecasting methods (including
SPIRIT) is provided in [4].

3.7 Distributed Mining of Data Streams

In many instances, streams are generated at multiple distributed com-
puting nodes. An example of such a case would be sensor networks in
which the streams are generated at different sensor nodes. Analyzing and
monitoring data in such environments requires data mining technology
that requires optimization of a variety of criteria such as communication
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costs across different nodes, as well as computational, memory or storage
requirements at each node. There are several management and mining
challenges in such cases. When the streams are collected with the use of
sensors, one must take into account the limited storage, computational
power, and battery life of sensor nodes. Furthermore, since the network
may contain a very large number of sensor nodes, the effective aggrega-
tion of the streams becomes a considerable challenge. Furthermore, dis-
tributed streams also pose several challenges to mining problems, since
one must integrate the results of the mining algorithms across different
nodes. A detailed discussion of several distributed mining algorithms
are provided in [4].

4. Sensor Applications of Stream Mining

Data streams have numerous applications in a variety of scientific
scenarios. In this section, we will discuss different applications of data
streams and how they tie in to the techniques discussed earlier.

4.1 Military Applications

Military applications typically collect large amounts of sensor data, for
their use in a variety of applications such as the detection of events and
anomalies in the data. Some classic examples of military applications
are as follows:

4.1.1 Activity Monitoring. Military sensors are used for a
variety of scenarios such as the detection of threats movements, sounds,
or vibrations in the underlying data. For example, the movement of en-
emy tanks in a particular region may result in a particular combination of
signals detected in the sound and activity sensors. Such monitoring may
require the development of heterogeneous mining and fusion techniques
[73], which can combine information from multiple sources in order to
perform more effective mining. Such monitoring requires stream mining
methods for the continuous detection of abnormalities, or for performing
continuous queries in the underlying data [21, 22, 26, 66, 79].

4.1.2 Event Detection. This is related to the problem of
activity monitoring, in that specific events are captured from the stream
with the use of mining techniques. This requires the design of event
detection algorithms from data streams. This typically requires the use
of supervised learning algorithms in which the relationship of the events
to the underlying stream attributes are learned from the training data.
For example, such streams are quite common in social networks, in which
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it is possible to determine the key events from the underlying social
network from the patterns in the underlying text stream [11]. Other
general methods for event detection in streams are discussed in [3, 65,
69, 76].

4.2 Cosmological Applications

In recent years, cosmological applications have created large volumes
of data. The installation of large space stations, space telescopes and ob-
servatories result in large streams of data on different stars and clusters
of galaxies. This data can be used in order to mine useful information
about the behavior of different cosmological objects. Similarly, rovers
and sensors on a planet or asteroid may send large amounts of image,
video or audio data. In many cases, it may not be possible to manually
monitor such data continuously. In such cases, it may be desirable to use
stream mining techniques in order to detect the important underlying
properties.

The amount of data received in a single day in such applications can
often exceed several tera-bytes. These data sources are especially chal-
lenging since the underlying applications may be spatial in nature. In
such cases, an attempt to compress the data using standard synopsis
techniques may lose the structure of the underlying data. Furthermore,
the data may often contain imprecision in measurements. Such impre-
cisions may result in the need for techniques which leverage the uncer-
tainty information in the data in order to improve the accuracy of the
underlying results.

4.3 Mobile Applications

Recently, new technologies have emerged which have allowed the con-
struction of wearable sensors in the context of a variety of applications.
For example, mobile phones carry a wide variety of sensors which can
continuously transmit data that can be used for social sensing applica-
tions [62]. Similarly, wearable sensors have been designed for continuous
monitoring in a wide variety of domains such as health-care [46, 71] or ve-
hicular participatory sensing [47]. All vehicles which have been designed
since the mid-nineties carry an OBD Diagnostic System, which collects
a huge amount of information from the underlying vehicle operation. It
is possible to use the information gleaned from on-board sensors in a
vehicle in order to monitor the diagnostic health of the vehicle as well as
driver characterization. Another well known method is the VEDAS sys-
tem [55], and the most well known commercialized system is the OnStar
system designed by General Motors. Such systems require quick analysis
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of the underlying data in order to make diagnostic characterizations in
real time. Effective event-detection algorithms are required in order to
perform this task effectively.

The stock market often creates large volumes of data streams which
need to be analyzed in real time in order to make quick decisions about
actions to be taken. An example of such an approach is the MobiMine
approach [56] which monitors the stock market with the use of a PDA.
Such methods can be used for a wide variety of applications such as
knowing human movement trends [24], social image search [77], animal
trends [83] grocery bargain hunting [38], or more general methods for
connecting with other entities in a given neighborhood [82].

4.4 Environmental and Weather Data

Many satellites and other scientific instruments collect environmental
data such as cloud cover, wind speeds, humidity data and ocean currents.
Such data can be used to make predictions about long- and short-term
weather and climate changes. Such data can be especially massive if the
number of parameters measured are very large. The challenge is to be
able to combine these parameters in order to make timely and accurate
predictions about weather driven events. This is another application of
event detection techniques from massive streams of sensor data.

In particular, such methods have found numerous applications in pre-
diction of long-term climate change [40, 58, 67]. For example, one can
use various environmental parameters collected by sensors to predict
changes in sea surface temperatures, indicators specific to global warm-
ing, or the onset of storms and hurricanes. A detailed discussion on the
application of such methods for climate and weather prediction may be
found in [40].

5. Conclusions and Research Directions

Data streams are a computational challenge to data mining problems
because of the additional algorithmic constraints created by the large
volume of data. In addition, the problem of temporal locality leads to a
number of unique mining challenges in the data stream case. This chap-
ter provides an overview to the generic issues in processing data streams,
and the specific issues which arise with different mining algorithms.

While considerable research has already been performed in the data
stream area, there are numerous research directions which remain to
be explored. Most research in the stream area is focussed on the one
pass constraint, and generally does not deal effectively with the issue
of temporal locality. In the stream case, temporal locality remains an
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extremely important issue since the data may evolve considerably over
time. Other important topics which need to be explored are as follows:

m  Streams are often collected by devices such as sensors in which the
data is often noisy and error-driven. Therefore, a key challenge is
to effectively clean the data. This may involve either imputing or
modeling the underlying uncertain data. This can be challenge,
since any modeling needs to be done in real time, as large volumes
of the data stream arrive.

m A related area of research is in using the modeled data for data
mining tasks. Since the underlying data is uncertain, the uncer-
tainty should be used in order to improve the quality of the under-
lying results. Some recent research addresses the issue of clustering
uncertain data streams [7].

m Many recent applications such as privacy-preserving data mining
have not been studied effectively in the context of data streams. It
is often a challenge to perform privacy-transformations of contin-
uously arriving data, since newly arriving data may compromise
the integrity of earlier data. The data stream domain provides a
number of unique challenges in the context of the privacy problem.
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Abstract  The proliferation of Wireless Sensor Networks (WSNS) in the past
decade has provided the bridge between the physical and digital worlds,
enabling the monitoring and study of physical phenomena at a granu-
larity and level of detail that was never before possible. In this study,
we review the efforts of the research community with respect to two
important problems in the context of WSNSs: real-time collection of the
sensed data, and real-time processing of these data series.

Keywords: Wireless Sensor Networks, Data Collection, Data Analytics, Outliers,
Deviation Detection, Uncertain Data Series, Data-Aware Network Pro-
tocols

1. Introduction

In the past decade, we have witnessed the proliferation of Wireless
Sensor Networks (WSNSs), fueled by advances in processor technologies
and wireless communications that led to the development of small, low
cost and power efficient sensor nodes [100, 50, 74]. The great benefit they
provide is that they serve as the bridge between the physical and digital
worlds, and they enable us to monitor and study physical phenomena at
a granularity and level of detail that was never before possible.

Collecting the data sensed by the WSN to a centralized server (the
sink), or being able to directly query the WSN are probably the most
important functionalities that a WSN has to support. Lots of work has
been directed to how to efficiently achieve these goals, where the primary
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objective is to extend the WSN lifetime, while fulfilling the application
requirements (collecting the required data, or answering the queries).

There are two main ideas that researchers have explored: first, data
are correlated (both across time and over space), and second, several ap-
plications accept small errors in the data values they operate on. These
ideas have led to the development of a multitude of techniques that trade
accuracy for time performance and energy savings.

In this study, we review the efforts of the research community with
respect to the problems of real-time collection of the sensed data, and
real-time processing of these data series in the context of a WSN. Fur-
thermore, we examine the interplay between such data management
techniques and network protocols.

We note that the aim of this study is not an exhaustive enumeration
and discussion of all the related works, but rather, the description of
prominent research problems that have been studied so far with regards
to the sensor data processing and analysis, as well as of promising future
research directions.

2. Data Collection

The availability and use of sensor networks have generated a lot of
research interest. A major part of this effort has concentrated on how to
collect the sensed data at the sink (where they will be further processed
and analyzed), using the least amount of energy® possible. The challenge
arises from the special characteristics of WSNS and the nature of the
data they produce, namely: limited resources, intermittent connections,
and spatio-temporal correlation of the sensed values [60, 56, 101].

Several frameworks for the efficient execution of queries and collection
of data in a sensor network have been developed in the last years [60,
59, 103]. The focus in these works was to propose data processing and
optimization methods geared specifically toward sensor networks (we de-
scribe those in detail later on). The early studies described in-network
aggregation techniques for reducing the amount of data transmitted by
the nodes, while subsequent research focused on model-driven [32] and
data-driven [87] data acquisition techniques. Other works have proposed
techniques that take into account missing values, outliers, and intermit-
tent connections [44, 30, 101, 88|.

A different approach is based on Kalman filters [51], with the same
goal of reducing the required communication among nodes and the sink.

LGiven that radio communication in WSNS is much more expensive than CPU processing,
this translates to reducing communication and data transfer.
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Other techniques offer solutions for efficient spatio-temporal data sup-
pression [56, 113, 99, 52, 47, 73], where in addition to the temporal
correlations present in the sensor network data, they aim at identifying
and exploiting the spatial correlations of the data, as well. Furthermore,
previous works have proposed algorithms that help in the selection of
representative nodes when we want to monitor large-scale phenomena
(i.e., phenomena that evolve over days, or months, and involve several
sensor nodes) [6], or when we want to take into account the remaining
energy of each individual node [63]. The above techniques help to fur-
ther reduce the communication cost of the sensor network, and could be
applied on top of the model-driven, or data-driven techniques.

In the rest of this section, we will discuss techniques in the areas
of model-driven and data-driven data acquisition, as well as in spatio-
temporal data suppression.

2.1 Model-Driven Data Acquisition

The aim of the model-driven approach is to (conceptually) collect,
or process queries on all the data sensed by the WSN, based on prob-
abilistic models that capture the correlations that exist in these data.
We note that sensor readings exhibit such correlations in a wide range
of domains and applications. This is true, because often times sensors
are monitoring slow-changing phenomena with high temporal resolu-
tion and/or high spatial resolution. Moreover, correlations may also be
present among different types of readings coming from the same sensor
node (e.g., it has been shown that temperature and voltage readings are
correlated [32]; at the same time it is much less expensive to take voltage
readings than temperature).

The model-driven approach works as follows. During an initial train-
ing phase, all the sensed data are collected from the nodes in the net-
work, in order to train the probabilistic models that are stored in the
sink. Then, these models are used in order to estimate the sensed values,
and additionally provide probabilistic guarantees on the correctness of
these estimates. Therefore, instead of querying the sensors, we operate
on the data produced by the models. If the guarantees produced by the
models for these data do not satisfy the accuracy requirements of the
application, then we can request additional real data values from the
sensors, in order to refine the models to the point that the probabilistic
guarantees satisfy the application requirements.

We can now formally define the model-driven data acquisition prob-
lem.
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PROBLEM 2.1 (MODEL-DRIVEN DATA ACQUISITION) Given a sensor
network, and a sink that needs to collect all the sensed wvalues within
€ of the real value with confidence (probability) at least 1 — §, design a
data collection protocol such that the energy used by the sensor network
is minimized.

In order to solve this problem, we need to decide on the probabilistic
models to use for approximating the distributions of the sensed values,
and also on the communication strategies among the sensors and the
sink. Both these aspects of the problem are addressed by the studies
that we discuss in the next paragraphs.

