
Chapter 9

A SURVEY OF SYNOPSIS CONSTRUCTION
IN DATA STREAMS

Charu C. Aggarwal
IBM T. J. Watson Research Center
Hawthorne, NY 10532

charu@us.ibm.com

Philip S. Yu
IBM T. J. Watson Research Center
Hawthorne, NY 10532

psyu@us.ibm.com

Abstract
The large volume of data streams poses unique space and time constraintson

the computation process. Many query processing, database operations, and min-
ing algorithms require efficient execution which can be difficult to achievewith
a fast data stream. In many cases, it may be acceptable to generateapproximate
solutionsfor such problems. In recent years a number ofsynopsis structures
have been developed, which can be used in conjunction with a variety of mining
and query processing techniques in data stream processing. Some keysynopsis
methods include those of sampling, wavelets, sketches and histograms. In this
chapter, we will provide a survey of the key synopsis techniques, and the min-
ing techniques supported by such methods. We will discuss the challengesand
tradeoffs associated with using different kinds of techniques, and the important
research directions for synopsis construction.

1. Introduction

Data streams pose a unique challenge to many database and data mining
applications because of the computational and storage costs associated with
the large volume of the data stream. In many cases, synopsis data structures

170 DATA STREAMS: MODELS AND ALGORITHMS

and statistics can be constructed from streams which are useful for a variety of
applications. Some examples of such applications are as follows:

Approximate Query Estimation: The problem of query estimation is
possibly the most widely used application of synopsis structures [11].
The problem is particularly important from an efficiency point of view,
since queries usually have to be resolved in online time. Therefore, most
synopsis methods such as sampling, histograms, wavelets and sketches
are usually designed to be able to solve the query estimation problem.

Approximate Join Estimation: The efficient estimation of join size is a
particularly challenging problem in streams when the domain of the join
attributes is particularly large. Many methods [5, 26, 27] have recently
been designed for efficient join estimation over data streams.

Computing Aggregates:In many data stream computation problems, it
may be desirable to compute aggregate statistics [40] over data streams.
Some applications include estimation of frequency counts, quantiles, and
heavy hitters [13, 18, 72, 76]. A variety of synopsis structures such as
sketches or histograms can be useful for such cases.

Data Mining Applications: A variety of data mining applications such
as change detection do not require to use the individual data points, but
only require a temporal synopsis which provides an overview of the be-
havior of the stream. Methods such as clustering [1] and sketches [88]
can be used for effective change detection in data streams. Similarly,
many classification methods [2] can be used on a supervised synopsis of
the stream.

The design and choice of a particular synopsis method depends on the problem
being solved with it. Therefore, the synopsis needs to be constructed in a
way which is friendly to the needs of the particular problem being solved.
For example, a synopsis structure used for query estimation is likely to be very
different from a synopsis structure used for data mining problems such as change
detection and classification. In general, we would like to construct the synopsis
structure in such a way that it has wide applicability across broad classes of
problems. In addition, the applicability to data streams makes the efficiency
issue of space and time-construction critical. In particular, the desiderata for
effective synopsis construction are as follows:

Broad Applicability: Since synopsis structures are used for a variety
of data mining applications, it is desirable for them to have as broad
an applicability as possible. This is because one may desire to use the
underlying data stream for as many different applications. If synopsis
construction methods have narrow applicability, then a different structure

A Survey of Synopsis Construction in Data Streams 171

will need to be computed for each application. This will reduce the time
and space efficiency of synopsis construction.

One Pass Constraint:Since data streams typically contain a large num-
ber of points, the contents of the stream cannot be examined more than
once during the course of computation. Therefore, all synopsis construc-
tion algorithms are designed under a one-pass constraint.

Time and Space Efficiency:In many traditional synopsis methods on
static data sets (such as histograms), the underlying dynamic program-
ming methodologies require super-linear space and time. This is not
acceptable for a data stream. For the case of space efficiency, it is not
desirable to have a complexity which is more than linear in the size of
the stream. In fact, in some methods such as sketches [44], the space
complexity is often designed to be logarithmic in thedomain-sizeof the
stream.

Robustness:The error metric of a synopsis structure needs to be designed
in a robust way according to the needs of the underlying application. For
example, it has often been observed that some wavelet based methods for
approximate query processing may be optimal from a global perspective,
but may provide very large error on some of the points in the stream [65].
This is an issue which needs the design of robust metrics such as the
maximum error metric for stream based wavelet computation.

Evolution Sensitive: Data Streams rarely show stable distributions, but
rapidly evolve over time. Synopsis methods for static data sets are often
not designed to deal with the rapid evolution of a data stream. For this
purpose, methods such as clustering [1] are used for the purpose of syn-
opsis driven applications such as classification [2]. Carefully designed
synopsis structures can also be used for forecasting futuristic queries[3],
with the use of evolution-sensitive synopsis.

There are a variety of techniques which can be used for synopsis construction
in data streams. We summarize these methods below:

Sampling methods: Sampling methods are among the most simple
methods for synopsis construction in data streams. It is also relatively
easy to use these synopsis with a wide variety of application since their
representation is not specialized and uses the same multi-dimensional
representation as the original data points. In particular reservoir based
sampling methods [92] are very useful for data streams.

Histograms: Histogram based methods are widely used for static data
sets. However most traditional algorithms on static data sets require

172 DATA STREAMS: MODELS AND ALGORITHMS

super-linear time and space. This is because of the use of dynamic pro-
gramming techniques for optimal histogram construction. Their exten-
sion to the data stream case is a challenging task. A number of recent
techniques [37] discuss the design of histograms for the dynamic case.

Wavelets: Wavelets have traditionally been used in a variety of image and
query processing applications. In this chapter, we will discuss the issues
and challenges involved in dynamic wavelet construction. In particular,
the dynamic maintenance of the dominant coefficients of the wavelet
representation requires some novel algorithmic techniques.

Sketches: Sketch-based methods derive their inspiration from wavelet
techniques. In fact, sketch based methods can be considered a ran-
domized version of wavelet techniques, and are among the most space-
efficient of all methods. However, because of the difficulty of intuitive
interpretations of sketch based representations, they are sometimes diffi-
cult to apply to arbitrary applications. In particular, the generalization of
sketch methods to the multi-dimensional case is still an open problem.

Micro-cluster based summarization:A recent micro-clustering method
[1] can be used be perform synopsis construction of data streams. The
advantage of micro-cluster summarization is that it is applicable to the
multi-dimensional case, and adjusts well to the evolution of the under-
lying data stream. While the empirical effectiveness of the method is
quite good, its heuristic nature makes it difficult to find good theoretical
bounds on its effectiveness. Since this method is discussed in detail in
another chapter of this book, we will not elaborate on it further.

In this chapter, we will provide an overview of the different methods for synopsis
construction, and their application to a variety of data mining and database
problems. This chapter is organized as follows. In the next section, we will
discuss the sampling method and its application to different kinds of data mining
problems. In section 3, we will discuss the technique of wavelets for data
approximation. In section 4, we will discuss the technique of sketches for
data stream approximation. The method of histograms is discussed in section
4. Section 5 discusses the conclusions and challenges in effective data stream
summarization.

2. Sampling Methods

Sampling is a popular tool used for many applications, and has several ad-
vantages from an application perspective. One advantage is that samplingis
easy and efficient, and usually provides anunbiasedestimate of the underlying
data withprovable error guarantees. Another advantage of sampling methods

A Survey of Synopsis Construction in Data Streams 173

is that since they use the original representation of the records, they areeasy to
use with any data mining application or database operation. In most cases, the
error guarantees of sampling methods generalize to the mining behavior of the
underlying application. Many synopsis methods such as wavelets, histograms,
and sketches are not easy to use for the multi-dimensional cases. The random
sampling technique is often the only method of choice for high dimensional
applications.

Before discussing the application to data streams, let us examine some prop-
erties of the random sampling approach. Let us assume that we have a database
D containingN points which are denoted byX1 . . . XN . Let us assume that
the functionf(D) represents an operation which we wish to perform on the
databaseD. For examplef(D) may represent the mean or sum of one of the
attributes in databaseD. We note that a random sampleS from databaseD
defines a random variablef(S) which is (often) closely related tof(D) for
many commonly used functions. It is also possible to estimate the standard
deviation off(S) in many cases. In the case ofaggregation basedfunctions
in linear separable form (eg. sum, mean), the law of large numbers allows us
to approximate the random variablef(S) as a normal distribution, and char-
acterize the value off(D) probabilistically. However, not all functions are
aggregation based (eg. min, max). In such cases, it is desirable to estimate the
meanµ and standard deviationσ of f(S). These parameters allows us to design
probabilistic boundson the value off(S). This is often quite acceptable as an
alternative to characterizing the entire distribution off(S). Such probabilistic
bounds can be estimated using a number of inequalities which are also often
referred to astail bounds.

The markov inequality is a weak inequality which provides the following
bound for the random variableX:

P (X > a) ≤ E[X]/a = µ/a (9.1)

By applying the Markov inequality to the random variable(X − µ)2/σ2, we
obtain the Chebychev inequality:

P (|X − µ| > a) ≤ σ2/a2 (9.2)

While the Markov and Chebychev inequalities are farily general inequalities,
they are quite loose in practice, and can be tightened when the distribution
of the random variableX is known. We note that the Chebychev inequality is
derived by applying the Markov inequality on a function of the random variable
X. Even tighter bounds can be obtained when the random variableX shows
a specific form, by applying the Markov inequality to parameterized functions
of X and optimizing the parameter using the particular characteristics of the
random variableX.

174 DATA STREAMS: MODELS AND ALGORITHMS

The Chernoff bound [14] applies whenX is the sum of several independent
and identical Bernoulli random variables, and has a lower tail bound as well as
an upper tail bound:

P (X < (1 − δ)µ) ≤ e−µδ2/2 (9.3)

P (X > (1 + δ)µ) ≤ max{2−δµ, e−µδ2/4} (9.4)

Another kind of inequality often used in stream mining is the Hoeffding
inequality. In this inequality, we bound the sum ofk independent bounded
random variables. For example, for a set ofk independent random variables
lying in the range[a, b], the sum of thesek random variablesX satisfies the
following inequality:

P (|X − µ| > δ) ≤ 2e−2k·δ2/(b−a)2 (9.5)

We note that the Hoeffding inequality is slightly more general than the Cher-
noff bound, and both bounds have similar form for overlapping cases.These
bounds have been used for a variety of problems in data stream mining suchas
classification, and query estimation [28, 58]. In general, the method of random
sampling is quite powerful, and can be used for a variety of problems such as
order statistics estimation, and distinct value queries [41, 72].

In many applications, it may be desirable to pick out a sample (reservoir)
from the stream with a pre-decided size, and apply the algorithm of interest
to this sample in order to estimate the results. One key issue in the case of
data streams is that we are not sampling from a fixed data set withknown size
N . Rather, the value ofN is unknown in advance, and the sampling must be
performed dynamically as data points arrive. Therefore, in order to maintain
an unbiased representation of the underlying data, the probability of including
a point in the random sample should not be fixed in advance, but should change
with progression of the data stream. For this purpose, reservoir based sampling
methods are usually quite effective in practice.

