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Abstract

In this paper, we will examine the problem of distance
function computation and indexing uncertain data in
high dimensionality for nearest neighbor and range
queries. Because of the inherent noise in uncertain data,
traditional distance function measures such as the L,-
metric and their probabilistic variants are not qualita-
tively effective. This problem is further magnified by
the sparsity issue in high dimensionality. In this paper,
we examine methods of computing distance functions
for high dimensional data which are qualitatively effec-
tive and friendly to the use of indexes. In this paper,
we show how to construct an effective index structure in
order to handle uncertain similarity and range queries
in high dimensionality. Typical range queries in high di-
mensional space use only a subset of the ranges in order
to resolve the queries. Furthermore, it is often desir-
able to run similarity queries with only a subset of the
large number of dimensions. Such queries are difficult to
resolve with traditional index structures which use the
entire set of dimensions. We propose query-processing
techniques which use effective search methods on the in-
dex in order to compute the final results. We discuss the
experimental results on a number of real and synthetic
data sets in terms of effectiveness and efliciency. We
show that the proposed distance measures are not only
more effective than traditional Lg-norms, but can also
be computed more efficiently over our proposed index
structure.

1 Introduction

In recent years, many advanced technologies have been
developed to store and record large quantities of data
continuously. In many cases, the data may contain er-
rors or may be only partially complete. For example,
sensor networks typically create large amounts of un-
certain data sets. In other cases, the data points may
correspond to objects which are only vaguely specified,
and are therefore considered uncertain in their repre-
sentation. Similarly, surveys and imputation techniques
create data which is uncertain in nature. This has cre-
ated a need for uncertain data management algorithms
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and applications. A survey of different kinds of uncer-
tain data algorithms may be found in [4].

In uncertain data management, data records are
represented by probability distributions rather than de-
terministic values. Therefore, a data record is rep-
resented by the corresponding parameters of a multi-
dimensional probability distribution. Some examples in
which uncertain data management techniques are rele-
vant are as follows:

e The uncertainty may be a result of the limitations
of the underlying equipment. For example, the
output of sensor networks is often uncertain. This
is because of the noise in sensor inputs or errors in
wireless transmission.

e In many cases such as demographic data sets, only
partially aggregated data sets are available. Thus,
each aggregated record is actually a probability
distribution.

e In privacy-preserving data mining applications, the
data is perturbed in order to preserve the sensitiv-
ity of attribute values. In some cases, probability
density functions of the records may be available
[3].

e In some cases, data attributes are constructed using
statistical methods such as forecasting or imputa-
tion. In such cases, the underlying uncertainty in
the derived data can be estimated accurately from
the underlying methodology.

The problems of distance function computation and in-
dexing are closely related, since the construction of the
index can be sensitive to the distance function. Further-
more, effective distance function computation is inher-
ently more difficult in the high dimensional or uncertain
case. Direct extensions of distance functions such as the
Lg-metric are not very well suited to the case of high
dimensional or uncertain data management. This is be-
cause these distances are most affected by the dimen-
sions which are most dissimilar. In the high dimensional
case, the statistical behavior of the sum of these dis-
similar dimensions leads to the sparsity problem. This
results in similar distances between every pair of points,



and the distance functions are often qualitatively inef-
fective [12]. Furthermore, the dimensions which con-
tribute most to the distance between a pair of records
are also likely to have the greatest uncertainty. There-
fore, the effects of high dimensionality are magnified by
the uncertainty, and the contrast in distance function
computations is lost. The challenge is to design a dis-
tance function which continues to be both qualitatively
effective and index-friendly.

The problem of indexing has been studied exten-
sively in the literature both for the case of determin-
istic data [6, 7], and for the case of uncertain data
[8, 9, 15, 16]. However these techniques do not deal
with some of the unique challenges in the similarity in-
dexing of high dimensional or uncertain data. These
unique challenges are as follows:

e Similarity functions need to be carefully designed
for the high dimensional and uncertain case in or-
der to maintain contrast in similarity calculations.
Furthermore, the distance function needs to be sen-
sitive to the use of an index.

e In most cases, the similarity or range queries are
only performed on a small subset of the dimensions
of high dimensional data. For example, in many
applications, we are likely to perform a range query
only over 3 to 4 dimensions of a 100-dimensional
data set. Such queries cannot be processed with
the use of traditional index structures, which are
designed for full-dimensional queries.