2.1.1 Proposed Techniques. The BBQ system [32] proposes
sensor data acquisition techniques based on time-varying multivariate
Gaussian probabilistic models, but other models can alternatively be
used, such as probabilistic graphical models [31]. Using the above ap-
proach, the produced models capture correlations both among sensed
values from the same sensor across time, and among different sensors
across space. We note that the above approach requires some knowledge
of the special characteristics of the data distribution, such as periodic
drifts, which should be encoded in the space of models considered. This
means that some minimum amount of domain knowledge is required, in
order to make effective use of these techniques.

A similar framework for modeling sensor network data is proposed
by Guestrin et al. [45]. The goal is for groups of nodes in the net-
work to collaborate in order to fit a global function to each of their
local measurements. This approach employs kernel linear regression in
order to model the sensed values, by capturing spatio-temporal correla-
tions. Once again, we observe that this is a parametric approximation
technique, and as such, requires the user to make an assumption about
the number of estimators required to fit the data. Moreover, there is a
need for a training phase (where the models are built, evaluated, and
adjusted), which in practice can be rather lengthy and expensive.

Even though the domain knowledge requirement that the above tech-
niques have may be prohibitive for some applications, we note that a
large number of applications (where the measured phenomena are known
or understood, or when a domain expert is available) can still benefit
from such techniques.

2.2 Data-Driven Data Acquisition

The model-driven approach described earlier can lead to significant
energy savings for the data acquisition task. However, by the nature
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of their techniques, they can only provide probabilistic guarantees on
the accuracy of the data that the sink collects, and hence no absolute
bound on the error. While this may be sufficient for certain applications
(e.g., temperature and humidity monitoring for Heating, Ventilation and
Air Conditioning systems), there exists a class of applications, for which
hard accuracy guarantees are essential (e.g., scientific applications that
need accurate, fine-grained monitoring of some phenomenon).

In several scientific applications, it may also be the case that the
domain experts do not already have a model of the data distribution
they are sampling using the WSN, but are rather interested in collecting
accurate measurements in order to build such a model [19]. Indeed,
WSNs offer a unique opportunity to scientists to observe phenomena
and develop models for them at a scale and granularity that were never
before possible. Nevertheless, in order to so, they need to have accuracy
guarantees on the sensor measurements.

In data-driven data acquisition, we make the assumption that the ap-
plication running at the sink allows for a small tolerance in the accuracy
of the reported data. In contrast with the ideal requirements of the sink
obtaining ezact values in all data reports, the correctness of these ap-
plications is unaffected as long as i) the reported values match closely
the exact ones; ii) inaccurate values occur only occasionally. In other
words, deviations from the exact reports are acceptable, as long as their
extent in terms of difference in wvalue and time interval during which
the deviation occurs are small enough. We capture these assumptions,
common to many applications, with the following definitions on value
tolerance, ey, and time tolerance, ep (refer to Figure 7.1). We use the
term error tolerance, ey to refer to both of them together.

DEFINITION 7.1 (VALUE TOLERANCE) LetV; be an exact measurement
taken at time t;. The value tolerance is defined by the maximum relative
and absolute errors acceptable, ey = (€™, €%*). From the application
perspective, reading a value V; becomes equivalent to reading any value VZ
in the range Ry defined by the mazimum error, V; € Ry = [Vi—e, Vitel,
where € = max{%erel,e“bs}. In other words, the application considers
a value Vz € Ry as correct.

Note that the value tolerance includes both an absolute and a relative
component. This is useful for applications that involve sensor readings
with wide ranges of values.

DEFINITION 7.2 (TIME TOLERANCE) Let T' = |t; —ty| be a time inter-

val, and Vi = {V], .. ,Vk} the set of values reported to the application
during T. The time tolerance er s the mazimum acceptable value of
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Figure 7.1.  Value and time tolerance, assuming a linear model (depicted by the thick
dashed line) for the sensed data [79].

T such that all the values reported in this interval are incorrect, i.e.,

Vi¢Rv,VVZ'€VT.

Similarly to the model-driven approach, each node (or group of nodes)
in the WSN generates a model for the sensed data. This model is then
sent to the sink, along with the last reading. From that point on, the
sink can predict the readings of the node based on this shared model.
The node is also checking whether its model can accurately describe its
own readings (within the error tolerance agreed with the sink), and if
this is not true then it computes a new model and transmits it to the
sink. Evidently, the sink always records accurate data (i.e., within ey7),
regardless of the quality of the model. The model quality affects only
the effectiveness of the proposed scheme in terms of energy savings.

We can now formally define the problem of data-driven data acquisi-
tion.

PROBLEM 2.2 (DATA-DRIVEN DATA ACQUISITION) Given a sensor
network, and a sink that needs to collect all the sensed wvalues within
evr, design a data collection protocol such that the energy used by the
sensor network s minimized.

This problem statement is deliberately vague on the specificities of
the design of such a protocol. In the following paragraphs we review
several techniques that solve this problem, each one focusing on different
aspects of the problem. Some studies focus on the selection of the sensed
data model (shared among sensors and sink), others concentrate on the
effective identification of temporal and/or spatial correlations among the
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sensed data, while others explicitly aim at maximizing the lifetime of the
entire sensor network?.

2.2.1 Proposed Techniques. The KEN technique [25] builds
and maintains dynamic probabilistic models over the sensor readings,
taking into account the spatio-temporal correlations that exist in the sen-
sor readings. These models organize the sensor nodes in non-overlapping
groups, and are shared by the sensor nodes and the sink. The expected
values of the probabilistic models are the values that are recorded by the
sink. If the sensors observe that these values are more than ey away
from the sensed values, then a model update is triggered.

The PAQ [98] and SAF [97] methods employ linear regression and
autoregressive models, respectively, for modeling the measurements pro-
duced by the nodes, with SAF leading to a more accurate model than
PAQ.

Silberstein et al. [86, 87] describe for providing continuous data with-
out continuous reporting, but with checks against the actual data. To
achieve this goal, this approach introduces temporal and spatio-temporal
suppression schemes, which use the in-network monitoring to reduce the
communication rate to the central server. Based on these schemes, data
is routed over a chain architecture. At the end of this chain, the nodes
that are most near to central server send the aggregate change of the
data to it. Since in this scheme (and in data-driven approaches in gen-
eral) the loss of a model update is crucial®, special provision is taken for
handling network failures [87], so as to ensure correctness.

A recent study proposes a new linear model, DBP [79]. The model
is trained using m data points, where the first and the last [ points are
called edge points, and is computed as the slope § of the segment that
connects the average values over the [ edge points at the beginning and
end of the training phase. This model mitigates the problem of noise
and outliers: instead of trying to reduce the approximation error to the
data points in the recent past, DBP aims at producing models that are
consistent with the trends in the recently-observed data. Consequently,
it leads to improved performance, especially in noisy settings. Moreover,
the computation of this model is very simple, and therefore appealing
for implementation on resource-scarce nodes.

2Note that by minimizing the energy consumption of the network, it is possible that the
energy of a few specific sensor nodes is depleted much faster than the average. Obviously,
this is not desirable, since it may jeopardize the correct operation of the entire network.

3Losing a single model-update message has the potential to introduce large errors at the
sink, as the latter will continue to predict sensor values with an out-of-date model until the
next one is received.
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Another idea that has been studied is to select a set of representative
nodes, and use only those for transmitting measurements to the sink.
The premise is that each representative node has measurements similar
to the measurements of the nodes in its neighborhood. Then, it is only
the representative nodes that need to communicate the sensed values to
the sink, thus, significantly reducing the energy spent by the WSN.

Data mining approaches contributed to this problem, by providing
techniques for clustering and selecting representatives [46, 80, 62, 108].
Inside each cluster, the node with the most similar readings to the mea-
surements of all nodes inside that cluster is selected as a cluster rep-
resentative. Many algorithms were developed to deal with the online
distributed clustering of data.

SERENE [9] is a framework for SElecting REpresentatives in a sensor
NEtwork. It uses clustering techniques to select the subset of nodes that
can best represent the rest of sensors in the network. In order to select an
appropriate set of representative sensors, SERENE performs an analysis
of the historical readings of sensor nodes, identifies the spatio-temporal
correlations among sensors (based on their readings), and groups sen-
sors into clusters according to these correlations. Then, each cluster
performs further analysis in order to select the sensors with the highest
representation quality. We note that the analysis of the historical data,
which has to be repeated when the distribution of the sensor readings
changes, may take place in the sensors or in the sink, according to the
amount of resources required.

Snapshot Queries [56] is another approach that introduces a platform
for energy efficient data collection in sensor networks. By selecting a
small set of representative nodes, this approach provides responses to
user queries and reduces the energy consumption in the network. In
order to select representatives, each sensor node in this approach builds
a data model of the distribution of measurement values of its neighbors
for each attribute. After a node decides which of its neighbors it can
effectively represent, it broadcasts its list of candidate cluster members
to all its neighbors. Each node selects as its representative the neigh-
bor that can represent it, and that additionally has the longest list of
candidate cluster members.

In ECLUN [47], nodes do not continuously communicate with the rep-
resentatives, but communication is established only when a state change
is detected in the monitored phenomena. This communication is further
reduced through the careful construction of clusters, which considers
similarity in sub-spaces of the full-dimensional sensor readings space.
This makes the above approach suitable to deployments of sensor node
that produce multi-dimensional readings (i.e., monitor several phenom-
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ena simultaneously). ECLUN also tries to uniformly distribute the en-
ergy usage among the nodes, resulting in a longer lifetime for the entire
sensor network, since the variance of the lifetime of individual nodes is
minimized.

A more recent study [4] focuses on the problem of identifying func-
tional dependencies among sensor data streams, in order to determine a
small number of sensors from which data are actively collected. The rest
of the sensors collect data at lower rates, with the purpose of detecting
changes in the discovered dependencies and taking actions to reorganize
the sensor data collection process. The dependencies identified in this
work are based on regression analysis that takes into account possible
lags among the streams.

The above studies use different ways of calculating the correlation
among the sensor streams in the network. For this part of the problem,
other techniques for identifying correlations in multiple data streams [107,
114, 72, 26, 82] could be used as well. The work by Aggarwal et al. [3] de-
scribes a method that additionally considers and exploits domain-specific
knowledge on the information network of the sensors (i.e., relating to
links among the sensors). Another approach for the same problem has
proposed a technique for selecting sensors that is based on feedback on
the utility of the selected sensors [43].

2.3 Data Series Summarization

Many sensor network applications in diverse domains produce volumi-
nous amounts of data series, such as in meteorology (e.g., temperature
measurements [1]), oceanography (e.g., water level measurements [90]),
and other domains. The sheer number and size of the data series we need
to manipulate in many of the real-world applications mentioned above
dictates in several cases the need for a more compact representation of
data series than the raw data itself, and a plethora of representations
have been proposed to that effect?.

Even though most data series representations treat every point of
the data series equally, there exist WSN applications for which the time
position of a point makes a difference in the fidelity of its approximation.
Then we would represent the most recent data with low error, and would

4Several techniques have been proposed in the literature for the approximation of
data series, including Discrete Fourier Transform (DFT) |76, 36], Discrete Cosine Trans-
form (DCT), Piecewise Aggregate Approxzimation (PAA) [106], Discrete Wavelet Transform
(DWT) |75, 21], Adaptive Piecewise Constant Approzimation (APCA) [20, 58], Piecewise
Linear Approzimation (PLA) [54], Piecewise Quadratic Approzimation (PQA) [48], and
others. Most of them are amenable to incremental, online operation.
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Figure 7.2. Depiction of an amnesic approximation, using the piecewise linear ap-
proximation technique (the most recent values of the data series are on the left; the
oldest values are on the right) [70].

be more forgiving of error in older data. We call this kind of time series
approximation amnesic, since the fidelity of approximation decreases
with time, and it therefore requires less memory for the events further
in the past (see Figure 7.2).

For example, the Environmental Observation and Forecasting Sys-
tem?® [90] operates in a way that allows for some sensors only intermittent
connections to the sink (through a repeater station that is not always
available). Since the station does not know how long it will be offline,
and has a finite buffer, amnesic approximation is an effective way to
record the data.