2.1 Random Sampling with a Reservoir

Reservoir based methods [92] were originally proposed in the context of
one-pass access of data from magnetic storage devices such as tapes.As in the
case of streams, the number of recordsN are not known in advance and the
sampling must be performed dynamically as the records from the tape are read.

Let us assume that we wish to obtain an unbiased sample of sizen from
the data stream. In this algorithm, we maintain a reservoir of sizen from the
data stream. The firstn points in the data streams are added to the reservoir
for initialization. Subsequently, when the(t+ 1)th point from the data stream
is received, it is added to the reservoir with probabilityn/(t + 1). In order

A Survey of Synopsis Construction in Data Streams 175

to make room for the new point, any of the current points in the reservoir are
sampled with equal probability and subsequently removed.

The proof that this sampling approach maintains the unbiased character of
the reservoir is straightforward, and uses induction ont. The probability of the
(t + 1)th point being included in the reservoir isn/(t + 1). The probability
of any of the lastt points being included in the reservoir is defined by the sum
of the probabilities of the events corresponding to whether or not the(t+ 1)th
point is added to the reservoir. From the inductive assumption, we know that the
first t points have equal probability of being included in the reservoir and have
probability equal ton/t. In addition, since the points remain in the reservoir
with equal probability of(n − 1)/n, the conditional probability of a point
(among the firstt points) remaining in the reservoir given that the(t+ 1) point
is added is equal to(n/t) · (n−1)/n = (n−1)/t. By summing the probability
over the cases where the(t+1)th point is added to the reservoir (or not), we get a
total probability of((n/(t+1))·(n−1)/t+(1−(n/(t+1)))·(n/t) = n/(t+1).
Therefore, the inclusion of all points in the reservoir has equal probability which
is equal ton/(t+1). As a result, at the end of the stream sampling process, all
points in the stream have equal probability of being included in the reservoir,
which is equal ton/N .

In many cases, the stream data may evolve over time, and the corresponding
data mining or query results may also change over time. Thus, the results of
a query over a more recent window may be quite different from the results
of a query over a more distant window. Similarly, the entire history of the
data stream may not relevant for use in a repetitive data mining application
such as classification. Recently, the reservoir sampling algorithm was adapted
to sample from a moving window over data streams [8]. This is useful for
data streams, since only a small amount of recent history is more relevant that
the entire data stream. However, this can sometimes be an extreme solution,
since one may desire to sample from varying lengths of the stream history.
While recent queries may be more frequent, it is also not possible to completely
disregard queries over more distant horizons in the data stream. A method in [4]
designs methods forbiased reservoir sampling, which uses a bias function to
regulate the sampling from the stream. This bias function is quite effective since
it regulates the sampling in a smooth way so that queries over recent horizons
are more accurately resolved. While the design of a reservoir for arbitrary
bias function is extremely difficult, it is shown in [4], that certain classes of
bias functions (exponential bias functions) allow the use of a straightforward
replacement algorithm. The advantage of a bias function is that it can smoothly
regulate the sampling process so that acceptable accuracy is retained formore
distant queries. The method in [4] can also be used in data mining applications
so that the quality of the results do not degrade very quickly.

176 DATA STREAMS: MODELS AND ALGORITHMS

2.2 Concise Sampling

The effectiveness of the reservoir based sampling method can be improved
further with the use of concise sampling. We note that the size of the reservoir
is sometimes restricted by the available main memory. It is desirable to increase
the sample size within the available main memory restrictions. For this purpose,
the technique of concise sampling is quite effective.

The method of concise sampling exploits the fact that the number ofdis-
tinct values of an attribute is often significantly smaller than the size of the data
stream. This technique is most applicable while performing univariate sampling
along a single dimension. For the case of multi-dimensional sampling, the sim-
ple reservoir based method discussed above is more appropriate. The repeated
occurrence of the same value can be exploited in order to increase the sample
size beyond the relevant space restrictions. We note that when the numberof
distinct values in the stream is smaller than the main memory limitations, the
entire stream can be maintained in main memory, and therefore sampling may
not even be necessary. For current desktop systems in which the memorysizes
may be of the order of several gigabytes, very large sample sizes can bemain
memory resident, as long as the number of distinct values does not exceed the
memory constraints. On the other hand, for more challenging streams with an
unusually large number of distinct values, we can use the following approach.

The sample is maintained as a setS of<value, count> pairs. For those pairs
in which the value of count is one, we do not maintain the count explicitly,
but we maintain the value as asingleton. The number of elements in this
representation is referred to as the footprint and is bounded above byn. We
note that the footprint size is always smaller than or equal to than the true sample
size. If the count of any distinct element is larger than 2, then the footprintsize
is strictly smaller than the sample size. We use athreshold parameterτ which
defines the probability of successive sampling from the stream. The value of
τ is initialized to be 1. As the points in the stream arrive, we add them to the
current sample with probability1/τ . We note that if the corresponding value-
count pair is already included in the setS, then we only need to increment the
count by 1. Therefore, the footprint size does not increase. On the other hand,
if the value of the current point is distinct from all the values encounteredso
far, or it exists as a singleton then the foot print increases by 1. This is because
either a singleton needs to be added, or a singleton gets converted to a value-
count pair with a count of 2. The increase in footprint size may potentially
require the removal of an element from sampleS in order to make room for the
new insertion. When this situation arises, we pick a new (higher) value of the
thresholdτ ′, and apply this threshold to the footprint in repeated passes. In each
pass, we reduce the count of a value with probabilityτ/τ ′, until at least one
value-count pair reverts to a singleton or a singleton is removed. Subsequent

A Survey of Synopsis Construction in Data Streams 177

Granularity (Order k) Averages DWT Coefficients
Φ values ψ values

k = 4 (8, 6, 2, 3, 4, 6, 6, 5) -
k = 3 (7, 2.5, 5, 5.5) (1, -0.5,-1, 0.5)
k = 2 (4.75, 5.25) (2.25, -0.25)
k = 1 (5) (-0.25)

Table 9.1. An Example of Wavelet Coefficient Computation

points from the stream are sampled with probability1/τ ′. As in the previous
case, the probability of sampling reduces with stream progression, thoughwe
have much more flexibility in picking the threshold parameters in this case.
More details on the approach may be found in [41].

One of the interesting characteristics of this approach is that the sampleS
continues to remain an unbiased representative of the data stream irrespective
of the choice ofτ . In practice,τ ′ may be chosen to be about10% larger than
the value ofτ . The choice of different values ofτ provides different tradeoffs
between the average (true) sample size and the computational requirements of
reducing the footprint size. In general, the approach turns out to be quite robust
across wide ranges of the parameterτ .

3. Wavelets

Wavelets [66] are a well known technique which is often used in databases
for hierarchical data decomposition and summarization. A discussion of ap-
plications of wavelets may be found in [10, 66, 89]. In this chapter, we will
discuss the particular case of theHaar Wavelet. This technique is particularly
simple to implement, and is widely used in the literature for hierarchical de-
composition and summarization. The basic idea in the wavelet technique is to
create a decomposition of the data characteristics into a set of wavelet functions
and basis functions. The property of the wavelet method is that the higher order
coefficients of the decomposition illustrate the broad trends in the data, whereas
the more localized trends are captured by the lower order coefficients.

We assume for ease in description that the lengthq of the series is a power of
2. This is without loss of generality, because it is always possible to decompose
a series into segments, each of which has a length that is a power of two. The
Haar Wavelet decomposition defines2k−1 coefficients of orderk. Each of these
2k−1 coefficients corresponds to a contiguous portion of the time series of length
q/2k−1. Theith of these2k−1 coefficients corresponds to the segment in the
series starting from position(i− 1) · q/2k−1 + 1 to positioni ∗ q/2k−1. Let us
denote this coefficient byψi

k and the corresponding time series segment bySi
k.

At the same time, let us define the average value of the first half of theSi
k by

178 DATA STREAMS: MODELS AND ALGORITHMS

(5)

(8, 6, 2, 3, 4, 6, 6, 5) 1

-0.5

-1

0.5

(7, 2.5, 5, 5.5) 2.25

-0.25

-0.25(4.75, 5.25)

5

Figure 9.1. Illustration of the Wavelet Decomposition

ai
k and the second half bybik. Then, the value ofψi

k is given by(ai
k − bik)/2.

More formally, if Φi
k denote the average value of theSi

k, then the value ofψi
k

can be defined recursively as follows:

ψi
k = (Φ2·i−1

k+1 − Φ2·i
k+1)/2 (9.6)

The set of Haar coefficients is defined by theΨi
k coefficients of order1

to log2(q). In addition, the global averageΦ1
1 is required for the purpose of

perfect reconstruction. We note that the coefficients of different order provide an
understanding of the major trends in the data at a particular level of granularity.
For example, the coefficientψi

k is half the quantity by which the first half of
the segmentSi

k is larger than the second half of the same segment. Since
larger values ofk correspond to geometrically reducing segment sizes, one can
obtain an understanding of the basic trends at different levels of granularity.
We note that this definition of the Haar wavelet makes it very easy to compute
by a sequence of averaging and differencing operations. In Table 9.1, we
have illustrated how the wavelet coefficients are computed for the case of the
sequence(8, 6, 2, 3, 4, 6, 6, 5). This decomposition is illustrated in graphical
form in Figure 9.1. We also note that each value can be represented as a
sum of log2(8) = 3 linear decomposition components. In general, the entire
decomposition may be represented as a tree of depth 3, which represents the

A Survey of Synopsis Construction in Data Streams 179

5

-0.25

2.25 -0.25

1 -0.5 -1

-

0.5

+

+ -

+
- + -

[1 2] [3 4] [5 6] [7 8]
RELEVANT RANGES

RELEVANT
RANGES

SERIES
AVERAGE

[1 8]

[1 8]

[5 8][1 4]

8 6 2 3 4 6 6 5

ORIGINAL SERIES VALUES RECONSTRUCTED FROM TREE PATH

+ - + - + -
+

Figure 9.2. The Error Tree from the Wavelet Decomposition

hierarchical decomposition of the entire series. This is also referred to asthe
error tree, and was introduced in [73]. In Figure 9.2, we have illustrated the
error tree for the wavelet decomposition illustrated in Table 9.1. The nodes
in the tree contain the values of the wavelet coefficients, except for a special
super-rootnode which contains the series average. This super-root node is not
necessary if we are only considering the relative values in the series, orthe
series values have been normalized so that the average is already zero.We
further note that the number of wavelet coefficients in this series is 8, which
is also the length of the original series. The original series has been replicated
just below the error-tree in Figure 9.2, and it can be reconstructed by adding
or subtracting the values in the nodes along the path leading to that value. We
note that each coefficient in a node should be added, if we use the left branch
below it to reach to the series values. Otherwise, it should be subtracted. This
natural decomposition means that an entire contiguous range along the series
can be reconstructed by using only the portion of the error-tree which is relevant
to it. Furthermore, we only need to retain those coefficients whose values are
significantly large, and therefore affect the values of the underlying series. In
general, we would like to minimize the reconstruction error by retaining only
a fixed number of coefficients, as defined by the space constraints.