The queries which can be resolved with the use of our
index structure are as follows:

e Determine the nearest neighbor to a given target
record in conjunction with an effective distance
function.

e Determine the nearest neighbor to the target T by
counting the expected number of dimensions for
which the points lie within user-specified threshold
distances t; ...tq. In practical applications, only a
small number of the threshold values t; ...ty may
be specified, and the remaining are assumed to be
0o. In such cases, the nearest neighbor search is
performed only over a small number of projected
dimensions which are relevant to that application.

e For a given subset of dimensions .S, and a set of
ranges R(S) defined on the set S, determine the
points which lie in R(S) with probability greater
than §. We note that this particular query is
referred to as a projected range query, since we are
using only a subset of the dimensions.
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Figure 1: Effects of uncertainty on distance

We will see that the key is to construct a distance
function which can be computed efficiently in the high
dimensional case, and is both qualitatively effective and
index-friendly. We will refer to this index structure as
UniGrid (or UNcertain Inverted GRID Structure).

This paper is organized as follows. In section
2, we will examine the issue of uncertain distance
function construction. In section 3, we will introduce
the UniGrid index structure for this distance function.
In section 4, we will discuss query processing techniques
with the UniGrid index structure. The experimental
results are discussed in section 5. Section 6 contains
the conclusions and summary.

2 Uncertain Distance Function Construction

In this section, we will study the problem of distance
function computation for uncertain data. We will show
how the uncertainty in the data can influence the be-
havior of the underlying distance function. Then, we
will discuss different ways of constructing an uncertain
function for distance computation, and their effective-
ness in the high dimensional case. We will also discuss
a dimensionality-dependent approach for optimizing the
design of the distance function. We will first introduce
some notations and definitions.

We assume that the uncertain data base D con-
tains a set of N records, each with a dimensionality
of d. The records in D are denoted by X ... Xn.
The individual components of Z are denoted by
(@}, f1()) ... (2%, f4(-))]. Here ] denotes the value for
the ith record on the jth dimension, and ff(-) denotes
the probability density function (pdf) for the ith record
on the jth dimension. We assume that the pdfs across
the different dimensions are independent of one another.
We note that «] is the mean of the pdf f/(-), and there-
fore the value :vf can be omitted entirely without loss
of completeness in record description. Nevertheless, we
will preserve it for ease in notation.

A straightforward design of a distance function
would simply generalize the standard Lj metric to the
case of uncertain data sets without using the uncertainty
information. Thus, the raw values of 2 can be used



for computation purposes. However, such a definition
may over-estimate or under-estimate the distance val-
ues when there is skew across the uncertainty behavior
of different attributes. By “skew” we refer to the fact
that the relative level of uncertainty across different at-
tributes may be very different. An example is illustrated
in Figure 1. Here, we have illustrated a two dimensional
example, in which each of the three data points has dif-
ferent level of uncertainty along different dimensions. In
each case, we have illustrated the variance behavior of
the corresponding data point with the use of an ellip-
tical contour. At first sight, it might seem that data
point X is closer to Y than Z if the mean position of
each point is used. However, in reality, the data point X
is much closer to Z in expectation. This is because the
expected distance of X to Z is lower than the expected
distance of X to Y. Thus, the different level of skew in
the uncertainty of different attributes affects the final
distance computation.

A natural alternative is to use the expected dis-
tance between two data points. We denote the ran-
dom variable for the distance between data points X;
and X; along the kth dimension by di(X;, X;). The
expected value of this random variable is denoted by
E[dr(X;, X;)]. The expected distance between points
X; and X; along the dimension k is denoted by E[||x* —
z%][]. This distance can be simplified to the following
expression:
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We note that the above expression is designed for the
case of the Manhattan metric. It is possible to design
similar metrics for the case of the general L,-metric.
The random variable for the total distance d(X;, X;) is
defined by the following relationship:

d
(2.2) E[d(X:,X;)] = ) Eldv(Xi, X;)]
k=1

We note that the use of expected distances can some-
times result in noisy distance functions when the error
is large. This is because metrics such as the L,-metric
are dominated by the large terms which are created by
errors along individual dimensions. As a result, the sim-
ilarity function may lose its effectiveness with increasing
uncertainty. A more effective distance function is one
which only counts dimensions that are probabilistically
close to the dimensions above a certain threshold. These
functions are actually similarity functions rather than
distance functions, since larger values imply greater sim-
ilarity. Furthermore, such functions can be specifically
tailored to contrast conditions [12], which guarantee ef-
fectiveness with increasing dimensionality. We define

the probabilistic proximity functions G(X,Y,s!...s9)
for thresholds s' . ..s? as follows:

DEFINITION 1. The probabilistic function
G(X,Y,s'...s%) is defined as the expected num-
ber of dimensions for which the distance between the
kth attribute values in X and Y is less than s*. The
value of s* is chosen in an automated way by analyzing
the local behavior of the underlying data along the kth
dimension.