We need a way to specify for each point in time the amount of error
allowed for the approximation of the time series. In order to achieve
this goal, we use the amnesic function A(zx), which returns the accept-
able approximation error for every point of the data series. We define
two forms of amnesic functions, namely, the relative and the absolute
amnesic functions. A relative amnesic function determines the relative
approximation error we can tolerate for every point in the time series
(e.g., we can specify that when we approximate a point that is twice as
old, we will accept twice as much error). When we use relative amnesic
functions, we fix the amount of memory that we are allowed to use for
the approximation of the data. On the other hand, an absolute am-

5This is a large-scale distributed system designed to monitor, model, and forecast wide-
area physical processes, such as river systems.
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nesic function specifies, for every point in the data series, the mazimum
allowable error for the approximation, which is useful when the applica-
tion requires quality guarantees for the approximation of the data series.
When we use absolute amnesic functions, we allow the approximation
to use as much memory as necessary in order to meet the error bounds.
More formally, we define the following two problems in the context of
landmark windows. The landmark window is the window that contains
all the values of the data series (from a given time point) up to now.

PROBLEM 2.3 (LAND. WIN. WITH RELATIVE AMNESIC (URA))
Given a memory budget M and a relative amnesic function RA(z), con-
struct an amnesic approximation using memory at most M that mini-
mizes the approximation error of the data points inside the window.

PROBLEM 2.4 (LAND. WIN. WITH ABSOLUTE AMNESIC (UAA))
Given an absolute amnesic function AA(x), construct an amnesic ap-
proximation that minimizes the required memory M.

Note that in the URA and UAA problems, the optimization objective
is different. In the URA problem we seek to minimize the approximation
error given the memory space used by the data series approximation,
while in the UAA problem we want to minimize the space used in the
approximation given the maximum error allowed.

Following the definition of the problems for the landmark window, we
now define the corresponding problems for the case where we consider
the sliding window model.

PROBLEM 2.5 (SLIDING WINDOW WITH RELATIVE AMNESIC (SRA))
Given a sliding window W, a memory budget M , and a relative amnesic
function RA(x), construct an amnesic approximation using memory M
that minimizes the approrimation error of the data series within the
sliding window.

PROBLEM 2.6 (SLIDING WINDOW WITH ABSOLUTE AMNESIC (SAA))
Given a sliding window W, and an absolute amnesic function AA(x),

construct an amnesic approrimation that minimizes the required memory
M.

2.3.1 Proposed Techniques. Bulut and Singh propose the
use of wavelets to represent data streams, which are biased towards the
more recent values [16], and describe an efficient, online method for
incrementally maintaining this representation. The bias to the most
recent values can be seen as a special case of an amnesic function, whose
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form in this particular case is dictated by the hierarchical nature of the
wavelet transform.

A subsequent study [111] generalizes on these ideas, by decoupling the
approximation of the time series from a particular dimension-reduction
algorithm, and employs user-input to specify how the available memory
will be used for the approximation. There has also been relevant work
in machine learning, and more specifically, in the neural network com-
munity, where the main goal is to model time-varying patterns in data
series [10, 29].

A general and efficient solution to the amnesic summarization prob-
lems defined earlier is presented in [70]. This study describes solutions
for the four variations of the problem, based on online algorithms that
use a piecewise linear approximation model. When a new point arrives,
the algorithms update the approximation model in sub-linear time on
the number of linear segments.

It has been shown that the techniques mentioned above can be im-
plemented in a very efficient manner in sensor nodes [89]. Moreover,
amnesic summarization has been studied in the context of flash memo-
ries [67], which offer significant benefits that can be exploited by WSN
deployments.

3. Data Processing

Another interesting and important research direction in the context of
WSN data management is that of efficient data processing and analysis,
and a significant amount of effort has been devoted to it. In this case,
we are interested in supporting different types of complex queries in the
specific, resource-constrained environment of a WSN.

Several frameworks for the efficient execution of queries in a sensor
network have been developed in the past years [60, 59, 103]. The focus
in these works was to propose data processing and optimization meth-
ods geared specifically towards sensor networks, with the early studies
describing in-network aggregation techniques for reducing the amount
of data transmitted by the nodes. Ali et al. [7] propose an interesting
approach to detect and track discrete phenomena (PDT) in sensor net-
works. Hellerstein et al. [49] propose algorithms to partition the sensors
into isobars, i.e., groups of neighboring sensors with approximately equal
values during an epoch. Other works have proposed techniques that take
into account missing values, outliers, and intermittent connections [44,
30, 101]. We note that some of the techniques we discussed earlier are
applicable here (e.g., either to answer adhoc queries [31], or SELECT*
queries [87]).
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In the following paragraphs, we present a framework that enables the
development of a variety of complex processing applications in a sensor
network. These are applications with high processing requirements over
a significant portion of the data generated by the entire WSN. Examples
of such applications are the identification and tracking of homogeneous
regions, and outlier detection. The identification and tracking of ho-
mogeneous regions is used for environmental monitoring (e.g., around
oil-drill, or chemical plant sites). In outlier detection, we are interested
in discovering exceptional situations that may require the attention of a
human analyst: when some of the values of some sensor are not normal,
when the number of abnormal values exceeds a given threshold, or when
the values of a given sensor are significantly different from the values of
its neighbors. We further discuss these applications below.

3.1 Enabling Complex Analytics

The way that streaming applications are able to efficiently process
continuous data arriving at high rates, such as those generated by WSNs,
is by computing succinct summaries of the data, and operating on these
summaries [41, 32].

The framework we describe below aims to approximate in an online
fashion multi-dimensional data series distributions [69]. This framework
is adaptive and does not require any a priori knowledge about the dis-
tributions of the sensed values. Moreover, it operates in a distributed
fashion, thus, exploiting all the available resources of the WSN, and
reusing any processing that has already taken place.

3.1.1 Data Distribution Approximation Framework.

The proposed framework for estimating the underlying distribution of
a streaming data series works both for the sliding time window and
the landmark window models [69]. This framework estimates the distri-
bution of the values generated by the sensors using the kernel density
estimators [84], which offer the following desirable properties: (i) they
are efficient to compute and maintain in a streaming environment; (ii)
they can very accurately approximate an unknown data distribution,
with no a priori knowledge and (effectively) no parameters; (iii) they
can easily be combined and (iv) they scale well in multiple dimensions.
The above properties make the framework applicable to large sensor
networks, organized in a hierarchical way® [104].

6The hierarchical decomposition of the sensor network, as well as the selection of the
leaders for each level of the hierarchy, can be achieved using any of the energy-efficient
techniques proposed in the literature [38, 61, 110].
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Figure 7.3. Estimation of data distribution in sliding window for two time instances
(1-d data) [69].

In such an online setting, we require that each sensor maintains a
model for the distribution of values it generates within a sliding window
W (see Figure 7.3). Such a model can be efficiently and effectively main-
tained over time. Then, we need to ensure that this mechanism operates
in a distributed fashion. Through a model composition mechanism, we
are able to take the data distribution models of two (or more) streams,
and construct a single model that describes their combined behavior.
The framework also proposes mechanisms for incrementally maintaining
the models across all levels of the (conceptual) hierarchy, as well as for
comparing them in order to determine the similarity of the sensed val-
ues. All the above operations can be efficiently supported in real-time
by a sensor node [69].

3.2 Detection and Tracking of Homogeneous
Regions

The first application is identification and tracking of homogeneous
regions [7, 49], which are defined as spatial divisions of the field under
observation that exhibit similar measured values over time, such as an
oil spill detected in the ocean (see Figure 7.4). The sensors deployed
around the origin of the spill can organize themselves into a network
and communicate the measurements, to detect regions of varying oil
concentrations.

Recent studies propose methods for delineating homogeneous regions
by a boundary [24, 68]. However, in several situations we need a more
generalized grouping of the sensors, based on the sensed values over a
time interval. In general, we would like to solve the problems of detecting
and tracking such homogeneous regions in real-time when the definition
of the phenomenon is not known in advance.

Using the framework described in Section 3.1.1, we can efficiently
identify sensors with similar readings, by comparing their models of the
densities of the sensed values [92]. Sensors with very similar models (i.e.,
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Figure 7.4. Spread of an oil spill detected in the water over time [92].

data distributions) are grouped together, using the hierarchical organi-
zation of the WSN. Each group corresponds to a homogeneous region in
space, whose boundaries can be effectively approximated. Then, we can
track the movements of these regions over time in a distributed manner,
keeping awake only the sensors that are close to the regions that are
being tracked. This process is efficiently implemented by tracking the
movement of the boundaries of each region.

3.3 Outlier Detection

The second application, which we examine in more detail, is dis-
tributed deviation detection in a sensor network. The goal is to identify
values (or the corresponding sensor nodes) that look very different from
their spatio-temporal neighbors (i.e., the values in the recent history of
the sensor stream, or the values in the streams of spatially close sensors).
We note that this is a challenging problem, even for static datasets.

This problem is important in a WSN setting because it can be used
to identify faulty sensors, and to filter spurious reports from different
sensors. Even if we are certain of the quality of measurements reported
by the sensors, the identification of outliers provides an efficient way to
focus on the interesting events in the sensor network.

In the following subsections, we describe the approaches that have
been proposed in the literature, separating them in approximate and
ezract, according to whether they provide guarantees on the detection of
all the outliers.

3.3.1 Approximate Approaches. We first examine outlier
identification techniques that cannot provide any hard guarantees on the
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correctness of the results they produce. Consequently, these techniques
may fail to report some of the outliers in the data.

Classification-based

A method based on Bayesian classifiers is described by Elnahrawy et
al. [34]. This is a method for modeling and learning statistical contextual
information in WSNSs, which can also be applied for the task of outlier
identification. The employed model assumes that the current reading
of each sensor is only influenced by the preceding reading of the same
sensor, and the readings of its immediate neighbors. This model is then
used to predict the highest probability class of the subsequent reading. If
the probability of this class is significantly different from the probability
(according to the model) of the actual reading, then this reading is
deemed an outlier.

Rajasegarar et al. [77] propose an alternative approach that uses a
Support Vector Machine (SVM) classifier. In this case the classification
model uses only the information from the past readings of the same
sensor node, and ignores the readings from the neighboring nodes.

A drawback of the classification-based approaches is the time and
computational effort required in order to train the model that can then
be used for outlier detection. This effort can in certain cases be rather
high. Note also that for non-stationary data this effort will be continu-
ous.

Data Distribution-based

A technique for outlier detection, based on learning statistical prop-
erties of the spatio-temporal correlations of the sensor readings, is pro-
posed by Bettencourt et al. [12]. This technique is geared towards eco-
logical applications, where the sensed pheonomena evolve slowly over
time, and are spatio-temporally coherent. According to this technique,
sensors learn the distributions of differences among their own readings
(over time), as well as the distributions of differences between their read-
ings and the readings of their neighbors. Then, comparing the current
readings to these distributions, allows sensors to identify local outliers
using a significance test, and a user-specified threshold.

Subramaniam et al. [93] study the case where we wish to identify
(among all sensor readings in a sliding window) those values that have
very few near neighbors [55], namely, distance-based outliers; or those
values whose near neighborhood is significantly less dense than their
extended neighborhood [71], namely, density-based outliers. Note that
these definitions do not require any prior knowledge of the underlying
data distributions. In order to solve the problem (for both definitions
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of outliers mentioned above), we need to count the number of sensed
values that fall in different regions of the data space. This operation
can be efficiently supported by the framework outlined in Section 3.1.1,
and the overall task can be distributed in the entire WSN. Especially
for the distance-based outliers, the following observation holds [93]. In
a (conceptual) hierarchical organization of the sensor network, a parent
node combines in a single pool all the data that its children process.
Consequently, outliers have to be identified with respect to this new pool
of data. Nevertheless, it is not necessary that the parent node reads in
all the data from its children’s input data streams, and for each data
value determine whether it is an outlier or not. It suffices for the parent
node to examine only the values that have been marked as outliers by
its children. All the other data values can be safely ignored, since they
cannot possibly be outliers. The above approach allows for the effective
distribution of the outlier detection task to the entire WSN, resulting
in significant savings in terms of communication messages.

A recent study [64] proposes the use of the hyperellipsoidal model in
order to model the normal behavior of sensor nodes. Sensor readings
that significant deviate from this model are then declared outliers. The
focus of this study is on devising an iterative approach for building and
maintaining hyperellipsoidal models, which makes them suitable for non-
stationary data distributions.

Node Similarity-based

Zhuang et al. [115] describe an approach for identifying (and cleaning)
outliers in a sensor network. They focus on two kinds of outliers: short
simple outliers, usually represented as an abnormal, sudden burst and
depression; and long segmental outliers, which represents erroneous sen-
sor readings that last for a certain time period. Their approach works as
follows. The Discrete Wavelet Transform (DWT) is applied on the se-
ries of sensor readings. The high-frequency coefficients are omitted from
the resulting DWT representation, which is subsequently compared to
the original data series. Data points that are further away than a dis-
tance threshold, dq, from their DWT representation are deemed short
outliers. Then, the data series is compared to the series obtained from
other sensors that are geographically close. If no other series is within
some distance threshold, do, then this data series is deemed a long out-
lier (similarity between data series is measured using the dynamic time
warping distance [11]).