We further note that the coefficients represented in Figure 9.1 are un-normalized.
For a time seriesT , letW1 . . .Wt be the corresponding basis vectors of length
t. In Figure 9.1, each component of these basis vectors is 0, +1, or -1. The list

180 DATA STREAMS: MODELS AND ALGORITHMS

of basis vectors in Figure 9.1 (in the same order as the corresponding wavelets
illustrated) are as follows:

(1 -1 0 0 0 0 0 0)
(0 0 1 -1 0 0 0 0)
(0 0 0 0 1 -1 0 0)
(0 0 0 0 0 0 1 -1)
(1 1 -1 -1 0 0 0 0)
(0 0 0 0 1 1 -1 -1)
(1 1 1 1 -1 -1 -1 -1)

The most detailed coefficients have only one +1 and one -1, whereas the
most coarse coefficient hast/2 +1 and -1 entries. Thus, in this case, we need
23 − 1 = 7 wavelet vectors. In addition, the vector(11111111) is needed to
represent the special coefficient which corresponds to the series average. Then,
if a1 . . . at be the wavelet coefficients for the wavelet vectorsW1 . . .Wt, the
time seriesT can be represented as follows:

T =
t∑

i=1

ai ·Wi (9.7)

=
t∑

i=1

(ai · |Wi|) ·
Wi

|Wi|
(9.8)

While ai is the un-normalized value from Figure 9.1, the valuesai · |Wi| rep-
resent normalized coefficients. We note that the values of|Wi| are different for
coefficients of different orders, and may be equal to either

√
2,
√

4 or
√

8 in this
particular example. For example, in the case of Figure 9.1, the broadest level un-
normalized coefficient is−0.25, whereas the corresponding normalized value
is −0.25 ·

√
8. After normalization, the basis vectorsW1 . . .Wt are orthonor-

mal, and therefore, the sum of the squares of the corresponding (normalized)
coefficients is equal to the energy in the time seriesT . Since the normalized co-
efficients provide a new coordinate representation after axis rotation, euclidian
distances between time series are preserved in this new representation.

The total number of coefficients is equal to the length of the data stream.
Therefore, for very large time series or data streams, the number of coeffi-
cients is also large. This makes it impractical to retain the entire decomposition
throughout the computation. The wavelet decomposition method provides a
natural method for dimensionality reduction, by retaining only the coefficients
with large absolute values. All other coefficients are implicitly approximated
to zero. This makes it possible to approximately represent the series with a
small number of coefficients. The idea is to retain only a pre-defined numberof
coefficients from the decomposition, so that the error of the reduced representa-
tion is minimized. Wavelets are used extensively for efficient and approximate

A Survey of Synopsis Construction in Data Streams 181

query processing of different kinds of data [11, 93]. They are particularly useful
for range queries, since contiguous ranges can easily be reconstructed with a
small number of wavelet coefficients. The efficiency of the query processing
arises from the reduced representation of the data. At the same time, since only
the small coefficients are discarded the results are quite accurate.

A key issue for the accuracy of the query processing is the choice of coef-
ficients which should be retained. While it may be tempting to choose only
the coefficients with large absolute values, this is not always the best choice,
since a more judicious choice of coefficients can lead to minimizing specific
error criteria. Two such metrics are the minimization of the mean square error
or the maximum error metric. The mean square error minimizes theL2 error
in approximation of the wavelet coefficients, whereas maximum error metrics
minimize the maximum error of any coefficient. Another related metric is the
relative maximum error which normalizes the maximum error with the absolute
coefficient value.

It has been shown in [89] that the choice of largestB (normalized) coefficients
minimizes the mean square error criterion. This should also be evident from the
fact that the normalized coefficients render an orthonormal decomposition, as a
result of which the energy in the series is equal to the sum of the squares of the
coefficients. However, the use of the mean square error metric is not without
its disadvantages. A key disadvantage is that a global optimization criterion
implies that the local behavior of the approximation is ignored. Therefore, the
approximation arising from reconstruction can be arbitrarily poor for certain
regions of the series. This is especially relevant in many streaming applications
in which the queries are performed only over recent time windows. In many
cases, the maximum error metric provides much more robust guarantees. In
such cases, the errors are spread out over the different coefficients more evenly.
As a result, the worst-case behavior of the approximation over differentqueries
is much more robust.

Two such methods for minimization of maximum error metrics are discussed
in [38, 39]. The method in [38] is probabilistic, but its application of probabilis-
tic expectation is questionable according to [53]. One feature of the method
in [38] is that the space is bounded only in expectation, and the variance in
space usage is large. The technique in [39] is deterministic and uses dynamic
programming in order to optimize the maximum error metric. The key idea in
[39] is to define a recursion over the nodes of the tree in top down fashion. For
a given internal node, we compute the least maximum error over the two cases
of either keeping or not keeping a wavelet coefficient of this node. In each case,
we need to recursively compute the maximum error for its two children over
all possible space allocations among two children nodes. While the method is
quite elegant, it is computationally intensive, and it is therefore not suitable for
the data stream case. We also note that the coefficient is defined according to

182 DATA STREAMS: MODELS AND ALGORITHMS

the wavelet coefficient definition i.e. half the difference between the left hand
and right hand side of the time series. While this choice of coefficient is optimal
for theL2 metric, this is not the case for maximum or arbitraryLp error metrics.

Another important topic in wavelet decomposition is that of the use of multi-
ple measures associated with the time series. The problem of multiple measures
refers to the fact that many quantities may simultaneously be tracked in a given
time series. For example, in a sensor application, one may simultaneously track
many variables such as temperature, pressure and other parameters at each time
instant. We would like to perform the wavelet decomposition over multiple
measures simultaneously. The most natural technique [89] is to perform the
decomposition along the different measures separately and pick the largest co-
efficients for each measure of the decomposition. This can be inefficient, since
a coordinate needs to be associated with each separately stored coefficient and it
may need to be stored multiple times. It would be more efficient to amortize the
storage of a coordinate across multiple measures. The trade-off is that while a
given coordinate may be the most effective representation for a particular mea-
sure, it may not simultaneously be the most effective representation across all
measures. In [25], it has been proposed to use an extended wavelet represen-
tation which simultaneously tracks multi-measure coefficients of the wavelet
representation. The idea in this technique is use a bitmap for each coefficient
set to determine which dimensions are retained, and store all coefficients for
this coordinate. The technique has been shown to significantly outperformthe
methods discussed in [89].

3.1 Recent Research on Wavelet Decomposition in Data
Streams

The one-pass requirement of data streams makes the problem of wavelet
decomposition somewhat more challenging. However, the case of optimizing
the mean square error criterion is relatively simple, since a choice of the largest
coefficients can preserve the effectiveness of the decomposition. Therefore, we
only need to dynamically construct the wavelet decomposition, and keep track
of the largestB coefficients encountered so far.

As discussed in [65], these methods can have a number of disadvantagesin
many situations, since many parts of the time series may be approximated very
poorly. The method in [39] can effectively perform the wavelet decomposi-
tion with maximum error metrics. However, since the method uses dynamic
programming, it is computationally intensive, it is quadratic in the length of
the series. Therefore, it cannot be used effectively for the case ofdata streams,
which require a one-pass methodology in linear time. in [51], it has been shown
that all weightedLm measures can be solved in a space-efficient manner using
only O(n) space. In [65], methods have been proposed for one-pass wavelet

A Survey of Synopsis Construction in Data Streams 183

synopses with the maximum error metric. It has been shown in [65], that by us-
ing a number of intuitive thresholding techniques, it is possible to approximate
the effectiveness of the technique discussed in [39]. A set of independent results
obtained in [55] discuss how to minimize non-euclidean and relative error with
the use of wavelet synopses. This includes metrics such as theLp error or the
relative error. Both the works of [65] and [55] were obtained independently
and at a similar time. While the method in [65] is more deeply focussed on the
use of maximum error metrics, the work in [55] also provides some worst case
bounds on the quality of the approximation. The method of [65] depends on
experimental results to illustrate the quality of the approximation. Another in-
teresting point made in [55] is that most wavelet approximation methods solve a
restricted version of the problem in which the wavelet coefficient for the basis is
defined to be half the difference between the left hand and right hand side of the
basis vectors. Thus, the problem is only one of picking the bestB coefficients
out of these pre-defined set of coefficients. While this is an intuitive method
for computation of the wavelet coefficient, and is optimal for the case of the
Euclidean error, it is not necessarily optimal for the case of theLm-metric. For
example, consider the time series vector(1, 4, 5, 6). In this case, the wavelet
transform is(4,−1.5,−1.5,−0.5). Thus, forB = 1, the optimal coefficient
picked is(4, 0, 0, 0) for anyLm-metric. However, for the case ofL∞-metric,
the optimal solution should be(3.5, 0, 0, 0), since3.5 represents the average
between the minimum and maximum value. Clearly, any scheme which re-
stricts itself only to wavelet coefficients defined in a particular way will not
even consider this solution [55]. Almost all methods for non-euclidean wavelet
computation tend to use this approach, possibly as a legacy from the Haar
method of wavelet decomposition. This restriction has been removed in [55]
and proposes a method for determining the optimalsynopsis coefficientsfor the
case of the weightedLm metric. We distinguish between synopsis coefficients
and wavelet coefficients, since the latter are defined by the simple subtractive
methodology of the Haar decomposition. A related method was also proposed
by Matias and Urieli [75] which discusses a near linear time optimal algorithm
for the weightedLm-error. This method is offline, and chooses a basis vector
which depends upon the weights.

An interesting extension of the wavelet decomposition method is one in
which multiple measuresare associated with the time series. A natural solu-
tion is to treat each measure separately, and store the wavelet decomposition.
However, this can be wasteful, since a coordinate needs to be stored with each
coefficient, and we can amortize this storage by storing the same coordinate
across multiple measures. A technique in [25] proposes the concept ofex-
tended waveletsin order to amortize the coordinate storage across multiple
measures. In this representation, one or more coefficients are stored witheach
coordinate. Clearly, it can be tricky to determine which coordinates to store,

184 DATA STREAMS: MODELS AND ALGORITHMS

since different coordinates will render larger coefficients across different mea-
sures. The technique in [25] uses a dynamic programming method to determine
the optimal extended wavelet decomposition. However, this method is not time
and space efficient. A method in [52] provides a fast algorithm whose space
requirement is linear in the size of the synopsis and logarithmic in the size of
the data stream.

Another important point to be noted is that the choice of the best wavelet
decomposition is not necessarily pre-defined, but it depends upon the particular
workload on which the wavelet decomposition is applied. Some interesting
papers in this direction [77, 75] design methods for workload aware wavelet
synopses of data streams. While this line of work has not been extensivelyre-
searched, we believe that it is likely to be fruitful in many data stream scenarios.

4. Sketches

The idea of sketches is essentially an extension of the random projection
technique [64] to the time series domain. The idea of using this technique for
determining representative trends in the time series domain was first observed
in [61]. In the method of random projection, we can reduce a data point of
dimensionalityd to an axis system of dimensionalityk by pickingk random
vectors of dimensionalityd and calculating the dot product of the data point
with each of these random vectors. Each component of thek random vectors
is drawn from the normal distribution with zero mean and unit variance. In
addition, the random vector is normalized to one unit in magnitude. It has
been shown in [64] that proportionalL2 distances between the data points are
approximately preserved using this transformation. The accuracy bounds of the
distance values are dependent on the value ofk. The larger the chosen value of
k, the greater the accuracy and vice-versa.