Let us define the probability that the distance of X and
Y along the dimension k is less than s* by hy(X,Y, s%).
This probability is defined by the following relationship:

(2.3) he(a®, 2%, 5*) = / fil@) - fily)dr.dy
[|lz—y||<sk

Then, the expected number of dimensions
G(X;, Xj,s'...s%) on which X; and X, are closer
to one another than the threshold s* is given by:

d
(24) G(Xi, X5, s' .57 = hi(af,ah, ")
k=1

We note that the computation of fi(-) is typically more
locality sensitive, since we need to consider only values
of the attribute within immediate locality of the target.
This is useful from an indexing point of view, since we
are typically trying to find records within the locality of
a particular target or a pre-specified range.

In some practical applications, it may be desirable
to let the user pick only a subset of dimensions over
which the similarity is computed. In the most general
case, even the threshold for each dimension may vary.
For example, the thresholds over the d different dimen-
sions may be set to t1...t5. We note that the only
difference between this query and the previous query
is that the thresholds t;...t; are chosen by the user,
whereas the thresholds s'...s? are chosen in an auto-
mated way. Some of the values of ¢; may be set to oo,
which results in (differential) counting over only a rel-
evant subset of dimensions. If desirable, some of the
values of ¢; may be set of co, whereas the other val-
ues corresponding to s may be chosen in an automated
way as discussed subsequently. This results in a clas-
sical projected similarity query in which only a small
subset of the dimensions is used for counting. This is
a particularly difficult query to handle with the use of
typical index structures. However, we will show that
the UniGrid structure is very efficient in resolving these
kinds of queries. As in the previous case, this kind
of query has a dimension-specific locality which is in-
herently index-friendly. Next, we will discuss how the
thresholds s'...s% are chosen in a dimension-specific
way.



2.1 Automated Choice of Locality Thresholds
In this section, we will discuss the process of choosing
the locality thresholds in an automated way. We note
that the issue of locality thresholds is more relevant
to the high dimensionality issue, than it is to the
uncertainty issue. Therefore, in order to simplify the
analysis for choosing the threshold, we will use only
the means of the records without using the probability
density function. Our approach will be to set the value
of s*...s" in such a way that the same fraction f of the
means of the other records lie within the threshold of
target in each dimension. This ensures that the fraction
f is chosen in a locality specific way. However, we
need to choose f appropriately with respect to some
dimensionality specific parameters.

One of the key properties of high dimensional data
[12] is that the distance to the farthest and nearest
neighbor is quite similar, as a result of which the
contrast of the similarity function is lost. This contrast
problem is further magnified by the inherent noise
present in uncertain data. The key is to choose the
locality thresholds in such a way that a high dimensional
contrast condition discussed in [12] is satisfied. We will
see that this contrast condition is affected by the choice
of f. In particular, smaller values of f lead to greater
contrast. The contrast condition is defined as follows.
Let p(f) and o(f) be the mean and standard deviations
of the distance calculations to different data points from
a target record, when a fraction f of the records are used
for constructing the thresholds. Then, the contrast ratio
[12] is given by o(f)/u(f). The larger this value, the
greater the contrast of the distance function in terms of
relative distances to different data points.

There is an inherent tradeoff in proper choice of the
parameter f. In general, if f is chosen to be too small,
then only a small number of dimensions may intersect
with the user specified range, and this may result in
loss of information. On the other hand, if f is chosen
to be too large, then the data loses its contrast for high
dimensional data. In general, we would like to choose
the largest value of f, so that the contrast is not lost for
high dimensional data. Since the most difficult case for
indexing is that of uniformly distributed data, we will
perform an analysis for this case. We assume that the
means of the different records are uniformly distributed
throughout the data.