A similar problem is addressed by a subsequent study [102], which
targets the identification of outlying sensors. The main observation is
that sensors observing the same phenomenon are spatially correlated,
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but outlying sensor readings are geographically independent. The algo-
rithm described in this study has each sensor compute the difference of
its reading to the median reading of its neighboring sensors. Then the
sensor collects all these differences from its neighborhood and standard-
izes them. If the absolute value of its standardized difference is larger
than a threshold, d, then this sensor is deemed an outlier.

The TACO framework [40] was recently proposed by Giatrakos et al.
to operate in a WSN. In order to identify outliers, TACO takes into
account both the history of measurements of a given sensor, as well
as the spatial correlations with measurements of other sensors in the
vicinity. The outlier detection scheme is based on a two-level hashing
mechanism. The first level of hashing takes place locally in each sensor,
and is based on Locality Sensitive Hashing [23]. This is used for dimen-
sionality reduction, since the recent history of sensor data readings can
be succinctly represented in a space of much smaller dimensionality. As-
suming a clustered organization of the sensor network (i.e., hierarchical
organization with just two levels), each node communicates this reduced
representation of its history to the corresponding cluster-head, which
subsequently checks for similar representations among the other nodes
in the cluster. Similarity measures such as cosine similarity, Jaccard co-
efficient and correlation coefficient, are supported. The representations
that do not find any similar matches make part of a list of potential
outliers that is further communicated to all the cluster-heads of the sen-
sor network. This communication step is efficiently implemented using
a second hashing mechanism based on the hamming weight of the repre-
sentations. Overall, the approach has the advantage that it can provide
probabilistic guarantees on the accuracy of the results.

Giatrakos et al. [39] proposed a similar technique, only based on the
trends of the sensed data series.

3.3.2 Exact Approaches. Unlike the works above, some stud-
ies have proposed techniques for outlier detection that guarantee no false
negatives (i.e., they identify all outliers). This is a desirable property
for several critical applications (e.g., structural integrity monitoring).
The work by Branch et al. [13] describes a technique for distributed
outlier detection, where the goal is to identify global outliers (i.e., with
respect to the data collected by all sensors). This technique supports
definitions of outliers that conform to certain anti-monotonicity and
smoothness properties (e.g., it supports the distance to k' nearest neigh-
bor [78], but not the density-based LOF outliers [15]). According to the
proposed algorithm, each node maintains a local list of outliers, along
with additional information on the data it has transmitted to its neigh-
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bors and the data it has received. Following some rounds of peer-to-peer
communications, all the nodes in the network converge to the final list of
global outliers. This technique guarantees that it will correctly identify
all outliers, but only under the assumptions that each node has accurate
knowledge of its nearest neighbors, the communications are reliable, and
that the data remains static long enough for the algorithm to converge.

In a similar setting, Zhang et al. [109] describe a technique for iden-
tification of global outliers, where outliers are defined as the n points
with the largest distance to their k™ nearest neighbor. This technique
assumes the existence of an aggregation tree, which is used as the com-
munication structure among the nodes in the network. The nodes use
the aggregation tree to send local outliers and supporting information to
their parents, with the root node eventually collecting all the informa-
tion. At this point the sink is able to calculate the top-n global outlier
candidates, which transmits back to all the nodes in the network for
verification. If corrections need to be made, these have to be sent to
the sink, which will then adjust the candidate outlier list and repeat the
verification process. The end result is guaranteed to be correct as long
as the network topology does not change, and the algorithm converges
to the solution faster than the data gets updated (which implies the need
for a rather slow update rate).

A subsequent study [85] takes a more pragmatic approach, removing
the assumptions mentioned in the previous approaches. The goal is still
to find global outliers. An outlier is defined as a point whose distance
from its k' nearest neighbor is more than a distance threshold d; or
alternatively, as a point p, such that there exist no more than n other
points with distance to their k** nearest neighbors larger than the dis-
tance of p to its k' nearest neighbor. This approach is based on the use
of an equi-width histogram that can effectively aggregate and summarize
the sensor data readings. The histogram is built in the sink, after the
sink agrees with all the sensor nodes on the boundaries of the histogram
and its buckets. The histogram is then used by the sink in order to
prune the search space of outliers, by eliminating all points that can-
not possibly be outliers, as well as identifying points that are certainly
outliers. For the points for which no definite answer can be given, the
sink will explicitly ask the sensor nodes in the network, in an additional
round of computations.

Burdakis et al. [17] present an outlier detection framework that can
provide hard guarantees on the results. It is based on the Geometric Ap-
proach [81], which allows the development of much more efficient meth-
ods (in terms of communication cost) than the ones presented above.
The Geometric Approach enables the monitoring of complex (poten-
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tially non-linear) functions computed over the average of vectors the
describe the local behavior at each sensor node, and the handling of dif-
ferent similarity functions (useful for the outlier detection task) in the
distributed setting of a WSN: each sensor is assigned a zone, which
is locally monitored, and if no sensor identifies a threshold violation in
their corresponding zones, then the overall monitored function will not
have exceeded the threshold either. Under the proposed framework, we
can identify sensor nodes that involve sensed data values (either the re-
cent history of readings, or the vector of the currently sensed values)
that are not similar to the corresponding values of other similar nodes
in the network. Several different similarity measures can be efficiently
supported, including L, Lo, Lo, cosine similarity, extended Jaccard
coefficient, and correlation coefficient.

3.4 Processing Uncertain Data Series

In several different domains, such as manufacturing plants and en-
gineering facilities, sensor networks are being deployed to ensure effi-
ciency, product quality and safety [57]: unexpected vibration patterns
in production machines, or changes in the composition of chemicals in
industrial processes, are used to identify in advance possible failures, sug-
gesting repairs or replacements. However, sensor readings are inherently
imprecise because of the noise introduced by the equipment itself [18].

Previous work has shown that treating value uncertainty as a first class
citizen can lead to better results in terms of quality and efficiency [57,
91, 94, 96]. Since value uncertainty is inherent in WSN data, in the
following paragraphs we discuss some recent works on processing data
series with uncertain values. The focus of these works is on similarity
matching, which serves as the basis for developing various more complex
analysis and mining algorithms (e.g., classification, clustering, outlier
detection, etc.).

Two main approaches have emerged for modeling uncertain data se-
ries. In the first, a Probability Density Function (PDF) over the uncer-
tain values is estimated by using some a priori knowledge [112, 105, 83].
In the second, the uncertain data distribution is summarized by repeated
measurements (i.e., samples) [8]. We discuss those in more detail below.

3.4.1 Similarity Matching for Uncertain Data Series.
Formally, an uncertain data series T' is defined as a sequence of random
variables < t1,1ts,...,t, >, where t; is the random variable modeling the
real valued number at timestamp 4. All the three models we review and
compare fit under this general definition.
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The problem of similarity matching has been extensively studied in
the past [5, 35, 53, 22]: given a user-supplied query sequence, a sim-
ilarity search returns the most similar data series according to some
distance function. More formally, given a collection of data series C' =
{S1,..., v}, where N is the number of data series, we are interested in
evaluating the range query function RQ(Q, C,€):

RQ(Q,C,e) ={S|S € C Ndistance(Q,S) < €} (7.1)

In the above equation, € is a user-defined distance threshold. A survey
of representation and distance measures for data series can be found
elsewhere [33].

A similar problem arises also in the case of uncertain data series, and
the problem of probabilistic similarity matching has been introduced
in the last years. Formally, given a collection of uncertain data series
C ={T1,...,Tn}, we are interested in evaluation the probabilistic range
query function PRQ(Q,C, €, 1):

PRQ(Q,C,e,7) ={T|T € C|Pr(distance(Q,S) <e€) > T} (7.2)

In the above equation, € and 7 are the user-defined distance threshold
and the probabilistic threshold, respectively.

In the recent years three techniques have been proposed to evaluate
PRQ queries, namely MUNICH? [8], PROUD [105], and DUST [83]. We
discuss each one of these three techniques below, and offer some insights
in Section 4.2.

3.4.2 Proposed Techniques. MUNICH: In [8], uncer-
tainty is modeled by means of repeated observations at each times-
tamp, as depicted in Figure 7.5(a). Assuming two uncertain data se-
ries, X and Y, MUNICH proceeds as follows. First, the two uncer-
tain sequences X,Y are materialized to all possible certain sequences:
TSx = {< vi1,..,Vn1 >, ..., < Uls, ..., Ups >} (where v;; is the j-th ob-
servation in timestamp 4), and similarly for Y with T'Sy. The set of all
possible distances between X and Y is then defined as follows:

dists(X,Y) = {LP(z,y)|r € TSx,y € TSy} (7.3)

The uncertain LP distance is formulated by means of counting the
feasible distances:

"We will refer to this method as MUNICH (it was not explicitly named in the original
paper), since all the authors were affiliated with the University of Munich.
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~ |{d € dists(X,Y)|d < €}

Pr(distance(X,Y) <€) (7.4)

Figure 7.5. Example of an uncertain data series X = {z1,...,zn} [27], modeled by
means of repeated observations (a), and pdf estimation (b).

Once we compute this probability, we can determine the result set of

PRQs similarity queries by filtering all uncertain sequences using Equa-
tion 7.4. Note that the naive computation of the result set is infeasible,
because of the exponential computational cost, |dists(X,Y)| = s s,
where sx, sy are the number of samples at each timestamp of X,Y,
respectively, and n is the length of the sequences. Efficiency can be en-
sured by upper and lower bounding the distances, and summarizing the
repeated samples using minimal bounding intervals [8]. This framework
has been applied to Euclidean and DTW distances and guarantees no
false dismissals in the original space.
PROUD: In [105], an approach for processing queries over PROb-
abilistic Uncertain Data streams (PROUD) is presented. Inspired by
the Euclidean distance, the PROUD distance is modeled as the sum
of the differences of the streaming data series random variables, where
each random variable represents the uncertainty of the value in the cor-
responding timestamp (see Figure 7.5(b)). Given two uncertain data
series X, Y, their distance is defined as:

distance(X,Y) = Z D (7.5)

where D; = (z; — y;) are random variables, as shown in Figure 7.6.

According to the central limit theorem, we have that the cumulative
distribution of the distances approaches a normal distribution, and the
normalized distance follows a standard normal distribution. Therefore,
we can obtain the normal distribution of the original distance as follows:

distance(X,Y) o« N(>_ E[D7], Var[D}]) (7.6)
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time
Figure 7.6. The probabilistic distance model [27].

The interesting result here is that, regardless of the data distribution
of the random variables composing the uncertain data series, the cu-
mulative distribution of their distances (1) is defined similarly to their
euclidean distance and (2) approaches a normal distribution. Recall that
we want to answer PRQs similarity queries. First, given a probability
threshold 7 and the Cumulative Distribution Function (CDF) of the
normal distribution, we compute €j;,;+ such that:

Pr(distance(X,Y )norm < €umit) > T (7.7)

The CDF of the normal distribution can be formulated in terms of the
well known error-function, and €3, can be determined by looking up
the statistics tables. Once we have €y, we proceed by computing also
the normalized €,rm. Then, if a candidate uncertain series Y satisfies
the inequality €n0rm(X,Y) > €1imit, the following equation holds:

Pr(distance(X,Y Jnorm < €norm(X,Y)) > T (7.8)

Therefore, Y can be added to the result set. Otherwise, it is pruned
away. This distance formulation is statistically sound and only requires
knowledge of the general characteristics of the data distribution, namely,
its mean and variance.