This general principle can be easily extended to the time series domain,
by recognizing the fact that the length of a time series may be treated as its
dimensionality, and correspondingly we need to compute a random vector of
length equal to the time series, and use it for the purpose of sketch computation.
If desired, the same computation can be performed over a sliding window of a
given length by choosing a random vector of appropriate size. As proposed in
[61], the following approximation bounds are preserved:

Lemma 9.1 LetL be a set of vectors of lengthl, for fixedǫ < 1/2, andk =
9 · log|L|/ǫ2. Consider a pair of vectorsu,w in L, such that the corresponding
sketches are denoted byS(u) andS(w) respectively. Then, we have:

(1 − ǫ) · ||u− w||2 ≤ ||S(u) − S(w)|| ≤ (1 + ǫ) · ||u− w||2 (9.9)

with probability1/2. Here||U − V ||2 is theL2 distance between two vectors
U andV .

A Survey of Synopsis Construction in Data Streams 185

The generalization to time series is fairly straightforward, and the work in
[61] makes two primary contributions in extending the sketch methodology to
finding time series trends.

4.1 Fixed Window Sketches for Massive Time Series

In this case, we wish to determine sliding window sketches with a fixed win-
dow lengthl. For each window of lengthl, we need to performl · k operations
for a sketch of sizek. Since there areO(n − l) sliding windows, this will
requireO(n · l · k) computations. Whenl is large, and is of the same order of
magnitude as the time series, the computation may be quadratic in the size of the
series. This can be prohibitive for very large time series, as is usually the case
with data streams. The key observation in [61], is that all such sketches can be
viewed as the problem of computing the polynomial convolution of the random
vector of appropriate length with the time series. Since the problem of poly-
nomial convolution can be computed efficiently using fast fourier transform,
this also means that the sketches may be computed efficiently. The problem of
polynomial convolution is defined as follows:

Definition 9.2 Given two vectorsA[1 . . . a] andB[1 . . . b], a ≥ b, their
convolution is the vectorC[1 . . . a+ b] whereC[k] =

∑b
i=1A[k− i] ·B[i] for

k ∈ [2, a+ b], with any out of range references assumed to be zero.

The key point here is that the above polynomial convolution can be computed
using FFT, inO(a · log(b)) operations rather thanO(a · b) operations. This
effectively means the following:

Lemma 9.3 Sketches of all subvectors of lengthl can be computed in time
O(n · k · log(l)) using polynomial convolution.

4.2 Variable Window Sketches of Massive Time Series

The method in the previous subsection discussed the problem of sketch com-
putation for a fixed window length. The more general version of the problem is
one in which we wish to compute the sketch for any subvector between length
l andu. In the worst-case this comprisesO(n2) subvectors, most of which
will have lengthO(n). Therefore, the entire algorithm may requireO(n3)
operations, which can be prohibitive for massive time series streams.

The key idea in [61] is to store apool of sketches. The size of this pool
is significantly smaller than the entire set of sketches needed. However, it is
carefully chosen so that the sketch of any sub-vector in the original vector can
be computed inO(1) time fairly accurately. In fact, it can be shown that the
approximate sketches computed using this approach satisfy a slightly relaxed
version of Lemma 9.1. We refer details to [61].

186 DATA STREAMS: MODELS AND ALGORITHMS

4.3 Sketches and their applications in Data Streams

In the previous sections we discussed the application of sketches to the prob-
lem of massive time series. Some of the methods such as fixed window sketch
computation are inherently offline. This does not suffice in many scenariosin
which it is desirable to continuously compute the sketch over the data stream.
Furthermore, in many cases, it is desirable to efficiently use this sketch in order
to work with a variety of applications such as query estimation. In this subsec-
tion, we will discuss the applications of sketches in the data stream scenario.
Our earlier discussion corresponds to a sketch of thetime seriesitself, and en-
tails the storage of the random vector required for sketch generation. While such
a technique can be used effectively for massive time series, it cannot always be
used for time series data streams.

However, in certain other applications, it may be desirable to track thefre-
quenciesof the distinct values in the data stream. In this case, if(u1 . . . uN)
be the frequencies ofN distinct values in the data stream, then the sketch is
defined by the dot product of the vector(u1 . . . uN) with a random vector of
sizeN . As in the previous case, the number of distinct itemsN may be large,
and therefore the size of the corresponding random vector will also be large. A
natural solution is to pre-generate a set ofk random vectors, and whenever the
ith item is received, we addrj

i to thejth sketch component. Therefore, thek
random vectors may need to be pre-stored in order to perform the computation.
However, the explicit storage of the random vector will defeat the purpose of
the sketch computation, because of the high space complexity.

The key here is to store the random vectors implicitly in the form of a seed,
which can be used to dynamically generate the vector. The key idea discussed
in [6] is that it is possible to generate the random vectors from a seed of size
O(log(N)) provided that one is willing to work with the restriction that the
values ofrj

i ∈ {−1,+1} are only 4-wise independent. We note that having
a seed of small size is critical in terms of the space-efficiency of the method.
Furthermore, it has been shown in [6] that the theoretical results only require
4-wise independence. In [44], it has also been shown how to use Reed-Muller
codes in order to generate 7-wise independent random numbers. These method
suffices for the purpose of wavelet decomposition of the frequency distribution
of different items.

Some key properties of the pseudo-random number generation approach and
the sketch representation are as follows:

A given componentrj
i can be generated in poly-logarithmic time from

the seed.

The dot-product of two vectors can be approximately computed using
only their sketch representations. This follows from the fact that the

A Survey of Synopsis Construction in Data Streams 187

dot product of two vectors is closely related to the Euclidean distance,
a quantity easily approximated by the random projection approach [64].
Specifically, ifU andV be two (normalized) vectors, then the euclidean
distance and dot product are related as follows:

||U − V ||2 = ||U ||2 + ||V ||2 − 2 · U · V (9.10)

(9.11)

This relationship can be used to establish bounds on the quality of the dot
product approximation of the sketch vectors. We refer to [44] for details
of the proof.

The first property ensures that the sketch components can be updated and main-
tained efficiently. Whenever theith value is received, we only need to addrj

i to
thejth component of the sketch vector. Since the quantityrj

i can be efficiently
computed, it follows that the update operations can be performed efficiently
as well. In the event that the data stream also incorporates frequency counts
with the arriving items (itemi is associated with frequency countf(i)), then
we simply need to addf(i) · rj

i to thejth sketch component. We note that
the efficient and accurate computation of the dot product of a given time series
with the random vector is a key primitive which can be used to compute many
properties such as the wavelet decomposition. This is because each wavelet
coefficient can be computed as the dot product of the wavelet basis with the
corresponding time series data stream; an approximation may be determined
by using only their sketches. The key issue here is that we also need the sketch
representation of the wavelet basis vectors, each of which may takeO(N) time
in the worst case. In general, this can be time consuming; however the workin
[44] shows how to do this in poly-logarithmic time for the special case in which
the vectors are Haar-basis vectors. Once the coefficients have been computed,
we only need to retain theB coefficients with the highest energy.

We note that one property of the results in [44] is that it uses the sketch
representation of the frequency distribution of theoriginal streamin order to
derive the wavelet coefficients. A recent result in [16] worksdirectly with the
sketch representation of the wavelet coefficients rather than the sketch repre-
sentation of the original data stream. Another advantage of the work in [16]
is that the query times are much more efficient, and the work extends to the
multi-dimensional domain. We note that while the wavelet representation in
[44] is space efficient, the entire synopsis structure may need to be touched for
updates and every wavelet coefficient must be touched in order to find the best
B coefficients. The technique in [16] reduces the time and space efficiencyfor
both updates and queries.

The method of sketches can be effectively used for second moment and join
estimation. First, we discuss the problem of second moment estimation [6] and

188 DATA STREAMS: MODELS AND ALGORITHMS

illustrate how it can be used for the problem of estimating the size of self joins.
Consider a set ofn quantitative valuesU = (u1 . . . uN). We would like to
estimate the second moment|U |2. Then, as before generate the random vectors
r1 . . . rk, (each of sizeN), and compute the dot product of these random vectors
with U to create the sketch components denoted byS1 . . . Sk. Then, it can be
shown that the expected value ofS2

i is equal to the second moment. In fact, the
approximation can be bounded with high probability.

Lemma 9.4 By selecting the median ofO(log(1/δ)) averages ofO(1/ǫ2)
copies ofS2

i , it is possible to guarantee the accuracy of the sketch based ap-
proximation to within1+ǫ with probability at least1 − δ.

In order to prove the above result, the first step is to show that the expected
value ofS2

i is equal to the second moment, and the variance of the variable
S2

i is at most twice the square of the expected value. The orthogonality of
the random projection vectors can be used to show the first result and the4-
wise independence of the values ofrj

i can be used to show the second. The
relationship between the expected values and variance imply that the Chebychev
inequality can be used to prove that the average ofO(1/ǫ2) copies provides
the ǫ bound with a constant probability which is at least7/8. This constant
probability can be tightened to at least1 − δ (for any small value ofδ) with
the use of the median ofO(log(1/δ)) independent copies of these averages.
This is because the median would lie outside theǫ-bound only if more than
log(1/δ)/2copies (minimum required number of copies) lie outside theǫbound.
However, the expected number of copies which lie outside theǫ-bound is only
log(1/δ)/8, which is less than above-mentioned required number of copies by
3 · log(1/δ)/8. The Chernoff tail bounds can then be applied on the random
variable representing the number of copies lying outside theǫ-bound. This can
be used to show that the probability of more than half the log(1/δ) copies lying
outside theǫ-bound is at mostδ. Details of the proof can be found in [6].

We note that the second moment immediately provides an estimation for
self-joins. If ui be the number of items corresponding to theith value, then
the second moment estimation is exactly the size of the self-join. We further
note that the dot product function is not the only one which can be estimated
from the sketch. In general, many functions such as the dot product, theL2

distance, or the maximum frequency items can be robustly estimated from the
sketch. This is essentially because the sketch simply projects the time series
onto a new set of (expected) orthogonal vectors. Therefore many rotational
invariant properties such as theL2 distance, dot product, or second moment are
approximately preserved by the sketch.

A number of interesting techniques have been discussed in [5, 26, 27] in
order to perform the estimation more effectively over general joins and multi-
joins. Consider the multi-join problem on relationsR1, R2, R3, in which we

A Survey of Synopsis Construction in Data Streams 189

wish to join attributeA ofR1 with attributeB of R2, and attributeC ofR2 with
attributeD of R3. Let us assume that the join attribute onR1 with R2 hasN
distinct values, and the join attribute ofR2 with R3 hasM distinct values. Let
f(i) be the number of tuples inR1 with valuei for attributeA. Letg(i, j) be the
number of tuples inR2 with valuesi andj for attributesB andC respectively.
Let h(j) be the number of tuples inR3 with valuej for join attributeC. Then,
the total estimated join sizeJ is given by the following:

J =
N∑

i=1

M∑

j=1

f(i) · g(i, j) · h(j) (9.12)

In order to estimate the join size, we createtwo independentlygenerated fam-
ilies of random vectorsr1 . . . rk ands1 . . . sk. We dynamically maintain the
following quantities, as the stream points are received:

Zj
1 =

N∑

i=1

f(i) · rj
i (9.13)

Zj
2 =

N∑

i=1

M∑

k=1

g(i, k) · rj
k · sj

k (9.14)

Zj
3 =

M∑

k=1

h(k) · sj
k (9.15)

It can be shown [5], that the quantityZj
1 · Zj

2 · Zj
3 estimates the join size. We

can use the multiple components of the sketch (different values ofj) in order to
improve the accuracy. It can be shown that the variance of this estimate is equal
to theproduct of the self-join sizesfor the three different relations. Since the tail
bounds use the variance in order to provide quality estimates, a large value of
the variance can reduce the effectiveness of such bounds. This is particularly a
problem if the composite join has a small size, whereas the product of the self-
join sizes is very large. In such cases, the errors can be very large in relation to
the size of the result itself. Furthermore, the product of self-join sizes increases
with the number of joins. This degrades the results. We further note that the
error bound results for sketch based methods are proved with the use ofthe
Chebychev inequality, which depends upon a low ratio of the variance to result
size. A high ratio of variance to result size makes this inequality ineffective,
and therefore the derivation of worst-case bounds requires a greater number of
sketch components.