We will analyze the distance behavior of the target
record to a randomly chosen record with mean denoted
by Z. Let Q; be a binary random variable on dimension
¢ which takes on the value of 1, if the mean for a given
record lies within the distance s from the target along
a particular dimension. We note that @; is a Bernoulli
random variable which has mean f. We define the
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Figure 2: The two level UniGrid index structure

number of dimensions along which the two records are
within the threshold s* by M = Y | Q;. Note that the
random variable M has mean u(f) = d- f and variance
which is given by o?(f) =d- f- (1 — f). We note that
the condition for contrasts on the distance functions is
given by:

(2.5) limgo oo (f)/p(f) >0

This condition translates to the following:

NI -d)>0

This means that f reduces with increasing dimensional-
ity and the value of f should be proportional to at most
1/d. We assume that, for each dimension, we use a
threshold which is given by some value f = C'/d, where
C is a constant which is at most equal to 1. Further-
more, C' should be chosen such that 1/f is an integer.
As we will see, this is useful for creating the UniGrid
index structure. In the next section, we will discuss the
structure of this index.

(2.6)

3 The UniGrid Index

In this section, we will discuss the UniGrid structure
for uncertain data indexing. We will show how to use
the structure for the purpose of range queries. We will
also see that this structure is suited to processing lower
dimensional projectional queries of high dimensional
data.

In the UniGrid structure, we construct a two-level
inverted partitioning of the data. In this technique, we
create an inverted list of record identifiers separately
for each attribute in the data. We create an inverted
list of record identifiers for all points whose mean value
and uncertainty lie within certain pre-specified ranges.
The first level of the partitioning uses the mean value of
the probability density function for that record, and the



second level further partitions the set of records with
mean value in a given range by using the uncertainty
in the range for the corresponding probability density
function.

In order to construct the first level of the in-
verted partitioning, we divide each attribute into a
set of equi-depth ranges. The boundaries for the
equi-depth ranges for attribute ¢ are contained in
[1(,1),u(i, )], [1(7,2),u(i, 2)] ... [l(3,q), u(i, q)], and we
assume that u(i, k) = 1(i,k+1) foreach k € {1...¢—1}.
The value of ¢ is typically chosen to be a multiple of 1/ f.
Since f is chosen such that the value of 1/f is chosen
so as to be an integer, it follows that ¢ is an integer as
well.

Here [I(i,7), u(i,7)] represents the rth range for the
attribute . All record identifiers whose ith attribute
lies in the range [I(¢,7),u(i,7)] can be found in one of
a group of inverted lists for this range. A second level
of the partitioning is defined by the uncertainty level.
This second level uniquely defines the inverted list for
a given record identifier from within the group of lists
belonging to the range [I(i,7),u(i,r)]. There are ap-
proximately |N/q| record identifiers in each range of
the first level of the partitioning. For the second level
of the partitioning, we construct ranges for the uncer-
tainty by using the behavior of the probability density
function of the uncertainty. We make the assumption
that the probability distribution functions are defined
over a finite range. This is without loss of generality,
since the insignificant tails for the uncertainty function
can be removed. For example, for a gaussian uncer-
tainty function, any tail beyond 3 standard deviations
from the mean can be ignored to a level of accuracy be-
yond 99.99%. The span of the uncertainty function is
defined by half the distance between the left and right
boundaries of the uncertainty function. The data points
within the range [I(¢,7), u(i, )] are divided into a set of
s equi-depth ranges depending upon the corresponding
span. It is assumed that the absolute upper and lower
bounds for the range corresponding to the tth span are
denoted by [Is(i,7,t), us(i,r,t)]. Thus, the length of the
tth span is (us(i,r,t) — Is(i,r,t))/2. Each span points
to an inverted list which contains approximately | N/g¢s|
record identifiers. The two level partitioning of the data
into inverted lists along a particular attribute is illus-
trated in Figure 2. Each entry of the inverted list cor-
responding to the record X,,, contains the following in-
formation:

e The mean value z?, of the corresponding record X,
and attribute 1.

o The probability density function for the record X,
and the attribute i, which is denoted by f2 (-).

In addition, we store some meta-information along both
levels of the hierarchy of the inverted lists. This meta-
information is as follows:

e For each node at the first level of the hierarchy,
we store the upper and lower bound of the corre-
sponding discretized attribute range. These upper
and lower bounds are denoted by w(i,r) and (7, r)
respectively.

e For each node at the second level of the hierarchy,
we store the upper and lower bounds for the
uncertainty span which are denoted by ws(i,r,t)
and Is(i,,t) respectively.