DUST: In [83], the authors propose a new distance measure, DUST,
that compared to MUNICH, does not depend on the existence of mul-
tiple observations and is computationally more efficient. Similarly to
[105], DUST is inspired by the Euclidean distance, but works under the
assumption that all the data series values follow some specific distribu-
tion. Given two uncertain data series X, Y, the distance between two
uncertain values z;,y; is defined as the distance between their true (un-
known) values 7(x;),r(y;): dist(x;,v;) = L*(r(z;),7(y;)). This distance
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can then be used to define a function ¢ that measures the similarity of
two uncertain values:

¢z — yil) = Pr(dist(0, [r(zi) — r(yi)|) = 0) (7.9)

This basic similarity function is then used inside the dissimilarity func-
tion between two uncertain data values z and y, and we have dust(z,y) =
Vv —log(¢(|lz — y])) — k, where k = —log(¢(0)), and for entire uncertain
sequences takes the following form:

DUST(X,Y) \/Z dust(z;, y;)? (7.10)

The handling of uncertainty has been isolated inside the ¢ function,
and its evaluation requires to know exactly the data distribution. In
contrast to the techniques we reviewed earlier, the DUST distance is
a real number that measures the dissimilarity between uncertain data
series. Thus, it can be used in the place of the existing distance function
in mining techniques that have been developed for certain data series.

4. Discussion

In this section, we offer some insights on the approaches and tech-
niques we described earlier. This discussion is also useful for determining
promising future research directions.

4.1 Data-Aware Network Protocols

In Section 2, we described several techniques for the efficient collec-
tion of the sensed data in a WSN. All these techniques invariably claim
considerable savings in terms of required communication messages. FEx-
periments have demonstrated savings of up to 2— 3 orders of magnitude,
which is very promising news for the energy savings as well, and con-
sequently the lifetime of the WSN. However, these works have not
undertaken a careful study of how the communication savings translate
to network lifetime prolongation in real deployments.

A recent study [79] focused on exactly this problem: it examined
how DBP (similar results can be obtained for other data-driven data
acquisition techniques, as well) affected the WSN lifetime, motivated by
a real-world WSN-based application deployment in an operational road
tunnel. The performance of DBP was studied in conjunction with the
commonly-used network stack composed of CTP [42], BoX-MAC [65],
and TinyOS v2.1.1. The experimental evaluation used two settings: an
operational road tunnel, and an indoor testbed (fed with the same real
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Figure 7.7. Average duty cycle [79]. (Note the difference in the y-axis scale.)

data), representative of scenarios with different connectivity. Based on
a 47-day, 40-node dataset gathered in this deployment, the study shows
that DBP suppresses 99% of the message reports (w.r.t. the baseline,
where all nodes send data every 30 sec).

This study examined how data delivery to the application, network
lifetime, and routing costs are affected by DBP. To study the impact
on lifetime, the study measured the duty cycle of the radio, which is
the most power-consuming component. Figure 7.7 clearly shows that
DBP enables significant savings at any sleep interval, while the best
sleep interval without DBP is 1500 ms . When using DBP, longer sleep
intervals can be used to increase lifetime without affecting data delivery.

Figure 7.7(a) shows that in the testbed, with a sleep interval of 1500 ms
the WSN running DBP lasts twice as long as with no DBP (with the
same MAC settings). Using the best sleep interval in both cases (i.e.,
1500 and 3000 ms, respectively) yields a three-fold lifetime improve-
ment?.

A natural question arises at this point: if DBP suppresses over 99%
of the messages, why does the network lifetime increase “only” three-
fold? This is due to the costs of the network stack, in particular the
idle listening and average transmission times of the MAC protocol, and
to the overhead of the routing protocol to build and maintain the data
collection tree.

To isolate the inherent costs (e.g., tree maintenance) of CTP, experi-
ments were ran with no application traffic. Figure 7.7 shows the corre-
sponding duty cycle (as Only CTP). We observe that the DBP cost is

8The energy savings in the tunnel (see Figure 7.7(b)) are less remarkable, although still
significant, because the network diameter in the tunnel is much smaller w.r.t. the testbed
(due to the waveguide effect [66] many direct, 1-hop links to the sink exist, leaving less room
for improvement).
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Figure 7.8. Tunnel: total link-level transmissions for a sleep interval of 1500 ms [79].
(Note the difference in the y-axis scale.)

very close to the cost of CTP tree maintenance, regardless of the sleep
interval. A finer-grained view is provided by Figure 7.8, which shows
the different components of traffic in the network. Without DBP, the
dominate component is message transmission and forwarding; signifi-
cant retransmissions are present for some nodes, while the component
ascribed to CTP (i.e., the beacons probing for link quality) is negligible.
When DBP is active, the number of CTP beacons remains basically un-
changed. However, because the application-level traffic is dramatically
reduced, CTP beacons become the dominant component of the network
traffic.

These last observations suggest that further reductions in data traffic
would have little practical impact on the system lifetime, as routing costs
are dominated by topology maintenance rather than data forwarding.
Therefore, improvements are more likely to come from radical changes
at the routing and MAC layers: new, data-aware protocols need to be
designed, which will take into account the traffic patterns with extremely
low data rates that emerge when data-driven data acquisition techniques
are employed.

4.2 Uncertain Data Processing

Given the fact that sensors produce values with an inherent uncer-
tainty, and that we are increasingly relying on applications that are
driven by sensor data, it becomes evident that efficient and effective
processing of uncertain WSN data series is a relevant research direc-
tion.

Turning our attention to the three techniques we presented for un-
certain data series similarity matching (see Section 3.4), we observe
that an important factor for choosing among them is the information
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that is available about the distribution of the data series and its errors.
PROUD requires to know the standard deviation of the uncertainty er-
ror and a single observed value for each timestamp, and assumes that
the standard deviation of the uncertainty error remains constant across
all timestamps. DUST takes as input a single observed value of the data
series for each timestamp, and in addition, needs to know the distri-
bution of the uncertainty error for each single time stamp, as well as
the distribution of the values of the data series. This means that, in
contrast to PROUD, DUST can take into account mixed distributions
for the uncertainty errors (albeit, they have to be explicitly provided
in the input). MUNICH does not need to know the distribution of the
data series values, or the distribution of the value errors: it simply oper-
ates on the observations available at each timestamp. When we do not
have enough, or accurate information on the distribution of the errors,
PROUD and DUST do not offer an advantage in terms of accuracy when
compared to Euclidean [27].

All three techniques are based on the simplifying assumption that
the values of the data series are independent from one another, which
is not true for WSN measurements. A recent study [28] demonstrates
that removing this assumption is beneficial: it proposes the UMA and
UEMA filters (based on the weighted moving average technique), that
in combination with FKuclidean distance lead to more accurate results.
These results suggest that more work is needed on techniques that take
into account the temporal correlations that exist in data series.

The time complexity of these techniques is another important factor.
We note that MUNICH is applicable only in the cases where the standard
deviation of the error is relatively small, and the length of the data
series is also small (otherwise the computational cost is prohibitive),
which makes this technique applicable in cases where the sink can do
the processing. To a (much) lesser extent, this is also true for PROUD
and DUST. On the other hand, UMA and UEMA have significantly
lower resource requirements, and could be efficiently implemented in a
sensor node.

4.3 Ubiquitous Sensor Networks

Lots of work and research effort has been devoted in the past years
in the study of various problems related to WSNs. Several efficient
techniques have been developed for the acquisition, management, pro-
cessing, and analysis of the sensed data, and at the same time (different
forms of) WSNSs are being deployed in increasingly more domains and
situations.
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The next frontier in this line of research is the development of very
large, ubiquitous WSNSs, with increased capabilities for complex, in-
network analytics. This vision includes various wireless devices with
different specifications (ranging from simple sensor motes to state of the
art smartphones), involves advanced, yet efficient, data management and
processing techniques, and calls for new breakthroughs in several of the
problems and research directions we discussed in the previous sections.

Consider a large WSN deployment, such as SmartSantander [2], which
comprises of more than 20,000 sensors in an urban setting. This sys-
tem has already started to be installed, and can drive the development
of powerful applications with a big environmental and societal impact
(e.g., environment-aware traffic and transportation monitoring and man-
agement, where traffic is managed in real-time, according to levels of
pollutants, noise, local events, emergency situations, etc.).

As these WSNSs grow larger, covering more space and involving more
devices, it makes sense to increase their ability to ingest and process
more data in real-time, and to run complex queries in a distributed
manner more effectively. This will allow large numbers of queries to run
within the WSN, sharing and exchanging results, and with the goal to
minimize the need for centralized processing and human intervention (or
opportunistically seek human intervention, as in crowdsourcing environ-
ments). In order to achieve these goals, methodologies and techniques
from other domains could be exploited and adapted (apart from what
we have already described here), such as distributed complex event pro-
cessing [14, 95], and distributed publish/subscribe systems [37].

5. Conclusions

The development of WSN during the past decade helped advance the
state of art in several scientific communities that exploited the new op-
portunities for fine-granularity data-gathering. The popularity of WSNs
has also provoked the interest of the research community, and a mul-
titude of studies have been published on techniques and methodologies
for the effective and efficient use of the data produced by WSNs, across
the networks and data management communities.

As we are now going through the second decade of the WSNs lifetime,
we are witnessing a widening and increasing interest in their potential ap-
plications, finding their way in new domains and also including new types
of devices (e.g., smartphones). In this context, old problems re-emerge,
such as the design of novel network protocols that are data-aware, and
new challenging problems appear, such as the effective management of
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uncertainty in sensed data series, and techniques that will scale the in-
network complex analytics to very large WSNs.
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Abstract  Wireless sensor networks (WSNs) consist of a collection of low cost
and low powered sensor devices capable of communicating with each
other via an ad-hoc wireless network. Due to their rapid proliferation,
sensor networks are currently used in a plethora of applications such as
earth sciences, systems health, military applications etc. These sensors
collect the data about the environment and this data can be mined for
a variety of analysis. Unfortunately, post analysis of the data extracted
from the WSN incurs high sensor communication cost for sending the
raw data to the base station and at the same time runs the risk of
delayed analysis. To overcome this, researchers have proposed several
distributed algorithms which can deal with the data in situ — these data
mining algorithms utilize the computing power at each node to first do
some local computations and then exchange messages with its neighbors
to come to a consensus regarding a global model. These algorithms
reduce the communication cost vastly and also are extremely efficient
in terms of model computation and event detection. In this chapter we
focus on such distributed data mining algorithms for data clustering,
classification and outlier detection tasks.

Keywords: distributed data mining, sensor networks, outlier detection
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1. Introduction

A wireless sensor network (WSN) [17] consists of a collection of sensors
or nodes capable of monitoring the environment using its local sensors
and by wirelessly communicating with other nodes and to a base sta-
tion. WSNs may vary widely in their topology from simple star or ring
network to complicated multi-hop networks. Each node is designed to
work autonomously using its own battery power. Due to limited battery
power, the nodes are constrained in terms of sensing capability, compu-
tational power and transmission ability. Their major task is to monitor
an environment for a long period of time and hence conserving battery
power by turning off the transmission channels is one of the crucial tech-
niques that need to be used for algorithm development and deployment
in such networks. Over the last decade, the sensor nodes have evolved
a lot in terms of their size and sensing/transmission capability. As a
result, there has been a renewed interest in using sensor networks for a
plethora of applications — forest fire detection, air pollution monitoring,
oceanographic applications, system health monitoring, greenhouse mon-
itoring, battlefield and other military applications to name a few. The
main characteristics of a WSN are:

Limited computation and transmission ability

m Frequent and recurrent node failures

s Unreliable communication links

m  Heterogeneity of nodes

= Scalability to large scale of deployment

m  Ability to withstand harsh environmental conditions

Given these constraints, it is easy to see than the standard data min-
ing/machine learning algorithms are not directly applicable to a WSN
setting. As a result, researchers have proposed several algorithms for
modern sensor networks which take into account some or all of these
constraints. One of the main items to consider for WSN is reduce the
sensor communication requirements for broadcasting all the data to the
base station and, it is in this context, that distributed data mining is
likely to play a major role. The major goal of such distributed algo-
rithms is to develop methods so that a node first does some local com-
putation on its own data, and then communicates with nearby neighbors
(in-network processing) to compute a global model. In this chapter, we
present a sampling of three important topics of distributed data mining
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algorithms for WSN. These are data and node clustering, data classifi-
cation and outlier detection in sensor networks.

The rest of this chapter is organized as follows. Section 2 discusses
several WSN clustering strategies including both node and data cluster-
ing. In the next section (Section 3) we discuss classification techniques
followed by several outlier detection techniques in Section 4. We con-
clude the chapter in Section 5.

2. Clustering in Wireless Sensor Networks

Cluster analysis is the unsupervised learning task of dividing a set
of objects into groups (clusters), such that a given quality criterion is
maximized. More formally, given a set of objects X = {z1,...,x,}, we
search for a clustering C = {C4,...,Cx} with C; C X for i = 1,....,k
that maximizes a quality function ¢ : 2% — RS‘ . Partitional clustering
algorithms yield disjunct clusters, i.e. C; N C; = 0 for i # j, while
the clusters produced by non-partitional algorithms may overlap. More-
over, hierarchical clustering algorithms can subdivide clusters further,
resulting in increasingly more detailed groupings of the given objects.