An interesting observation in [26] is that ofsketch partitioning. In this
technique, we intelligently partition the join attribute domain-space and use
it in order to compute separate sketches of each partition. The resulting join

190 DATA STREAMS: MODELS AND ALGORITHMS

estimate is computed as the sum over all partitions. The key observation here
is that intelligent domain partitioning reduces the variance of the estimate, and
is therefore more accurate for practical purposes. This method has also been
discussed in more detail for the problem of multi-query processing [27].

Another interesting trick for improving join size estimation is that ofsketch
skimming[34]. The key insight is that the variance of the join estimation is
highly affected by the most frequent components, which are typically small in
number. A high variance is undesirable for accurate estimations. Therefore, we
treat the frequent items in the stream specially, and can separately track them. A
skimmed sketch can be constructed by subtracting out the sketch components
of these frequent items. Finally, the join size can be estimated as a 4-wise
addition of the join estimation across two pairs of partitions. It has been shown
that this approach provides superior results because of the reduced variance of
the estimations from the skimmed sketch.

4.4 Sketches withp-stable distributions

In our earlier sections, we did not discuss the effect of the distribution from
which the random vectors are drawn. While the individual components of the
random vector were drawn from the normal distribution, this is not the only
possibility for sketch generation. In this section, we will discuss a special
set of distributions for the random vectors which are referred to asp-stable
distributions. A distributionL is said to bep-stable, if it satisfies the following
property:

Definition 9.5 For any set ofN i.i.d. random variablesX1 . . . XN drawn
from ap-stable distributionL, and any set of real numbersa1 . . . aN , the random
variable(

∑N
i=1 ai ·Xi)/(

∑N
i=1 a

p
i)

(1/p) is drawn fromL.

A classic example of thep-stable distribution is the normal distribution with
p = 2. In generalp-stable distributions can be defined forp ∈ (0, 2].

The use ofp-stable distributions has implications in the construction of
sketches. Recall, that theith sketch component is of the form

∑N
i=1 uj · rj

i ,
whereui is the frequency of theith distinct value in the data stream. If each
rj
i is drawn from ap-stable distribution, then the above sum is also a (scaled)
p-stable distribution, where the scale coefficient is given by(

∑N
i=1 u

p
i)

(1/p).
The ability to use theexact distributionof the sketch provides much stronger
results than just the use of mean and variance of the sketch components. We
note that the use of only mean and variance of the sketch components often
restricts us to the use of generic tail bounds (such as the Chebychev inequality)
which may not always be tight in practice. However, the knowledge of the
sketch distribution can potentially provide very tight bounds on the behaviorof
each sketch component.

A Survey of Synopsis Construction in Data Streams 191

An immediate observation is that the scale coefficient(
∑N

i=1 u
p
i)

(1/p) of
each sketch component is simply theLp-norm of the frequency distribution of
the incoming items in the data stream. By usingO(log(1/δ)/ǫ2) independent
sketch components, it is possible to approximate theLp norm within ǫ with
probability at least1− δ. We further note that the use of theL0 norm provides
the number of distinct values in the data stream. It has been shown in [17] that
by usingp → 0 (small values ofp), it is possible to closely approximate the
number of distinct values in the data stream.

Other Applications of Sketches. The method of sketches can be used for a
variety of other applications. Some examples of such applications include the
problem ofheavy hitters[13, 18, 76, 21], a problem in which we determine the
most frequent items over data streams. Other problems include those of finding
significant network differences over data streams [19] and finding quantiles
[46, 50] over data streams. Another interesting application is that of significant
differences between data streams [32, 33], which has applications in numerous
change detection scenarios. Another recent application to sketches hasbeen to
XML and tree-structured data [82, 83, 87]. In many cases, these synopses can
be used for efficient resolution of the structured queries which are specified in
the XQuery pattern-specification language.

Recently sketch based methods have found considerable applications to ef-
ficient communication of signals in sensor networks. Since sensors are battery
constrained, it is critical to reduce the communication costs of the transmission.
The space efficiency of the sketch computation approach implies that it can also
be used in the sensor network domain in order to minimize the communication
costs over different processors. In [22, 67, 50], it has been shown how to extend
the sketch method to distributed query tracking in data streams. A particularly
interesting method is the technique in [22] which reduces the communication
costs further by using sketch skimming techniques [34], in order to reducecom-
munication costs further. The key idea is to use models to estimate the future
behavior of the sketch, and make changes to the sketch only when there are
significant changes to the underlying model.

4.5 The Count-Min Sketch

One interesting variation of the sketching method for data streams is the
count-min sketch, which uses a hash-based sketch of the stream. The broad ideas
in the count-min sketch were first proposed in [13, 29, 30]. Subsequently, the
method was enhanced with pairwise-independent hash functions, formalized,
and extensively analyzed for a variety of applications in [20].

In the count-min sketch, we use⌈ln(1/δ)⌉ pairwise independent hash func-
tions, each of which map on to uniformly random integers in the range[0, e/ǫ],

192 DATA STREAMS: MODELS AND ALGORITHMS

wheree is the base of the natural logarithm. Thus, we maintain a total of
⌈ln(1/δ)⌉ hash tables, and there are a total ofO(ln(1/δ)/ǫ) hash cells. This
apparently provides a better space complexity than theO(ln(1/δ)/ǫ2) bound
of AMS sketches in [6]. We will discuss more on this point later.

We apply each hash function to any incoming element in the data stream, and
add the count of the element to each of the corresponding⌈ln(1/δ)⌉ positions
in the different hash tables. We note that because of collisions, the hash table
counts will not exactly correspond to the count of any element in the incoming
data stream. When incoming frequency counts are non-negative, the hash table
counts will over-estimate the true count, whereas when the incoming frequency
counts are either positive or negative (deletions), the hash table count could be
either an over-estimation or an under-estimation. In either case, the use of the
median count of the hash position of a given element among theO(ln(1/δ))
counts provided by the different hash functions provides a estimate whichis
within a3 · ǫ factor of theL1-norm of element counts with probability at least
1 − δ1/4 [20]. In other words, if the frequencies of theN different items are
f1 . . . fN , then the estimated frequency of the itemi lie betweenfi − 3 · ǫ ·∑N

i=1 |fi| andfi +3 · ǫ ·∑N
i=1 |fi| with probability at least1− δ1/4. The proof

of this result relies on the fact that the expected inaccuracy of a given entry j
is at mostǫ · ∑N

i=1 |fi|/e, if the hash function is sufficiently uniform. This is
because we expect the count of other (incorrect) entries which map ontothe
position ofj to be

∑
i∈[1,N],i6=j fi · ǫ/e for a sufficiently uniform hash function

with ⌈e/ǫ⌉ entries. This is at most equal toǫ · ∑N
i=1 |fi|/e. By the Markov

inequality, the probability of this number exceeding3 · ǫ ·∑N
i=1 |fi| is less than

1/(3·e) < 1/8. By using the earlier Chernoff bound trick (as in AMS sketches)
in conjunction with the median selection operation, we get the desired result.

In the case of non-negative counts, theminimum countof any of the ln(1/δ)
possibilities provides a tighterǫ-bound (of theL1-norm) with probability at
least1 − δ. In this case, the estimated frequency of itemi lies betweenfi and
fi + ǫ · ∑N

i=1 fi with probability at least1 − δ. As in the previous case, the
expected inaccuracy isǫ ·∑N

i=1 fi/e. This is less than the maximum bound by
a factor ofe. By applying the Markov inequality, it is clear that the probability
that the bound is violated for a given entry is1/e. Therefore, the probability
that it is violated by all log(1/δ) entries is at most(1/e)log(1/δ) = δ.

For the case of non-negative vectors, the dot product can be estimatedby
computing the dot product on the corresponding entries in the hash table. Each
of the ⌈ln(1/δ)⌉ such dot products is an over estimate, and the minimum of
these provides anǫ bound with probability at least1−δ. The dot product result
immediately provides bounds for join size estimation. Details of extending the
method to other applications such as heavy hitters and quantiles may be found

A Survey of Synopsis Construction in Data Streams 193

in [20]. In many of these methods, the time and space complexity is bounded
above byO(ln(1/δ)/ǫ), which is again apparently superior to the AMS sketch.

As noted in [20], theǫ-bound in the count-min sketch cannot be directly com-
pared with that of the AMS sketch. This is because the AMS sketch providesthe
ǫ-bound as a function of theL2-norm, whereas the method in [20] provides the
ǫ-bound only in terms of theL1-norm. TheL1-norm can bequadraticallylarger
(than theL2-norm) in the most challenging case of non-skewed distributions,
and the ratio between the two may be as large as

√
N . Therefore, theequivalent

value ofǫ in the count-min sketch can be smaller than that in the AMS sketch
by a factor of

√
N . SinceN is typically large, and is in fact the motivation of

the sketch-based approach, theworst-casetime and space complexity of a truly
equivalent count-min sketch may besignificantlylarger for practical values of
ǫ. While this observation has been briefly mentioned in [20], there seems to be
some confusion on this point in the current literature. This is because of the
overloaded use of the parameterǫ, which has different meaning for the AMS
and count-min sketches. For the skewed case (which is quite common), the
ratio of theL1-norm to theL2-norm reduces. However, since this case is less
challenging, the general methods no longer remain relevant, and a number of
other specialized methods (eg. sketch skimming [34]) exist in order to improve
the experimental and worst-case effectiveness of both kinds of sketches. It
would be interesting to experimentally compare the count-min and AMS meth-
ods to find out which is superior in different kinds of skewed and non-skewed
cases. Some recent results [91] seem to suggest that the count-min sketch is
experimentally superior to the AMS sketch in terms of maintaining counts of
elements. On the other hand, the AMS sketch seems to be superior in terms
of estimating aggregate functions such as theL2-norm. Thus, the count-min
sketch does seem to have a number of practical advantages in many scenarios.

4.6 Related Counting Methods: Hash Functions for
Determining Distinct Elements

The method of sketches is a probabilistic counting method whereby a ran-
domized function is applied to the data stream in order to perform the counting
in a space-efficient way. While sketches are a good method to determinelarge
aggregate signals, they are not very useful for counting infrequently occur-
ring items in the stream. For example, problems such as the determination of
the number of distinct elements cannot be performed with sketches. For this
purpose, hash functions turn out to be a useful choice.