This meta-information is chosen in order to facilitate
the selection of certain inverted lists which are used in
processing similarity and range queries. We refer to this
structure as the UniGrid structure for query processing.

At this point, we would like to point out the storage
requirement of the UniGrid structure with respect to
the original data set. We assume that the key storage
bottleneck is the probability density function for each
attribute in the uncertain data set. Thus, if the storage
of the probability density function requires M times the
storage of a single value, then (for a data set with N
records and d dimensions) the total storage requirement
of the probability density functions in the original data
set is given by N - M - d. In addition, since each
attribute value is represented exactly once, the total
storage requirement of the original data is given by
N-(M+1)-d.

Next, we will examine the storage requirement of
the UniGrid structure. For the case of the Unigrid struc-
ture, each probability density function is represented ex-
actly once in the form of its position in exactly one in-
verted list. In addition, we need to store the record iden-
tifiers and the values of the corresponding attributes.
This adds up to a storage requirement of N - (M +2)-d.
Since the relative space required for the storage of a
probability density function is significantly larger than
that required for the storage of a single value, it follows
that the total storage requirement of both the original
data and the inverted structure is given by O(N -d- M).
Thus, the overhead of the UniGrid structure is not sig-
nificant, when compared to the original data set.

4 Query Processing with UniGrid

In this section, we will discuss methods for utilizing the
UniGrid structure for query processing. First, we will
discuss the problem of similarity queries. Then, we will
discuss how to handle projected range queries with this
technique.



Algorithm SimilarityQuery(Database: D, Target Point:
(Y, h(-), Thresholds: t1 ...tq);

{ (#'...2%) represent midpoints of corresponding
probability density function spans.}

begin

Determine the span for the uncertainty function h(-) along
the different dimensions and denote by 61 ...6%;

Determine all the inverted lists for which the range
[2F — 6F —t},, 2F + 0F + ;] intersects with the corresponding
inverted list range [ls(k,r,t), us(k,r,t)];

Compute similarity values for the different record identifiers
in these inverted lists by aggregating the computation
of Equation 2.3 over different dimensions;

Report largest possible similarity value
and record identifier;

end

Figure 3: Similarity Search Processing

4.1 Similarity Queries For the case of similarity
queries, we assume that we have a target record Y, along
with the uncertainty function h(-). We will consider the
case of similarity queries in which we are computing
the expected number of dimensions which lie within
the thresholds t;...t5. We note that this query is
exactly similar to the case when we are using automated
thresholds s'...s? The d dimensions of Y are denoted
by (y'...y%). In many applications, the target record
may be deterministic. In such cases, we can assume that
the uncertainty function is deterministic with zero span.
We also assume that the midpoints of the corresponding
probability density functions (between the left and right
boundary) are denoted by (z'...z%). We note that
the midpoint may be different from the corresponding
mean.

The first step in resolving the similarity query is to
determine the span of the target record. Let the span
along the kth dimension be denoted by #*. Therefore,
the probability density function for the kth dimension
in the target record Y is encapsulated by z* — % and
¥ + 0%, We would like to determine the probability
h(y*, ¥, t)) that the kth dimension for the record Y lies
within the distance t; of the kth dimension for record
X;. We note that in order for this probability to be non-
zero, the probability density function of the record X;
must intersect with the range [2% — 08 — ), 2% + 0F +1;].

Since the ranges in the inverted lists are orga-
nized by span, it is possible to truncate those lists
for which the span does not intersect with the range
[2F — 0k — ¢, 2% + 6% + t;]. Then, for all values of
r and ¢, we truncate those lists for which the range
[Is(k,rt),us(k,r t)] does not intersect with the range
[2F — 0% — 1, 2% + 0F 4+ £;]. We note that this intersec-
tion must occur for the corresponding dimension to be

relevant to the similarity computation of a particular
record with respect to the target Y. If this is not the
case, then the computation of Equation 2.3 will return
a null value.

For the inverted lists which do intersect with the
range [2F — 0% — t, 2F + 0% + t;], we further determine
the records in these inverted lists which do intersect
with the range [z — 0% — ¢;, 2% + 0K + ¢;]. For these
records, we compute the corresponding probability of
intersection by using Equation 2.3. We keep track
of this value over the different records which lie in
these inverted lists. At the end, we report the largest
similarity value. We note that in order to keep track of
the similarity values over the different records, we need
to maintain a hash table of record identifiers. Whenever
the similarity contribution of a record identifier from
an inverted list is computed with the use of Equation
2.3, it is added to the corresponding entry in the hash
table. The overall process of performing the similarity
computation is illustrated in Figure 3. We note that
when only a small subset of dimensions are specified, we
can completely omit counting along any dimension & for
which ¢, = oco. This is because there is no differential
counting along those dimensions. This can improve the
efficiency of the counting process.