Instead of creating new quality functions and algorithms for each par-
ticular application, clustering algorithms usually try to achieve more
general parameterized objectives. For example, an often stated objec-
tive is that objects in the same cluster should be more similar to each
other than objects from different clusters. With d : X x X — R{ being
a given dissimilarity function between objects, this criterion can be for-
malized as minimizing the intra-cluster variance, also called the sum of
squares within (SSW), over all possible clusterings for a fixed number of
clusters k [32]:

k

min SSW(E) =33 S 3 dlwra) with Ciect
1=1 z1€C; z2€C;

For algorithms that try to minimize this criterion, like the well-known
k-Means algorithm [39], an application specific clustering can then be
obtained by choosing an appropriate dissimilarity measure. Density-
based algorithms, like DBSCAN [24], form clusters of points that have a
high spatial density. Subspace clustering algorithms specialize on finding
clusters in lower dimensional subspaces of the whole data space. For
a good overview of different types of clustering algorithms and their
objectives, see Han [30] and Kriegel et al. [38].

The aforementioned algorithms assume the whole data set to be in
main memory or at least they ignore the time needed for accessing the
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data. They also assume an unlimited amount of available energy. There-
fore, the algorithms won’t work in the highly constrained setting of dis-
tributed wireless sensor nodes. For WSNs, the algorithms have been
either modified or new clustering algorithms have been developed that
take into account the distributed nature of sensors and the severe com-
munication constraints due to limited battery power and bandwidth. As
will become apparent, in WSNs usually multiple quality criterions can be
applied, turning clustering into a multi-objective optimization problem.

In the next section it is shown that, while often not directly focused
on data analysis, clustering algorithms play a crucial rule in creating
communication efficient topologies of sensor nodes. Especially, the solu-
tions found for grouping sensor nodes may inspire the design of future
energy-constrained data analysis methods. The section afterwards then
discusses already existing distributed clustering algorithms for data anal-
ysis, i.e. of sensor measurements.

2.1 Distributed Clustering of Sensor Nodes

Continuous monitoring as well as intermittent querying of sensor net-
works involves transmitting data from individual sensor nodes, the sour-
ces, to a single node, the sink. Communication costs increase with higher
distance r between sensor nodes, as ground reflections from short an-
tenna heights may cause a drop-off of the radio signal power by r* [47].
Therefore, hierarchical, tiered multi-hop architectures with shorter dis-
tances between relaying nodes are usually more energy-efficient than
letting all sensors communicate directly with some base station [25].

The sensor nodes in tiered multi-hop networks form — possibly hi-
erarchical — clusters and certain nodes in each cluster are designated
as cluster heads. Cluster heads fulfill special roles, like relaying signals
from local nodes in their cluster to other cluster heads or a base station.
They also can manage and restrict network access as well as the life cycle
of local nodes, or reduce the amount of data transmitted by aggregating
and pre-processing the signals from sensor nodes in their cluster.

Manual placement of sensors and routing through pre-determined
paths are only feasible for very small networks. However, typical ap-
plications of sensor networks, like environmental monitoring, disaster
management or military surveillance missions envision hundreds or even
thousands of sensor nodes [1], possibly deployed randomly, e.g. dropped
by a helicopter. The network is usually left unattended for long periods
of time and batteries can’t be recharged. While some setups utilize mo-
bile sensors, sensor nodes are usually assumed to operate stationary af-
ter deployment. Nevertheless, the network could change over time, since
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battery-operated sensors may run out of energy and harsh environmental
conditions can damage network components. In these scenarios, algo-
rithms are needed that cluster sensor nodes and determine cluster heads
dynamically, forming the infrastructure in an ad-hoc manner. Also, they
must be able to reconfigure the network when necessary.

Clustering algorithms that have been developed for WSNs mainly
differ in their assumptions on the given network components, the desired
topology, and in the goals they try to achieve. These in turn influence
the used methodologies and running times.

Regarding network components, clustering can become more constraint
in heterogenous networks where cluster heads have a higher capacity
than sensor nodes. Here, the available number of high capacity compo-
nents will determine the maximum number of cluster heads and therefore
the number of clusters. Moreover, if communication costs between clus-
ter heads and sensor nodes are to be minimized, a stationary location
of cluster heads will lead to a static assignment of sensors to clusters,
except for cases where cluster heads fail and the network needs to be
reconfigured. In comparison, in more homogenous networks, also reg-
ular sensor nodes can become cluster heads. Clustering algorithms for
these networks are usually more dynamic, as they need to continuously
balance the energy consumption across all nodes, based on their resid-
ual energy. Several algorithms achieve this, for instance, by a regular
rotation of cluster heads.

The required topology is largely dependent on the given distances be-
tween sensor nodes, cluster heads and base stations. Depending on the
placement of nodes, the network topologies that need to be considered
can reach from fixed 1-hop [33] over fixed k-hop [64] to fully adaptive
architectures [21]. An important objective is that network components
remain connected, i.e. that sensor nodes are able to reach their cluster
heads and that cluster heads can reach a base station. Other objectives
like minimizing the intra-cluster energy-consumption may need to be
trade-off against the goal of components staying connected, for exam-
ple in cases where an energy-optimal cluster head could no longer reach
its base station. Taking into account several — possibly contradicting
— quality criteria thus turns clustering in WSNs into a multi-objective
optimization problem.

The main goals that cluster algorithms for WSNs try to achieve are
maximal network longevity, connectivity and fault-tolerance. Extend-
ing the operational life-time of a WSN requires load-balancing strategies
that prevent premature exhaustion of subsets of sensor nodes and cluster
heads. The goal of maintaining connectivity is concerned with ensuring
that the most important network components can reach each other, pos-
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sibly putting constraints on the clustering. Fault-tolerance deals with
the failure of network components and can be achieved by redundancy,
rotating roles of network components as well as re-clustering.

As a survey article by Abbasi and Younis [1] shows, the clustering
algorithms for sensor nodes are quite diverse and hard to categorize.
Moreover, there already exist more algorithms than can sufficiently be
presented here, even in summary. Therefore, we decided to focus on only
two algorithms in more detail. The algorithms were chosen as examples
for demonstrating how the same network topology can be achieved by
entirely different means and with different running times. At the end of
this section, the reader is then pointed to further algorithms.

2.1.1 Hierarchical control clustering. The clustering scheme
introduced by Banerjee and Khuller [7] forms a hierarchical multi-hop
network topology, where the number of layers is determined automati-
cally. The original problem statement is that given an undirected graph
G = (V, E) and a positive integer k with 1 < k < |V, for each connected
component clusters Vi,...,V; with V; C V should be found such that
(1) all vertices are part of a cluster, (2) all subgraphs induced by V; are
connected, (3) cluster size is bounded by k < |V;| < 2k, (4) two clusters
should only have few common vertices and (5) each vertex belongs to a
constant number of clusters. After demonstrating that requirement (5)
could be violated in general graphs, the problem is restricted to bounded
disk graphs, as they are usually given in WSNs. For R,,;, and R,,., being
the minimum and maximum transmission radius over all nodes, (u,v) is
an edge in G if and only if R, < d(u,v) < Rpax. The algorithm then
guarantees that no node is a member of more than O(log(Ruax/Rumin))
clusters. Furthermore, to fulfill requirement (4), it is necessary to allow
a single cluster in G to have a size smaller than k.

The distributed algorithm consists of two phases: cluster creation and
cluster maintenance. The cluster formation process can be started by
an arbitrary node in the network, which becomes the root node of a
Breadth-First-Search (BFS) tree. The initiator with the least node ID
takes precedence. Every t units of time, each node u broadcasts a tree
discovery message to nodes that are in its transmission radius. The mes-
sage contains a source ID, parent ID (initially not set), the ID of the root
node, a sequence number and the shortest (known) hop-distance to the
root, r. A node v will make u its parent and update its hop-distance
if the route through w to r is shorter. The root ID and sequence num-
ber are used to distinguish between multiple instances of the cluster
creation phase. Next, for cluster formation, the sent messages are ex-
tended by additional fields representing subtree size and node adjacency.
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The size information is aggregated bottom up. When the subtree size
of a node w crosses the size parameter k, it forms clusters on its sub-
tree T'(w). If |T'(w)| < 2k, a single cluster containing T'(w) is created.
Otherwise, children subtrees will be appropriately partitioned, using the
node adjacency information. The cluster assignments are propagated to
the relevant nodes by cluster assignment messages. Once clusters have
been formed for T'(w), w does not include information about these nodes
in subsequent messages. Nodes send a terminate cluster message down
their subtrees if subtree sizes have not changed for a fixed amount of
time. At the end, only the cluster assignments need to be maintained,
while the BFS information is unimportant. During cluster maintenance,
a sensor node joining the network may either be assigned to an existing
nearby cluster V;, if |V;| < 3k — 1, or clusters are split, like in the cluster
creation phase. If existing nodes leave the network, clusters can become
disconnected. However, the number of remaining connected components
is bounded, since no node is a member of more than O(log(Ruax/Rumin))
clusters (see above). The connected components are either made clusters
of their own or, if their size is < k, their nodes will try to join a neigh-
boring cluster. The same is true in cases of link outages and network
partitions.

The algorithm converges in O(n) steps, where n is the number of
sensor nodes. In principle, it can work with mobile sensor nodes and
recover from network failures. It achieves the self-organization of sensor
nodes into a multi-hop network and reduces transmission distances, since
parent nodes are chosen by the shortest known hop-distance to the root.

2.1.2 DWEHC. Ding et al. [21] have proposed a distributed
weight-based energy-efficient hierarchical clustering protocol (DWEHC).
The key idea is to elect cluster heads not only based on distances from a
node to all its neighbors, but also take into account the residual energy of
nodes. A basic observation here is that for devices with similar antenna
heights, the transmitter power required by distance r is r¢. For three
nodes s, r and d, a direct transmission from s to d takes power ||sd||*+c¢,
while relaying transmission through a node r takes power ||sr||* 4+ ¢ +
[|rd||* + c. In cases where ||sd||* + ¢ > ||sr||* + ¢ + ||rd||* + ¢, relaying
is more efficient. The neighbors N, (s) of a node s are defined as the
set of nodes that lie in the transmission range of s and need no relaying.
The weight W (s) is then calculated as

_ (R - d) Eresidiua](s)
W(S) B Z 6R 8 Einitial(s)
UENq,c(s)
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where R is the cluster range (the farthest distance nodes can be from
their cluster heads) and FEiia(s) and FEregaina($) are the initial and
residual energy of node s respectively. The average number of neighbor-
ing nodes can be shown to be at most six [21]. Intra-cluster commu-
nication will be at minimum when the transmission graph contains the
shortest paths between all pairs of nodes in the cluster.

The protocol starts with each node w broadcasting its (z,y) coordi-
nates, establishing its local neighborhood Ny .(u), calculating its weight
W (s) and broadcasting it. A node s sets level(s) = —1, indicating that
it hasn’t joined any cluster yet. In the cluster generation phase, the
following procedure is repeated for a fixed number of six iterations. Let
i be the iteration number. A node s first checks if it is assigned to a
cluster. If not, it will become a temporary cluster head if its weight
is largest among it neighbors, otherwise the neighbor with the largest
weight is chosen as a temporary head for s. The ID of the temporary
head is broadcasted to all neighbors of s. A node becomes a real cluster
head only if a percentage of (6 —7)/6 nodes elect the node as their tem-
porary cluster head. In this case, the information is broadcasted to all
neighbors, including the (z,y) coordinates, and the level of s is set to
0. There are three cases in which a node doesn’t become a cluster head,
but a child node:

1 When level(s) = —1, node s receives a broadcast message from
its neighbor n, including the (z,y) coordinates of its cluster head
hy. If ||shy|| < R, s chooses hy, as its cluster head. level(s) :=
level(n) + 1 and the distance of s from its cluster head is set to
[[snl] + [Infnl].

2 If s receives a message from neighbor n and level(s) # —1, node s
has already chosen its cluster head. If n is assigned to a different
cluster head h,, whose distance from s is in cluster range R and the
previously calculated distance to its current cluster head is greater
than ||sn||+ ||nhy,||, then h becomes the new cluster head of s and
level(s) := level(n) + 1.