Consider a hash function that renders a mapping from a given word to an
integer in the range[0, 2L − 1]. Therefore, the binary representation of that
integer will have lengthL. The position (least significant and rightmost bit is
counted as 0) of the rightmost 1-bit of the binary representation of that integer

194 DATA STREAMS: MODELS AND ALGORITHMS

is tracked, and the largest such value is retained. This value is logarithmically
related to the number of distinct elements [31] in the stream.

The intuition behind this result is quite simple. For a sufficiently uniformly
distributed hash function, the probability of theith bit on the right taking on the
first 1-value is simply equal to2−i−1. Therefore, forN distinct elements, the
expected number of records taking on theith bit as the first 1-value is2−i−1 ·N .
Therefore, wheni is picked larger than log(N), the expected number of such
bitstrings falls off exponentially less than 1. It has been rigorously shown[31]
that the expected position of the rightmost bitE[R] is logarithmically related
to the number of distinct elements as follows:

E[R] = log2(φN), φ = 0.77351 (9.16)

The standard deviationσ(R) = 1.12. Therefore, the value ofR provides an
estimate for the number of distinct elementsN .

The hash function technique is very useful for those estimations in which
non-repetitive elements have the same level of importance as repetitive ele-
ments. Some examples of such functions are those of finding distinct values
[31, 43], mining inverse distributions [23], or determining the cardinality of set
expressions [35]. The method in [43] uses a technique similar to that discussed
in [31] in order to obtain a random sample of the distinct elements. This is then
used for estimation. In [23], the problem of inverse distributions is discussed,
in which it is desirable to determine the elements in the stream with a particular
frequency level. Clearly such an inverse query is made difficult by the fact
that a query for an element with very low frequency is equally likely to that of
an element with very high frequency. The method in [23] solves this problem
using a hash based approach similar to that discussed in [31]. Another related
problem is that of finding the number ofdistinct elementsin a join after elim-
inating duplicates. For this purpose, a join-distinct sketch (or JD-Sketch)was
proposed in [36], which uses a 2-level adaptation of the hash function approach
in [31].

4.7 Advantages and Limitations of Sketch Based Methods

One of the key advantages of sketch based methods is that they require space
which is sublinear in the data size being considered. Another advantage of
sketch based methods that it is possible to maintain sketches in the presence
of deletions. This is often not possible with many synopsis methods such as
random samples. For example, when theith item with frequencyf(i) is deleted,
thejth component of the sketch can be updated by subtractingf(i) · rj

i from it.
Another advantage of using sketch based methods is that they are extraordinarily
space efficient, and require space which is logarithmic in thenumber of distinct
itemsin the stream. Since the number of distinct items is significantly smaller
than the size of the stream itself, this is an extremely low space requirement.

A Survey of Synopsis Construction in Data Streams 195

We note that sketches are based on the Lipshitz embeddings, which preserve a
number of aggregate measures such as theLp norm or the dot product. However,
the entire distribution on the data (including the local temporal behavior) are
not captured in the sketch representation, unless one is willing to work with a
much larger space requirement.

Most sketch methods are based on analysis along a single dimensional stream
of data points. Many problems in the data stream scenario are inherently multi-
dimensional, and may in fact involve hundreds or thousands of independent and
simultaneous data streams. In such cases, it is unclear whether sketch based
methods can be easily extended. While some recent work in [16] provides afew
limited methods for multi-dimensional queries, these are not easily extensible
for more general problems. This problem is not however unique to sketch based
methods. Many other summarization methods such as wavelets or histograms
can be extended in a limited way to the multi-dimensional case, and do not
work well beyond dimensionalities of 4 or 5.

While the concept of sketches is potentially powerful, one may question
whether sketch based methods have been used for the right problems in thedata
stream domain. Starting with the work in [6], most work on sketches focuses
on theaggregate frequencybehavior of individual items rather than the tempo-
ral characteristics of the stream. Some examples of such problems are those
of finding the frequent items, estimation offrequency moments, andjoin size
estimation. The underlying assumption of these methods is an extremely large
domain sizeof the data stream. The actual problems solved (aggregate fre-
quency counts, join size estimation, moments) are relatively simple for modest
domain sizes in many practical problems over very fast data streams. In these
cases, temporal information in terms of sequential arrival of items is aggregated
and therefore lost. Some sketch-based techniques such as those in [61]perform
temporal analysis over specific time windows. However, this method has much
larger space requirements. It seems to us that many of the existing sketch based
methods can be easily extended to the temporal representation of the stream. It
would be interesting to explore how these methods compare with other synopsis
methods for temporal stream representation.

We note that the problem of aggregate frequency counts is made difficult
only by the assumption ofvery large domain sizes, and not by the speed of
the stream itself. It can be argued that in most practical applications, the data
stream itself may be very fast, but the number of distinct items in the stream
may be of manageable size. For example, a motivating application in [44] uses
the domain of call frequencies of phone records, an application in which the
number of distinct items is bounded above by the number of phone numbers of
a particular phone company. With modern computers, it may even be possible
to hold the frequency counts of a few million distinct phone numbers in a main
memory array. In the event that main memory is not sufficient, many efficient

196 DATA STREAMS: MODELS AND ALGORITHMS

disk based index structures may be used to index and update frequency counts.
We argue that many applications in the sketch based literature which attempts to
find specific properties of the frequency counts (eg. second moments, joinsize
estimation, heavy hitters) may in fact be implemented trivially by using simple
main memory data structures, and the ability to do this will only increase over
time with hardware improvements. There are however a number of applica-
tions in which hardware considerations make the applications of sketch based
methods very useful. In our view, the most fruitful applications of sketch based
methods lie in its recent application to the sensor network domain, in which
in-network computation, storage and communication are greatly constrained by
power and hardware considerations [22, 67, 68]. Many distributed applications
such as those discussed in [9, 24, 70, 80] are particularly suited to this approach.

5. Histograms

Another key method for data summarization is that of histograms. In the
method of histograms, we essentially divide the data along any attribute into a set
of ranges, and maintain the count for each bucket. Thus, the space requirement
is defined by the number of buckets in the histogram. A naive representation
of a histogram would discretize the data into partitions of equal length (equi-
width partitioning) and store the frequencies of these buckets. At this point,we
point out a simple connection between the histogram representation and Haar
wavelet coefficients. If we construct the wavelet representation of thefrequency
distributionof a data set along any dimension, then the (non-normalized) Haar
coefficients of any order provide the difference in relative frequencies in equi-
width histogram buckets. Haar coefficients of different orders correspond to
buckets of different levels of granularity.

It is relatively easy to use the histogram for answering different kinds of
queries such as range queries, since we only need to determine the set ofbuckets
which lie within the user specified ranges [69, 81]. A number of strategies can
be devised for improved query resolution from the histogram [69, 81, 84, 85].

The key source of inaccuracy in the use of histograms is that the distribution
of the data points within a bucket is not retained, and is therefore assumed tobe
uniform. This causes inaccuracy because of extrapolation at the querybound-
aries which typically contain only a fractional part of a histogram. Thus, an
important design consideration in the construction of histograms is the determi-
nation of how the buckets in the histogram should be designed. For example,if
each range is divided into equi-width partitions, then the number of data points
would be distributed very unequally across different buckets. If suchbuck-
ets include the range boundary of a query, this may lead to inaccurate query
estimations.

A Survey of Synopsis Construction in Data Streams 197

Therefore, a natural choice is to pick equi-depth buckets, in which eachrange
contains an approximately equal number of points. In such cases, the maximum
inaccuracy of a query is equal to twice the count in any bucket. However, in
the case of a stream, the choice of ranges which would result in equi-depth
partitions is not known a-priori. We note that the design of equi-depth buckets
is exactly the problem of quantile estimation in data streams, since the equi-
depth partitions define different quantiles in the data.

A different choice for histogram construction is that of minimizing the fre-
quency variance of the different values within a bucket, so that the uniform
distribution assumption is approximately held for queries. This minimizes the
boundary error of extrapolation in a query. Thus, if a bucketB with count
C(B) contains the frequency ofl(B) elements, then average frequency of each
element in the bucket isC(B)/l(B). Letf1 . . . fl(B) be the frequencies of thel
values within the bucket. Then, the total variancev(B) of the frequencies from
the average is given by:

v(B) =
l∑

i=1

(fi − C(B)/l(B))2 (9.17)

Then, the total varianceV across all buckets is given by the following:

V =
∑

B

v(B) (9.18)

Such histograms are referred to asV-Optimal histograms. A different way of
looking at the V-optimal histogram is as a least squares fit to the frequency
distribution in the data. Algorithms for V-Optimal histogram construction have
been proposed in [60, 63]. We also note that the objective function to be op-
timized has the form of anLp-difference function between two vectors whose
cardinality is defined by the number of distinct values. In our earlier observa-
tions, we noted that sketches are particularly useful in tracking such aggregate
functions. This is particularly useful in the multi-dimensional case, where the
number of buckets can be very large as a result of the combination of a large
number of dimensions. Therefore sketch-based methods can be used for the
multi-dimensional case. We will discuss this in detail slightly later. We note
that a number of other objective functions also exist for optimizing histogram
construction [86]. For example, one can minimize the difference in the area
between the original distribution, and the corresponding histogram fit. Since
the space requirement is dictated by the number of buckets, it is also desirable to
minimize it. Therefore, the dual problem of minimizing the number of buckets,
for a given threshold on the error has been discussed in [63, 78].

One problem with the above definitions is that they use they use absolute
errors in order to define the accuracy. It has been pointed out in [73]that the

198 DATA STREAMS: MODELS AND ALGORITHMS

use of absolute error may not always be a good representation of the error.
Therefore, some methods for optimizing relative error have been proposed in
[53]. While this method is quite efficient, it is not designed to be a data stream
algorithm. Therefore, the design of relative error histogram construction for
the stream case continues to be an open problem.

5.1 One Pass Construction of Equi-depth Histograms

In this section, we will develop algorithms for one-pass construction of equi-
depth histograms. The simplest method for determination of the relevant quan-
tiles in the data is that of sampling. In sampling, we simply compute the
estimated quantileq(S) ∈ [0, 1] of the true quantileq ∈ [0, 1] on a random
sampleS of the data. Then, the Hoeffding inequality can be used to show
thatq(S) lies in the range(q − ǫ, q + ǫ) with probability at least1 − δ, if the
sample sizeS is chosen larger thanO(log(δ)/ǫ2). Note that this sample size is
a constant, and is independent of the size of the underlying data stream.

Letv be the value of the element at quantileq. Then the probability of includ-
ing an element inS with value less thanv is a Bernoulli trial with probabilityq.
Then the expected number of elements less thanv is q · |S|, and this number lies
in the interval(q+ǫ) with probability at least2 · e−2·|S|·ǫ2 (Hoeffding inequal-
ity). By picking a value of|S| = O(log(δ)/ǫ2), the corresponding results may
be easily proved. A nice analysis of the effect of sample sizes on histogram con-
struction may be found in [12]. In addition, methods for incremental histogram
maintenance may be found in [42]. TheO(log(δ)/ǫ2) space-requirements have
been tightened toO(log(δ)/ǫ) in a variety of ways. For example, the algorithms
in [71, 72] discuss probabilistic algorithms for tightening this bound, whereas
the method in [49] provides a deterministic algorithm for the same goal.