4.2 Range Queries The UniGrid structure can also
be used for the case of range queries in a fairly straight-
forward way. In this case, we are using only a small
subset of the dimensions for range queries. For the high
dimensional case, only a small subset of the dimen-
sions is typically used in practical applications, since
a user is unlikely to query on a large number of di-
mensions simultaneously. Such queries are extremely
difficult to resolve with the use of traditional indices.
The subset of dimensions for the range query is denoted
by S, and the corresponding set of ranges are denoted
by R(S) = [a1b1]...[ayb,]. Without loss of generality,
we can assume that the first v dimensions are picked
for querying, since the same argument applies after re-
ordering the dimensions. We would like to determine
the set of points which lie in R(S) with probability at
least 9.

In order to resolve such a query, we first determine
the set of inverted grid lists which intersect with these
ranges. In order for the range along the kth dimension
to intersect with the inverted list [Is(k,r,t), us(k,r,t)],
the two ranges [ag,bx] and [Is(k,r,t),us(k,r,t)] must
intersect. Once the intersecting ranges have been
determined, we process the inverted lists in order of
dimension. First, we determine all record identifiers
which have non-zero probability of intersection with
[a1,b1] along the first dimension, and record their



Algorithm RangeQuery(Database: D, Dimensions:
{1...v}, Ranges: [a1,b1]...[av,by]
Threshold: §);

begin

Determine all inverted lists along the first dimension
for which [ls(1,7,t),us(1,r,t)] intersects
with the range [a1,b1];
Compute probability of intersection of corresponding data
points in inverted lists with range [a1, b1]
using the uncertainty function of corresponding
data points and denote list by Li;
Remove data points in list L1 with probability less
than J;
for dim = 2 to v do
begin
Determine all inverted lists along the first dimension
for which [ls(dim,r,t), us(dim,r,t)] intersects
with the range [agim, bdim];
Compute probability of intersection of corresponding data
points in inverted lists with range [agim, baim]
using the uncertainty function of corresponding
data points and denote list by La;
Multiply the probabilities of list L1 with the
probabilities in list Lo;
{ It is assumed that the absent elements have

probability of zero }

Remove data points in list L1 with probability less
than J;
end

return(Lq);

end

Figure 4: Range Query Processing

probability of intersection. This is done by examining
all record identifiers which lie in the inverted lists which
intersect with [a1,b;] along dimension 1. We do this
for all intersecting lists along dimension 1, and take
the union of the corresponding lists. We prune all
those dimensions for which the threshold is less than 4.
We repeat the same process for the second dimension
and the corresponding range [as,bs]. We retain only
those record identifiers which are common between the
two lists. For these record identifiers, we multiply
the probability values in the two lists in order to
compute the probability that the corresponding record
identifier lies within the pre-specified range along both
dimensions. As in the previous case, we remove those
identifiers for which the probability value is less than
6. We repeat the process iteratively for each dimension,
until all the ranges have been processed. The overall
process is illustrated in Figure 4.

This approach to projected range queries has some
advantages in terms of access costs. We need to
process only those dimensions which are selected by
the user. For example, if v dimensions are selected
in the projected range query, and a fraction a of the
ranges along each dimension are selected, then the
fraction of the inverted index processed is given by
a -v/d. Consider the case when we are performing a
projected range query on a subset of 2 dimensions in 100
dimensional data. Let us also assume that the average
range length along each dimension includes a fraction
0.1 of the inverted lists along each dimension. Then,
the above relationship implies that we are processing
only a fraction 0.2% of the inverted index. Thus, for
a small number of projected dimensions, only a small
fraction of the inverted index needs to be accessed.