3 If s receives a message from neighbor n, level(s) # —1 and the
cluster heads of s and n are the same, it is checked whether the
distance of node s to its neighbor n is less than the previously
calculated distance. If it is, s will choose n as its parent and set
level(s) and the new distance as in the second case.

For finalization, the cluster generation is run a last (seventh) time.
Afterwards, each node is either a cluster head or a child node.
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In comparison to hierarchical control clustering, DWEHC converges
in a constant number of iterations. Moreover, it not only respects the
distance between nodes, but also their residual energy. In contrast to
previously proposed protocols like LEACH [33], DWEHC doesn’t require
knowledge about the network size, density or homogeneity or about the
number of levels, like HEED [63]. While cluster topologies generated by
HEED may not achieve minimum energy consumption in intra-cluster
communication, it was shown empirically that the energy savings of
DWEHC outperform those or HEED. Also, DWEHC produces more
well-balanced clusters and a better distribution of cluster heads, result-
ing in higher energy savings for inter-cluster communication.

2.1.3 Further Reading. Hierarchical node clustering and
DWEHC are only representatives of several distributed clustering al-
gorithms that have been developed for WSNs. The survey article by
Abbasi and Younis [1] gives a thorough summary of many additional
algorithms. For example, other clustering approaches that have a linear
convergence rate are LCA [4], CLUBS [42], RCC [42] and EEHC [5]. Fur-
ther approaches with a constant number of iterations are, for example,
LEACH [33], HEED [63], MOCA [64], EECPL [3] or N-LEACH [56].

2.2 Distributed Clustering of Sensor
Measurements

The distributed algorithms described in the previous section cluster
sensor nodes. Their purpose is to determine a node topology that allows
for an energy-efficient gathering of data, i.e. sensor measurements, from
the network. As an unsupervised method, clustering can also be used
for an exploratory analysis of data, finding groups of similar sensor mea-
surements. Traditional clustering algorithms usually assume all data to
be available at a single site, like a base station. Even with an established
network topology that allows for energy-efficient communication, due to
energy-constraints it is usually not feasible to transfer all available sen-
sor measurements to a single site for clustering. Instead, distributed
algorithms need to process data in-network, locally at the sensor nodes,
and respect the given limitations of WSNs as much as possible when
communicating with other nodes.

Distributed clustering algorithms have been developed in distributed
data mining (DDM). These algorithms are often based on the parallel
computing paradigm. Running time should be improved by moving data
over high-bandwidth connections from a central location to so called
compute nodes, and then working on subsets of the data in parallel.
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The algorithms usually have full control over where to place the data.
Moreover, the cost model for communication only takes into account
the time needed for transferral, but not the consumption of energy. In
WSNs, however, there is much less control over the data partitioning.
For example, application constraints may prohibit certain combinations
of sensor placements. Also, the most limiting factor in WSNs is energy,
not necessarily time. For this reason, algorithms developed according to
the parallel computing paradigm are usually not well-suited for WSNs.
In comparison to the large number of algorithms that form clusters of
sensor nodes, currently only few algorithms exist that efficiently cluster
the sensor measurements themselves.

Generally, clustering algorithms situated in and developed for peer-
to-peer networks are good candidates for use in WSNs, especially those
that mostly rely on local computations and communication with a lim-
ited number of nearest neighbor nodes only. Datta et al. [18] have
introduced two distributed variants of the k-Means algorithm. The first
variant, LSP2P (Local Synchronized-Based P2P) k-Means, is based on
a more general local algorithm for mining data streams in distributed
systems [58]. It carries out repeated iterations of a modified k-Means
at each local node and collects newly calculated centroids and cluster
counts only from its immediate neighbors to produce the centroids for
the next iteration. Nodes terminate if these new centroids don’t differ
substantially from the old ones. The algorithm requires no global syn-
chronization and can be extended to a dynamic environment, in which
nodes enter and leave the network. Communication costs are shown
to be independent of the number of observations to cluster and the to-
tal amount of communication is O(nI(K + L)), where n is the number
of nodes, I the number of iterations, K the number of clusters and L
the maximum number of neighbors. It was shown empirically that the
algorithm yields similar accuracy as a centralized version of k-Means,
however, proving convergence or bounds on the accuracy appears to be
a hard problem. The second variant, USP2P (P2P k-Means Clustering
Based on Uniform Node Sampling), improves the work by Bandyopad-
hyay et al. [6] and selects s nodes randomly uniformly by a random walk
strategy [19] to update centroids in each iteration. For a static network,
USP2P provides an accuracy guarantee. Communication costs are up-
per bounded by O(M slog(n)), where M denotes the maximum allowed
number of iterations by source node, s is the random walk length and n
is the number of nodes.

Nowak [44] has introduced DEM, a distributed expectation maximiza-
tion algorithm for clustering data from a Gaussian mixture distribution,
with a particular focus on sensor networks. DEM utilizes an incremen-
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tal version of the EM algorithm [43]. It repeatedly cycles through all
nodes in a network and performs incremental E- and M-steps at each
node, using only locally stored data and summary statistics passed from
the previous node. DEM is guaranteed to converge to a local maximum
and, as shown empirically, often more rapidly than the standard EM
algorithm. Gu [28] proposes to estimate the global sufficient statistics
for the M-step by an average consensus filter, diffusing the local suf-
ficient statistics over the entire network by communicating only with
neighboring nodes. Thereby, each node gradually gains global informa-
tion, until the parameters to estimate can be accessed from any node
in the network. The local communication between neighbors which is
inherently parallel makes it more run-time efficient than DEM which
repeatedly cycles over all nodes in the network. Another approach by
Kriegel et al. [37], the DMBC (Distributed Model-Based Clustering) al-
gorithm, also assumes a Gaussian mixture distribution. It first estimates
the number of Gaussian clusters, their parameters (mean and covariance
matrix) and their weights at the local nodes, using the standard EM al-
gorithm. Then, the local parameters and weights are transferred to a
central site, where similar Gaussians are joined to a compact global dis-
tribution. The similarity is measured as the mutual support between two
clusters C',C5, which in addition to their mean vectors also considers
the variance of the clusters. For high dimensional data, DMBC assumes
attributes to be independent of each other, resulting in a reduction of the
d x d covariance matrices to d-dimensional variance vectors. For n nodes
and a maximum number of local clusters K, the total communication
costs are thus bounded by O(nK). It was shown empirically, for varying
numbers of clusters and nodes, that the clustering found by DMBC is
highly similar to a central clustering, as measured by the Rand Index.
Further algorithms exist, like a distributed version of density-based
clustering [34], spectral clustering [51] and solutions specialized on par-
ticular applications, like spatial [41] and time series clustering [62].
Only few algorithms developed so far are truly resource-aware and
consider, for example, the residual energy of nodes or the CPU utilization
explicitly. An exception is ERA-cluster, proposed by Phung et al. [46],
which is based on the concept of microclusters [2]. It can automatically
adapt its sampling rate and the number of examined microclusters based
on the current battery, memory and CPU utilization as measured by a
resource monitor. EDISKCO [31] solves the k-center clustering problem
and can also determine outliers. It works incrementally and only needs
a single pass over the input observations, without storing them. The
local nodes keep a special heap structure for storing their local k centers
and z outliers, sorted according to cluster counts. If a new point doesn’t
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fit the current clustering, a request for increasing the radius is sent to
a coordinator. The coordinator replies with the biggest radius it has
received from all other nodes. The local nodes maintain their heap such
that the effect of the most [ dense clusters which appeared in history
solutions is kept, but also such that space is left for establishing new
clusters if there is a new trend in the input stream. The coordinator re-
ceives the local solutions C;, radii R; and radius increase requests from
the nodes. It continuously performs the Furthest Points algorithm on
the solutions C; and keeps the largest radius received from all nodes.
The base station (server side) rotates the coordinator according to an
estimate of the residual energy in each node. EDISKCO determines a
(4 4 e)-approximation of the optimal global clustering. Empirically, it
was shown that the algorithm outperforms the centralized Global Paral-
lel Guessing algorithm that was proposed by Cormode et al. [16], with
regard to accuracy as well as energy consumption.

Incorporating energy saving techniques from sensor node clustering
into methods for distributed data analysis, like regularly switching the
role of the central coordinator, seem to be a fruitful area of future re-
search. This not only concerns the clustering of sensor measurements,
but also methods for classification and prediction, like the ones presented
in the following section.

3. Classification in Wireless Sensor Networks

Collaborative target classification is an active area of research in the
WSN community. US government funded projects through DARPA and
Department of Defense (DoD) are interested in a variety of sensor net-
works applications for modern warfare. One such classic application is
multi-vehicle tracking and classification using distributed wireless sen-
sor networks. The goal here is two fold. Since sensors are deployed
across the hostile terrain, the first goal is to develop collaborative mod-
els which use the data of all sensors and then deploy distributed data
mining techniques to build such models using low power consumption
and communication overhead. A major advantage of using such col-
laborative techniques is to bolster the inference of one node using the
posterior of the other node. In essence, if one node can validate a hy-
pothesis, then in makes more sense to use it for subsequent inferencing
rather than starting from scratch for each node. This forms the sec-
ond goal of such inferencing technique. Such a collaborative system was
developed and deployed by Meesookho et al. [40] for identifying and
classifying vehicle types from a convoy of vehicles. The paper shows
that using confidence boosting, which uses the posterior of one node to
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do inference on the next node, the classification accuracy increases by
7%, while the collaborative data driven approach boosts the accuracy by
9%. Finally, the paper shows how collaborative mining techniques can
help in identifying and isolating the effects of multiple vehicles which is
itself a very hard problem due to signal interference.

A similar approach is discussed in the work by D’Costa and Sayeed
[20]. In their work they introduce the concept of collaborative signal
processing (CSP). This approach can be used to minimize the amount
of information that is passed among the sensor nodes. T'wo forms of CSP
are discussed in the paper: (1) data fusion: which exchanges low dimen-
sional feature vectors between the correlated nodes for optimal network
performance, and (2) decision fusion: which exchanges likelihood val-
ues among the independent nodes. The latter one is preferred in many
sensor network situations due to its low computational and communi-
cation overhead. This paper studies CSP algorithms for single target
classification based on multiple acoustic signals measured at different
nodes. One of the ways sensor networks can save power is by using
a region-based processing instead of all nodes communicating to each
other. A manager node is assigned to each region which coordinates the
communication among the nodes in each region and also across different
regions. In this model, single target classification consists of the follow-
ing steps: (1) target detection and classification: the first step is to use
CSP algorithm to detect the region in which the target is, and designate
it as the active region, (2) target localization: this step is used by the
manager nodes to localize the target using the energy detected at each
node, (3) target location prediction: past estimates are used by the man-
ager nodes to predict future values, and (4)active location determination:
when the target becomes close to any other region, that region is desig-
nated as the new active region and this process is repeated. This paper
studies three classifiers — a optimum maximum likelihood classifier, a
data averaging classifier that treats all measurements as correlated, and
a decision-fusion classifier that treats each observation as independent.
Experimental results on DARPA SensIT program data the sub-optimal
decision fusion classifier is the most attractive model in the sensor net-
work context.

Researchers have also published several papers on data classification
in sensor networks. One such method is the hierarchical decision tree
classification technique proposed by Cheng et al. [14]. The basic idea
of this method is to first construct a spanning tree encompassing all the
nodes in the system. Construction of the classifier (decision tree in this
context) begins with the leaves nodes of the spanning tree first building
a decision tree C; with only its local data and sending these upstream
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to the parent nodes in the spanning tree. The parent nodes of the
spanning tree then builds a new classifier by combining all the classifiers
it has received from its children and by subsampling a portion of the
dataset with same proportion of negative and positive examples. These
intermediate nodes then send the classifiers again upstream and the base
station builds a single classifier which represent all the data over all the
nodes. The paper discusses the fact that a short but wide spanning tree
increases the communication cost of sending the classifiers to the next
node but reduces the overall accuracy due to smaller number of hops,
while a tall but narrow tree suffers from the opposite effect. Finally,
the paper presents extensive experimental results on simulated wireless
testbed to show that this method offers better accuracy and energy
consumption compared to a baseline ensemble method in which meta
classifiers are learned independently at each node and then (majority)
voting is applied during test phase.