5.2 Constructing V-Optimal Histograms

An interesting offline algorithm for constructing V-Optimal histograms has
been discussed in [63]. The central idea in this approach is to set up a dynamic
programming recursion in which the partition for the last bucket is determined.
Let us consider a histogram drawn on theN ordered distinct values[1 . . . N].
Let Opt(k,N) be the error of the V-optimal histogram for the firstN values,
andk buckets.LetV ar(p, q) be the variances of values indexed byp throughq
in (1 . . . N). Then, if the last bucket contains valuesr . . . N , then the error of
the V-optimal histogram would be equal to the sum of the error of the(k− 1)-
bucket V-optimal histogram for values up tor− 1, added to the error of the last
bucket (which is simply the variance of the values indexed byr throughN).
Therefore, we have the following dynamic programming recursion:

Opt(k,N) = minr{Opt(k − 1, r − 1) + V ar(r,N)} (9.19)

A Survey of Synopsis Construction in Data Streams 199

We note that there areO(N ·k) entries for the setOpt(k,N), and each entry can
be computed inO(N) time using the above dynamic programming recursion.
Therefore, the total time complexity isO(N2 · k).

While this is a neat approach for offline computation, it does not really
apply to the data stream case because of the quadratic time complexity. In
[54], a method has been proposed to construct(1 + ǫ)-optimal histograms
in O(N · k2 · log(N)/ǫ) time andO(k2 · log(N)/ǫ) space. We note that the
number of bucketsk is typically small, and therefore the above time complexity
is quite modest in practice. The central idea behind this approach is that the
dynamic programming recursion of Equation 9.19 is the sum of a monotonically
increasing and a monotonically decreasing function inr. This can be leveraged
to reduce the amount of search in the dynamic programming recursion, if one
is willing to settle for a(1 + ǫ)-approximation. Details may be found in [54].
Other algorithms for V-optimal histogram construction may be found in [47,
56, 57].

5.3 Wavelet Based Histograms for Query Answering

Wavelet Based Histograms are a useful tool for selectivity estimation, and
were first proposed in [73]. In this approach, we construct the Haarwavelet
decomposition on the cumulative distribution of the data. We note that for a
dimension withN distinct values, this requiresN wavelet coefficients. As is
usually the case with wavelet decomposition, we retain theB Haar coefficients
with the largest absolute (normalized) value. The cumulative distributionθ(b)
at a given valueb can be constructed as the sum ofO(log(N)) coefficients on the
error-tree. Then for a range query[a, b], we only need to computeθ(b)− θ(a).

In the case of data streams, we would like to have the ability to maintain the
wavelet based histogram dynamically. In this case, we perform the maintenance
with frequency distributions rather than cumulative distributions. We note that
when a new data stream elementx arrives, the frequency distribution along a
given dimension gets updated. This can lead to the following kinds of changes
in the maintained histogram:

Some of the wavelet coefficients may change and may need to be updated.
An important observation here is that only theO(log(N)) wavelet coef-
ficients whose ranges includex may need to be updated. We note that
many of these coefficients may be small and may not be included in the
histogram in the first place. Therefore, only those coefficients which are
already included in the histogram need to be updated. For a coefficient
including a range of lengthl = 2q we update it by adding or subtract-
ing 1/l. We first update all the wavelet coefficients which are currently
included in the histogram.

200 DATA STREAMS: MODELS AND ALGORITHMS

Some of the wavelet coefficients which are currently not included in the
histogram may become large, and may therefore need to be added to it.
Let cmin be the minimum value of any coefficient currently included in
the histogram. For a wavelet coefficient with rangel = 2q, which is
not currently included in the histogram, we add it to be histogram with
probability1/(l∗cmin). The initial value of the coefficient is set tocmin.

The addition of new coefficients to the histogram will increase the total
number of coefficients beyond the space constraintB. Therefore, after
each addition, we delete the minimum coefficient in the histogram.

The correctness of the above method follows from the probabilistic counting
results discussed in [31]. It has been shown in [74] that this probabilisticmethod
for maintenance is effective in practice.

5.4 Sketch Based Methods for Multi-dimensional
Histograms

Sketch based methods can also be used to construct V-optimal histograms
in the multi-dimensional case [90]. This is a particularly useful application
of sketches since the number of possible buckets in theNd space increases
exponentially withd. Furthermore, the objective function to be optimized has
the form of anL2-distance function over the different buckets. This can be
approximated with the use of the Johnson-Lindenstrauss result [64].

We note that eachd-dimensional vector can be sketched overNd-space
using the same method as the AMS sketch. The only difference is that we
are associating the 4-wise independent random variables withd-dimensional
items. The Johnson-Lindenstrauss Lemma implies that theL2-distances in the
sketched representation (optimized overO(b · d · log(N)/ǫ2) possibilities) are
within a factor(1 + ǫ) of theL2-distances in the original representation for a
b-bucket histogram.

Therefore, if we can pick the buckets so thatL2-distances are optimized
in the sketched representation, this would continue to be true for the original
representation within factor(1+ ǫ). It turns out that a simple greedy algorithm
is sufficient to achieve this. In this algorithm, we pick the buckets greedily,
so that theL2 distances in the sketched representation are optimized in each
step. It can be shown [90], that this simple approach provides a near optimal
histogram with high probability.

6. Discussion and Challenges

In this paper, we provided an overview of the different methods for syn-
opsis construction in data streams. We discussed random sampling, wavelets,
sketches and histograms. In addition, many techniques such as clustering can

A Survey of Synopsis Construction in Data Streams 201

also be used for synopses construction. Some of these methods are discussed in
more detail in a different chapter of this book. Many methods such as wavelets
and histograms are closely related to one another. This chapter explores the
basic methodology of each technique and the connections between different
techniques. Many challenges for improving synopsis construction methods
remain:

While many synopses construction methods work effectively in indi-
vidual scenarios, it is as yet unknown how well the different methods
compare with one another. A thorough performance study needs to be
conducted in understanding the relative behavior of different synopsis
methods. One important point to be kept in mind is that the “trusty-old”
sampling method provides the most effective results in many practical
situations, where space is not constrained by specialized hardware con-
siderations (such as a distributed sensor network). This is especially true
for multi-dimensional data sets with inter-attribute correlations, in which
methods such as histograms and wavelets become increasingly ineffec-
tive. Sampling is however ineffective in counting measures which rely
on infrequentbehavior of the underlying data set. Some examples are
distinct element counting and join size estimation. Such a study may
reveal the importance and robustness of different kinds of methods in a
wide variety of scenarios.

A possible area of research is in the direction of designingworkload aware
synopsis construction methods [75, 78, 79]. While many methods for
synopsis construction optimize average or worst-case performance, the
real aim is to provide optimal results fortypicalworkloads. This requires
methods for modeling the workload as well as methods for leveraging
these workloads for accurate solutions.

Most synopsis structures are designed in the context of quantitative or
categorical data sets. It would be interesting to examine how synopsis
methods can be extended to the case of different kinds of domains such as
string, text or XML data. Some recent work in this direction has designed
methods for XCluster synopsis or sketch synopsis for XML data [82, 83,
87].

Most methods for synopsis construction focus on construction of optimal
synopsis over theentire data stream. In many cases, data streams may
evolve over time, as a result of which it may be desirable to construct
optimal synopsis over specific time windows. Furthermore, this window
may not be known in advance. This problem may be quite challenging to
solve in a space-efficient manner. A number of methods for maintaining
exponential histograms and time-decaying stream aggregates [15, 48]

202 DATA STREAMS: MODELS AND ALGORITHMS

try to account for evolution of the data stream. Some recent work on
biased reservoir sampling[4] tries to extend such an approach to sampling
methods.

We believe that there is considerable scope for extension of the currentsynopsis
methods to domains such as sensor mining in which the hardware requirements
force the use of space-optimal synopsis. However, the objective of constructing
a given synopsis needs to be carefully calibrated in order to take the specific
hardware requirements into account. While the broad theoretical foundations
of this field are now in place, it remains to carefully examine how these methods
may be leveraged for applications with different kinds of hardware, computa-
tional power, or space constraints.

References

[1] Aggarwal C., Han J., Wang J., Yu P. (2003) A Framework for Clustering
Evolving Data Streams.VLDB Conference.

[2] Aggarwal C, Han J., Wang J., Yu P. (2004). On-Demand Classification of
Data Streams.ACM KDD Conference.

[3] Aggarwal C. (2006) On Futuristic Query Processing in Data Streams.EDBT
Conference.

[4] Aggarwal C. (2006) On Biased Reservoir Sampling in the Presence of
Stream Evolution.VLDB Conference.

[5] Alon N., Gibbons P., Matias Y., Szegedy M. (1999) Tracking Joins andSelf
Joins in Limited Storage.ACM PODS Conference.

[6] Alon N., Matias Y., Szegedy M. (1996) The Space Complexity of Approxi-
mating the Frequency Moments.ACM Symposium on Theory of Computing,
pp. 20–29/

[7] Arasu A., Manku G. S. Approximate quantiles and frequency counts over
sliding windows.ACM PODS Conference, 2004.

[8] Babcock B., Datar M. Motwani R. (2002) Sampling from a Moving Window
over Streaming Data.ACM SIAM Symposium on Discrete Algorithms.

[9] Babcock B., Olston C. (2003) Distributed Top-K Monitoring.ACM SIG-
MOD Conference 2003.

[10] Bulut A., Singh A. (2003) Hierarchical Stream summarization in Large
Networks.ICDE Conference.

[11] Chakrabarti K., Garofalakis M., Rastogi R., Shim K. (2001) Approximate
Query Processing with Wavelets.VLDB Journal, 10(2-3), pp. 199–223.

[12] Chaudhuri S., Motwani R., Narasayya V. (1998) Random Samplingfor
Histogram Construction: How much is enough?ACM SIGMOD Confer-
ence.

A Survey of Synopsis Construction in Data Streams 203

[13] Charikar M., Chen K., Farach-Colton M. (2002) Finding Frequentitems
in data streams.ICALP.

[14] Chernoff H. (1952) A measure of asymptotic efficiency for tests ofa
hypothesis based on the sum of observations.The Annals of Mathematical
Statistics, 23:493–507.

[15] Cohen E., Strauss M. (2003). Maintaining Time Decaying Stream Aggre-
gates.ACM PODS Conference.

[16] Cormode G., Garofalakis M., Sacharidis D. (2006) Fast Approximate
Wavelet Tracking on Streams.EDBT Conference.

[17] Cormode G., Datar M., Indyk P., Muthukrishnan S. (2002) Comparing
Data Streams using Hamming Norms.VLDB Conference.

[18] Cormode G., Muthukrishnan S. (2003) What’s hot and what’s not: Track-
ing most frequent items dynamically.ACM PODS Conference.

[19] Cormode G., Muthukrishnan S. (2004) What’s new: Finding significant
differences in network data streams.IEEE Infocom.

[20] Cormode G., Muthukrishnan S. (2004) An Improved Data Stream Sum-
mary: The Count-Min Sketch and Its Applications.LATINpp. 29-38.

[21] Cormode G., Muthukrishnan S. (2004) Diamond in the Rough; Finding
Hierarchical Heavy Hitters in Data Streams.ACM SIGMOD Conference.