5 Experimental Results

In this section, we will explore the effectiveness and
efficiency of the proposed indexing technique. We
note that most indexing structures are designed to
handle full dimensional indexing queries, and cannot
be used for the kind of indexing techniques studied in
this paper. Furthermore, we have designed specialized
distance functions for the case of high dimensional
uncertain data. Such distance functions cannot be
effectively indexed with the use of index structures
such as those discussed in [8, 9]. Therefore, a direct
comparison between the methods is not meaningful.
Nevertheless, our approach can be tested using a variety
of independent measures:

o Effectiveness of our designed distance function with
increasing uncertainty. We will specifically com-
pare our method with respect to traditional ap-
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proaches such as the L,-norm.

e Efficiency of the proposed similarity search tech-
nique with increasing uncertainty and dimension-
ality.

e Efficiency of projected range queries with increas-
ing uncertainty, projection dimensionality, and full
dimensionality.

For the purpose of comparison, we used data sets from
the UCI machine learning repository. We introduced
additional uncertainty into the data sets by adding
noise which was drawn from a uniform probability
distribution. For dimension j of record 7, the uniform
distribution had a range <;; which was drawn from
[0,u]. The noise added to the jth dimension of record
1 was drawn from the uniform distribution in the range
[—7ij/2,7i5/2]. By varying the value of u, it is possible
to increase or decrease the level of uncertainty in each
record. We also store the pdf of the record in the form
of the range of the corresponding uniform distribution.
We note that we do not know the original value of the
record, and therefore, we do not know where the pdf
is centered. Therefore, we assume that the pdf for
each record is centered at its perturbed value rather
than its original value. The real data set with name
< RName > and perturbation level u was denoted by
< RName >.P(u).

We also generated a number of synthetic data sets
by constructing gaussian clusters with means which are
randomly drawn from the unit cube. A total of N
points were generated in d dimensions. The number
of data points in each cube were drawn in proportion to
a uniform distribution in [0,1]. We generated ¢ = 4
clusters, and the distance of a point in the cluster
from the mean along each dimension was drawn from a
normal distribution with zero mean and unit standard
deviation. Each point was labeled with the identity
of the cluster that it belonged to. We note that
unlike the case of the real data sets, we know the
exact relationship between the data features and the
cluster label. A data set with d dimensions, N records
was denoted by Syn(d)D(N). For example, two of our
generated data sets with 20,000 data points and 20
and 25 dimensions are denoted by Syn20.D20K and
Syn25.D20K respectively. We used the same approach
as the real data sets in order to add uncertainty to
the base data. Thus, the corresponding data sets with
perturbation level u were denoted by Syn20.D20K.P(u)
and Syn25.D20K.P(u) respectively

We measured the effectiveness of our distance func-
tion with increasing uncertainty level. In order to mea-
sure the effectiveness of our distance function, we mea-
sured the accuracy of a nearest neighbor classifier with



increasing level of uncertainty. This uncertainty is con-
trolled with the use of the parameter u discussed earlier.
We note that for the case of real data sets, we are us-
ing the class label as a proxy for the effectiveness of the
distance function. While the exact relationship of the
feature variables to the class label is not known, the
accuracy of the distance function for a classification ap-
plication provides strong evidence for the effectiveness
of the approach. In the case of synthetic data sets, we
can control the intensity of the relationship between the
feature variables and class label (cluster id) effectively
by increasing the uncertainty level in the data. There-
fore, in this case we can measure the effectiveness of the
distance function by varying the level of relationship
between the feature variables and class variable.

In Figure 5, we have illustrated the effectiveness of
the nearest neighbor classifier on the Network Intrusion
data set, which we denote by Network.P(u). On the
X-axis, we varied the uncertainty level u, and on the Y-
axis, we have illustrated the accuracy of a nearest neigh-
bor classifier. It is clear that the accuracy of the count
function was higher than the accuracy of either the Man-
hattan or the expected Manhattan distance function in
most cases. The expected count function was less effec-
tive only for the case of very low uncertainty levels. For
higher uncertainty levels, the expected count function
was superior, and the difference between the expected
count function and the other functions increased with
uncertainty level. One interesting observation is that
the relative accuracy of the raw Manhattan function
and the expected Manhattan function varies consider-
ably. However, the expected count function is able to
perform relatively robustly in all cases.

In Figure 6, we have illustrated the effectiveness
of the nearest neighbor classifier on the Forest Cover
data set, which we denote by Forest.P(u). As in the
previous cases, the expected count function performs
better than the other functions in most cases. For
lower uncertainty levels, the expected count function
performs either evenly or slightly worse than the other
functions. However, with increasing uncertainty, the
expected count function significantly outperforms the
other two functions. As in the previous case, there is
very little difference between the Manhattan and the
expected Manhattan functions, and the relative quality
of the two functions vary over different uncertainty
levels. A further observation about this data set is
that there is a lot of noise in the behavior of the
distance functions. This is because the relationship
of the feature variables to the class variable is not
perfectly captured by distance functions. Nevertheless,
the overall trend provides an idea of the behavior of the
distance functions. In order to get a better idea of how

locality based functions are affected by the uncertainty,
we will examine the behavior of the synthetic data sets.