The above algorithm suffers from one major drawback — it requires
synchronization in every time step and hence can be expensive to de-
ploy for the next generation of large sensor networks. In a recent paper,
Bhaduri et al. [9] have proposed a decision tree learning algorithm which
can build the same tree on all the nodes in an asynchronous fashion. The
main building block of the algorithm is the scalable distributed majority
voting protocol first discussed in the paper by Wolff and Schuster [59].
Given a pair of real numbers a; and b; at each node, this algorithm de-
cides if ), a; > >, b; in a very communication efficient fashion, without
needing a node to exchange messages even if a; and b; are changing.
Based on this protocol, first, the authors show that comparison of two
features can be accomplished by concurrently running 4 majority votes.
The next step is to choose top 1-out-of-k attributes and this can be eas-
ily accomplished by running the previous comparison per attribute pair.
Finally, the tree can be built asynchronously by performing this 1 out
of k comparison for each level of the tree. First of all, this algorithm is
guaranteed to converge to the globally correct solution on convergence.
Extensive experimental results also show that the algorithm is commu-
nication efficient, even when the data is changing.

Probabilistic gossip based protocols have been used extensively for
many WSN algorithms due to their simplicity in implementation and
asymptotically guaranteed convergence. Distributed consensus algo-
rithms such as averaging, summation, max/min etc. can be efficiently
computed using gossip protocols in which a node randomly chooses an-
other node and exchanges information with it. This process continues
for some iterations whereby it can be shown that the error reduces ex-
ponentially at each iteration. Using such a protocol, Chiuso et al. [15]
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have proposed an algorithm for distributed classification and estimation
in wireless sensor networks. The data is modeled as

yi=0+T; +v;

where y;’s are the measurements at each sensor node, 6 € R is the com-
mon unknown parameter, 7; € {0,1} are the unknown discrete terms
which denotes the class label of each node, and v;’s are zero mean iid
Gaussian random variables with finite variance. The goal of each node is
to estimate 6 and T;. Due to the existence of 6, the final estimate would
require a consensus algorithm over all nodes. The paper develops a max-
imum likelihood estimator to estimate the unknown parameter and infer
the class labels in the distributed setting using a gossip based protocol.
The paper further proposes an EM algorithm for the case in which the
T;’s are assumed to be iid Bernoulli trials. Experimental results show
that the proposed methods have similar convergence rates compared to
existing methods but stronger robustness in various situations, for in-
stance when the offset of the misbehaving sensors is not known, or in
the presence of outliers.

Further reading: There are a number of other papers in these areas
which we point out here. Sun and Qi [54] discuss the fact that there
exist a particular set of features and a particular classifier which has the
best performance, in terms of highest accuracy with the least number of
features used. The authors discuss a method of dynamic target classifi-
cation in which an optimal set of features and classifiers are determined
based on some minimal value of cost function. Experimental results show
that this approach can significantly reduce the computational time and
also achieve better classification accuracy.

Eyal et al. [26] present an asynchronous algorithm for distributed
data classification over arbitrary connected networks. They present a
generic algorithm converges for any connected topology, data and class
distribution. The paper presents examples of two specific instantiations
of the generic algorithm: (1) a distance based classification scenario akin
to the famous k-means clustering, and (2) a gaussian mixture model data
distribution with expectation maximization for learning latent factors.

Duarte and Hu [22] discuss the application of vehicle classification in
sensor networks. Each sensor in the WSN is equipped with a micro-
phone or a geophone. Upon detection of the presence of a vehicle in
the vicinity of the sensor, the on-board processor first extracts features
in the frequency domain using FFT. The next step is to use a local
classifier at each node to generate a preliminary hypothesis about the
observation using only the data present at that node. The authors have
experimented with 3 classifiers — a k-nn based classifier, a maximum like-



226 MANAGING AND MINING SENSOR DATA

lihood classifier, and an SVM classifier. The local decision, together with
the estimated probability of being a correct decision is transmitted to a
local fusion center rather than sending the raw data. The fusion center
can then use maximum aposterior (MAP) estimate to compute the final
decision on the classification of the observation. Extensive experimental
results show that the MAP estimate with the nearest neighbor as the
local classifiers works well in vehicle classification.

Some other important work in this area include the distributed target
classification work by Brooks et al. [11], Gu et al. [29], and Kotecha et
al. [36].

Another area similar to distributed classification in WSN is distributed
event detection. The main goal is to detect frequent event patterns based
on some data mining models while minimizing the need for communi-
cation all the data from all the nodes to the sink. One such method
is the technique based on frequent itemset mining by Roémer [49][50].
First local association rules are learned at each node and then these
rules along with the support and confidence are sent to the sink. Ex-
perimental results demonstrate that this method is efficient and detects
correct frequent events. Wittenburg et al. [57] present a method for
distributed event detection. Their method consists of sampling the data
in the network, feature selection and then learning a model at each node.

Tavakoli et al. [55] consider a scenario in which targets are tracked
using an undersea acoustic sensor network. The sensor nodes report their
local classification result to a cluster head which then in turn performs
an evaluation of the data and may report the outcome to a base station.
As a confidence interval, the method considers the accuracy of these past
reports.

The system proposed by Yang et al. [61] is aimed at recognizing
human motions. It is a wearable sensor system consisting of eight sen-
sor nodes attached to the body of a person who may perform one out
of twelve actions. Accelerometer and gyroscope are used to detect the
motions and then features are extracted and classified at each node to
detect events. If a local classification is promising, the data of all nodes
is transmitted to the base station and classified once again. The classifi-
cation process identifies an action by matching the linear representation
of the extracted feature vector to one of several subspaces, each of which
corresponds to one type of action.

4. Outlier Detection in WSN

Outlier detection is one of the most critical tasks performed in WSNs
due to their ability to monitor hostile environments. In general, the
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term outlier has many definitions, but the core problem is to detect
points or observations from the dataset that are different compared to
the others. In WSN environments, this translates to finding points which
are compared to all the points that are sensed by the sensors [12]. There
are many applications of anomaly detection in WSNs. Here we briefly
list some of these here:

m  Environmental monitoring: sensors are deployed in harsh environ-
ments to monitor events that occur in natural environments

s Habitat monitoring of species or animals for conversation purposes
or for understanding their migration patterns

s Health and medical monitoring tasks in which the goal is to use
different kinds of non-intrusive wearable sensors (e.g. acoustic,
temperature, SO, pressure) to analyze the health of humans

m Industrial monitoring: sensors are used to sense the health or con-
dition of industrial processes

m Target tracking and surveillance, sensors are embedded in moving
targets to track them in real-time

In all of these applications, there is a real need for anomaly detection
for further analysis of abnormal observations. The task of outlier detec-
tion in WSN is extremely difficult mainly because of these reasons [27]:
(1) resource constraints, (2) high communication and computation cost,
(3) distributed streaming data, (4) asynchronous computation model,
(5) large scale deployment, and (6) dynamic network topology, to name
a few. In the remainder of this section we discuss several techniques for
outlier detection in WSNs following the taxonomy given in Chandola et
al. [12] and Zhang et al. [66].

4.1 Statistical approaches

In statistical approaches, the task is to model the probability distri-
bution of the data using parametric or non-parametric approaches and
then tag as outliers those data points which do not fit the modeled dis-
tribution.

Wu et al. [60] present two local techniques for identification of out-
lying sensors. These techniques employ the spatial correlation of the
readings existing among neighboring sensor nodes to detect bad sen-
sors. Each node computes the distance between its own reading and the
median reading of its neighboring sensors. A node is considered as an
outlying node if, the absolute value of this distance is sufficiently large
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compared to a pre-selected threshold. Accuracy of these outlier detec-
tion techniques is not relatively high due to the fact that they ignore the
temporal correlation of sensor readings.

Battencourt et al. [8] present a technique for outlier detection in
WSNs for ecosystem monitoring applications. The method exploits
spatio-temporal data distribution to find outliers. The basic idea is to
compare the measurement of one sensor with those in the spatial vicin-
ity and also with its measurements back in time. Then, if the deviation
of these values are greater than a user defined threshold (based on a
statistical significance test), a sensor detects an outlier. The obvious
drawback of this method is the choice of the outlier.

In a set of different approaches, researchers have proposed non-para-
metric methods for anomaly detection. Two such approaches are his-
togram computation and kernel density estimation (KDE). Sheng et al.
[52] present a histogram-based technique to identify global outliers in
WSN. Instead of transmitting raw data back to the base station for pro-
cessing, this technique first builds data histogram at local nodes and the
ships these statistics to the base station (sink). The sink uses this his-
togram information to extract data distribution from the network and
filters out the non-outliers. The identification of outliers is achieved by a
fixed threshold distance or the rank among all outliers. One of the major
drawbacks of this technique is the ability to process only one dimensional
data. Subramaniam et al. [53] and Palpanas et al. [45] present tech-
niques for outlier detection using kernel density estimation. Instead of
comparing all the raw observations, the technique fits kernel densities at
each of the observation points which considerably smooths the values.
Then user defined thresholds are applied in order to identify outliers.
Experimental results show that these techniques achieve high accuracy
in terms of estimating data distribution and high detection rate while
consuming low memory usage and message transmission.

4.2 Nearest neighbor based approaches

Nearest neighbor approaches use distance to other points to compute
an outlier. One of the widely used definitions, based on the original
idea of Knorr et al. [35], is that outliers are those points which are very
far from its nearest neighbors. Many variants of this definition have
been proposed based on the definition of distance and the threshold for
choosing how “far”. One practical definition uses Euclidean distance
and a user defined threshold or the number of desired outliers.

Such a definition has been used by Branch et al. [10] to find global
outliers in WSNs. The basic idea is to use a set of local rules by which a
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node determines outliers in its local dataset, and then broadcasts them to
other nodes for validation. The neighboring nodes repeat the procedure
until all of the sensor nodes in the network eventually agree on the
global outliers. This technique can be flexible with respect to multiple
existing distance-based outlier detection techniques. It has two major
advantages: (1) the outliers found this method are provably the same
that a centralized algorithm would find, and (2) the algorithm can easily
adopt to data and network changes. Because of these two advantages,
the technique is greatly suitable for WSNs. However, one drawback of
this method is that it requires a node to broadcast all the outliers to all
the other nodes for validation.

Zhang et al. [65] propose a distance-based technique to identify n
global outliers in continuous query processing applications of sensor net-
works. To overcome the broadcast issue of Branch et al. [10], [65] adopts
the structure of aggregation tree that do not require broadcasting of each
node in the network. Each node in the tree transmits some useful data
to its parent after collecting all the data sent from its children. The sink
then approximates the top n global outliers and sends these outliers to
all the nodes in the network for verification. If any node disagrees on
the global results, it will send extra data to the sink again for outlier
detection. This procedure is repeated until all the nodes in the network
agree on the global results calculated by the sink. A major drawback of
this technique is that it requires a tree topology to be overlaid on top of
the network and hence not suitable for any topology types.

4.3 Classification based approaches

Given examples of two kinds, an outlier detection problem can be
transformed to a classification problem. This trick has been widely ex-
plored in the data mining community and Chandola et al. [12] presents a
good overview on this topic. Even in the area of WSN;, the classification
techniques that we have presented in Section 3 can be applied for outlier
detection in WSNs. One such example is the one-class support vector
machines algorithm that can learn a non-linear hyper surface via the
kernel trick. Rajasegarar et al. [48] use this model for outlier detection.
In the first phase of this technique, a local model is learned at each node
and then points which are outside this model are sent to the sink node
along with the model. These local outliers are then validated and the
global set is determined.

Two other approaches have been explored for classification in WSNs.
Bayesian approaches such as naive bayes, dynamic bayes and bayesian
belief propagation models have been used by Elnahrawy and Nath [23]
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and others. Finally, spectral clustering methods using eigen decomposi-
tion techniques have been proposed by Chatzigiannakis et al. [13].

5. Conclusions

Distributed data mining will continue to play an important role in
analysis of data in modern sensor networks. Since computation is sensor
networks is greatly constrained by the various challenges facing a mod-
ern WSN, a need breed of data mining algorithms need to be developed
which can co-analyze the data sensed by all the sensors by paying care-
ful attention to computation, communication and any other constraints.
To circumvent this problem, several algorithms have been proposed that
can effectively handle the harsh environments of WSNs. In this chapter
we have discussed three such topics related to data mining in sensor net-
works, viz., clustering, classification and outlier detection. Of course, we
have only been able to scratch the surface of this vast area of research.
With WSNs being deployed in many realms of life for monitoring pur-
poses, distributed data mining is likely to play a critical role and thus
offers plenty of opportunities for both novel algorithm development and
data analysis.
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