[22] Cormode G., Garofalakis M. (2005) Sketching Streams Through the Net:
Distributed approximate Query Tracking.VLDB Conference.

[23] Cormode G., Muthukrishnan S., Rozenbaum I. (2005) Summarizing and
Mining Inverse Distributions on Data Streams via Dynamic Inverse Sam-
pling. VLDB Conference.

[24] Das A., Ganguly S., Garofalakis M. Rastogi R. (2004) Distributed Set-
Expression Cardinality Estimation.VLDB Conference.

[25] Degligiannakis A., Roussopoulos N. (2003) Extended Wavelets formul-
tiple measures.ACM SIGMOD Conference.

[26] Dobra A., Garofalakis M., Gehrke J., Rastogi R. (2002) Processing com-
plex aggregate queries over data streams.SIGMOD Conference, 2002.

[27] Dobra A., Garofalakis M. N., Gehrke J., Rastogi R. (2004) Sketch-Based
Multi-query Processing over Data Streams.EDBT Conference.

[28] Domingos P., Hulten G. (2000) Mining Time Changing Data Streams.
ACM KDD Conference.

[29] Estan C., Varghese G. (2002) New Directions in Traffic Measurement and
Accounting,ACM SIGCOMM, 32(4),Computer Communication Review.

[30] Fang M., Shivakumar N., Garcia-Molina H., Motwani R., Ullman J. (1998)
Computing Iceberg Cubes Efficiently.VLDB Conference.

204 DATA STREAMS: MODELS AND ALGORITHMS

[31] Flajolet P., Martin G. N. (1985) Probabilistic Counting for Database Ap-
plications.Journal of Computer and System Sciences, 31(2) pp. 182–209.

[32] Feigenbaum J., Kannan S., Strauss M. Viswanathan M. (1999) An Approx-
imateL1-difference algorithm for massive data streams.FOCS Conference.

[33] Fong J., Strauss M. (2000) An ApproximateLp-difference algorithm for
massive data streams.STACS Conference.

[34] Ganguly S., Garofalakis M., Rastogi R. (2004) Processing Data Stream
Join Aggregates using Skimmed Sketches.EDBT Conference.

[35] Ganguly S., Garofalakis M, Rastogi R. (2003) Processing set expressions
over continuous Update Streams.ACM SIGMOD Conference

[36] Ganguly S., Garofalakis M., Kumar N., Rastogi R. (2005) Join-Distinct
Aggregate Estimation over Update Streams.ACM PODS Conference.

[37] Garofalakis M., Gehrke J., Rastogi R. (2002) Querying and mining data
streams: you only get one look (a tutorial).SIGMOD Conference.

[38] Garofalakis M., Gibbons P. (2002) Wavelet synopses with error guaran-
tees.ACM SIGMOD Conference.

[39] Garofalakis M, Kumar A. (2004) Deterministic Wavelet Thresholding
with Maximum Error Metrics.ACM PODS Conference.

[40] Gehrke J., Korn F., Srivastava D. (2001) On Computing CorrelatedAg-
gregates Over Continual Data Streams. SIGMOD Conference.

[41] Gibbons P., Mattias Y. (1998) New Sampling-Based Summary Statistics
for Improving Approximate Query Answers.ACM SIGMOD Conference
Proceedings.

[42] Gibbons P., Matias Y., and Poosala V. (1997) Fast Incremental Mainte-
nance of Approximate Histograms.VLDB Conference.

[43] Gibbons P. (2001) Distinct sampling for highly accurate answers to distinct
value queries and event reports.VLDB Conference.

[44] Gilbert A., Kotidis Y., Muthukrishnan S., Strauss M. (2001) Surfing
Wavelets on Streams: One Pass Summaries for Approximate Aggregate
Queries.VLDB Conference.

[45] Gilbert A., Kotidis Y., Muthukrishnan S., Strauss M. (2003) One-pass
wavelet decompositions of data streams.IEEE TKDE, 15(3), pp. 541–554.
(Extended version of [44])

[46] Gilbert A., Kotidis Y., Muthukrishnan S., Strauss M. (2002) How to sum-
marize the universe: Dynamic Maintenance of quantiles.VLDB Conference.

[47] Gilbert A., Guha S., Indyk P., Kotidis Y., Muthukrishnan S., Strauss M.
(2002) Fast small-space algorithms for approximate histogram mainte-
nance.ACM STOC Conference.

A Survey of Synopsis Construction in Data Streams 205

[48] Gionis A., Datar M., Indyk P., Motwani R. (2002) Maintaining Stream
Statistics over Sliding Windows.SODA Conference.

[49] Greenwald M., Khanna S. (2001) Space Efficient Online Computationof
Quantile Summaries.ACM SIGMOD Conference, 2001.

[50] Greenwald M., Khanna S. (2004) Power-Conserving Computation of
Order-Statistics over Sensor Networks.ACM PODS Conference.

[51] Guha S. (2005). Space efficiency in Synopsis construction algorithms.
VLDB Conference.

[52] Guha S., Kim C., Shim K. (2004) XWAVE: Approximate Extended
Wavelets for Streaming Data.VLDB Conference, 2004.

[53] Guha S., Shim K., Woo J. (2004) REHIST: Relative Error Histogram
Construction algorithms.VLDB Conference.

[54] Guha S., Koudas N., Shim K. (2001) Data-Streams and Histograms.ACM
STOC Conference.

[55] Guha S., Harb B. (2005) Wavelet Synopses for Data Streams: Minimizing
Non-Euclidean Error.ACM KDD Conference.

[56] Guha S., Koudas N. (2002) Approximating a Data Stream for Querying
and Estimation: Algorithms and Performance Evaluation.ICDE Confer-
ence.

[57] Guha S., Indyk P., Muthukrishnan S., Strauss M. (2002) Histogramming
data streams with fast per-item processing.Proceedings of ICALP.

[58] Hellerstein J., Haas P., Wang H. (1997) Online Aggregation.ACM SIG-
MOD Conference.

[59] Ioannidis Y., Poosala V. (1999) Histogram-Based Approximation of Set-
Valued Query-Answers.VLDB Conference.

[60] Ioannidis Y., Poosala V. (1995) Balancing Histogram Optimality and Prac-
ticality for Query Set Size Estimation.ACM SIGMOD Conference.

[61] Indyk P., Koudas N., Muthukrishnan S. (2000) Identifying Representative
Trends in Massive Time Series Data Sets Using Sketches.VLDB Confer-
ence.

[62] Indyk P. (2000) Stable Distributions, Pseudorandom Generators, Embed-
dings, and Data Stream Computation,IEEE FOCS.

[63] Jagadish H., Koudas N., Muthukrishnan S., Poosala V., Sevcik K., and Suel
T. (1998) Optimal Histograms with Quality Guarantees.VLDB Conference.

[64] Johnson W., Lindenstrauss J. (1984) Extensions of Lipshitz mapping into
Hilbert space.Contemporary Mathematics, Vol 26, pp. 189–206.

[65] Karras P., Mamoulis N. (2005) One-pass wavelet synopses for maximum
error metrics.VLDB Conference.

206 DATA STREAMS: MODELS AND ALGORITHMS

[66] Keim D. A., Heczko M. (2001) Wavelets and their Applications in
Databases.ICDE Conference.

[67] Kempe D., Dobra A., Gehrke J. (2004) Gossip Based Computation of
Aggregate Information.ACM PODS Conference.

[68] Kollios G., Byers J., Considine J., Hadjielefttheriou M., Li F.(2005) Robust
Aggregation in Sensor Networks.IEEE Data Engineering Bulletin.

[69] Kooi R. (1980) The optimization of queries in relational databases.Ph. D
Thesis, Case Western Reserve University.

[70] Manjhi A., Shkapenyuk V., Dhamdhere K., Olston C. (2005) Finding
(recently) frequent items in distributed data streams.ICDE Conference.

[71] Manku G., Rajagopalan S, Lindsay B. (1998) Approximate medians and
other quantiles in one pass and with limited memory.ACM SIGMOD Con-
ference.

[72] Manku G., Rajagopalan S, Lindsay B. (1999) Random Sampling for Space
Efficient Computation of order statistics in large datasets.ACM SIGMOD
Conference.

[73] Matias Y., Vitter J. S., Wang M. (1998) Wavelet-based histograms for
selectivity estimation.ACM SIGMOD Conference.

[74] Matias Y., Vitter J. S., Wang M. (2000) Dynamic Maintenance of Wavelet-
based histograms.VLDB Conference.

[75] Matias Y., Urieli D. (2005) Optimal workload-based wavelet synopsis.
ICDT Conference.

[76] Manku G., Motwani R. (2002) Approximate Frequency Counts overData
Streams.VLDB Conference.

[77] Muthukrishnan S. (2004) Workload Optimal Wavelet Synopses.DIMACS
Technical Report.

[78] Muthukrishnan S., Poosala V., Suel T. (1999) On Rectangular Partition-
ing in Two Dimensions: Algorithms, Complexity and Applications,ICDT
Conference.

[79] Muthukrishnan S., Strauss M., Zheng X. (2005) Workload-Optimal His-
tograms on Streams.Annual European Symposium, Proceedings inLecture
Notes in Computer Science, 3669, pp. 734-745

[80] Olston C., Jiang J., Widom J. (2003) Adaptive Filters for Continuous
Queries over Distributed Data Streams.ACM SIGMOD Conference.

[81] Piatetsky-Shapiro G., Connell C. (1984) Accurate Estimation of the num-
ber of tuples satisfying a condition.ACM SIGMOD Conference.

[82] Polyzotis N., Garofalakis M. (2002) Structure and Value Synopsis for
XML Data Graphs.VLDB Conference.

A Survey of Synopsis Construction in Data Streams 207

[83] Polyzotis N., Garofalakis M. (2006) XCluster Synopses for Structured
XML Content.IEEE ICDE Conference.

[84] Poosala V., Ganti V., Ioannidis Y. (1999) Approximate Query Answering
using Histograms.IEEE Data Eng. Bull.

[85] Poosala V., Ioannidis Y., Haas P., Shekita E. (1996) Improved Histograms
for Selectivity Estimation of Range Predicates.ACM SIGMOD Conference.

[86] Poosala V., Ioannidis Y. (1997) Selectivity Estimation without the At-
tribute Value Independence assumption.VLDB Conference.

[87] Rao P., Moon B. (2006) SketchTree: Approximate Tree Pattern Counts
over Streaming Labeled Trees,ICDE Conference.

[88] Schweller R., Gupta A., Parsons E., Chen Y. (2004) Reversible Sketches
for Efficient and Accurate Change Detection over Network Data Streams.
Internet Measurement Conference Proceedings.

[89] Stolnitz E. J., Derose T., Salesin T. (1996)Wavelets for computer graphics:
theory and applications, Morgan Kaufmann.

[90] Thaper N., Indyk P., Guha S., Koudas N. (2002) Dynamic Multi-
dimensional Histograms.ACM SIGMOD Conference.

[91] Thomas D. (2006) Personal Communication.

[92] Vitter J. S. (1985) Random Sampling with a Reservoir.ACM Transactions
on Mathematical Software, Vol. 11(1), pp 37–57.

[93] Vitter J. S., Wang M. (1999) Approximate Computation of Multi-
dimensional Aggregates of Sparse Data Using Wavelets.ACM SIGMOD
Conference.