In Figures 7 and 8, we have illustrated the effective-
ness of the approach on the 20- and 25-dimensional syn-
thetic data sets with increasing uncertainty level. We
note that the synthetic data set was intentionally de-
signed in such a way that the classification accuracy
was very high for low uncertainty levels, and then grad-
ually reduced with addition of noise. Furthermore, this
data set had a high level of correlation between local-
ity and classification accuracy, since the labels were de-
fined by cluster behavior. Therefore, the effectiveness
of the approach on this data set is a direct indicator of
the effectiveness of the different distance functions with
increasing uncertainty. In all cases, the expected count
function was significantly superior to the other two func-
tions. The difference between the expected count func-
tion and the other functions increased with uncertainty
level. We also note that there is much less noise in the
data set because the class labels (cluster ids) are well
correlated with the distance behavior in the base data
set, which was used to create the uncertain representa-
tions of the data.

In Figure 9, we have illustrated the efficiency of
the similarity search technique with increasing uncer-
tainty in the underlying data. On the X-axis, we have
illustrated the perturbation range u, and on the Y-
axis, we have illustrated the fraction of distance com-
putations that would be otherwise performed with the
use of a sequential scan. We have illustrated the re-
sults for the two synthetic data sets corresponding to
Syn100.D500K.P(u) and Syn200.D500K.P(u). We note
that the fraction of distance computations increased
with uncertainty level, since a larger fraction of the
records were relevant to the search process. We note
that these data sets are extremely high dimensional,
and even deterministic data sets cannot be effectively
indexed in such cases. However, we are able to con-
struct an efficient index, since our choice of distance
function is not only index-friendly, but is also more ef-
fective than the standard L; function in the case of un-
certain high dimensional data. One interesting obser-
vation is that the efficiency of the technique was better
for the higher dimensional data sets. This is because
the similarity thresholds for our counting function are
defined in a dimensionality-dependent way. With in-
creasing dimensionality, the automated thresholds are
smaller. Therefore, a smaller fraction of record iden-
tifiers are relevant from the inverted index. We have
illustrated the trend with increasing data dimensional-
ity for two different levels of uncertainty in Figure 10.
In each case, the (fractional) efficiency of the scheme
improves with increasing dimensionality. This advan-



tage is obtained by designing a distance function which
works effectively for high dimensional data.

In Figure 11, we have illustrated the efficiency
of projected range queries with increasing uncertainty
level. In each case, we chose a range along each axis,
which was between 10% to 20% of the entire range, and
was randomly picked along the corresponding axis. On
the X-axis, we have illustrated the uncertainty level,
and on the Y-axis, we have illustrated the fraction of
the UniGrid index which was accessed. We have il-
lustrated the results for 3-dimensional range queries in
100- and 200-dimensional data sets respectively in Fig-
ure 11. As in the case of similarity queries, a greater
fraction of the UniGrid index needs to be accessed with
increasing uncertainty. We note that the efficiency of
the range query is better for the higher dimensional
range query. We have illustrated this trend explicitly
in Figure 12. In this case, we tested the results for
two data sets with uncertainty level v = 3 and u = 9
respectively. The corresponding data sets are denoted
by Syn(dim).D500K.P(3) and Syn(dim).D500K.P(9) re-
spectively. On the X-axis, we have illustrated the data
dimensionality, and on the Y-axis, we have illustrated
the fraction of the UniGrid index accessed. It is clear
that the fraction of the index accessed is approximately
inversely proportional to the data dimensionality. This
is because approximately the same number of lists are
accessed, but the base size of the data increases linearly
with dimensionality. We have also illustrated the ef-
ficiency of the range query with increasing projection
dimensionality. We have illustrated the results for 100-
and 200-dimensional data sets with w = 6. The corre-
sponding data sets are denoted by Syn100.D500K.P(6)
and Syn(200).D500K.P6 respectively. On the X-axis,
we have illustrated the data dimensionality and on the
Y-axis, we have illustrated the fraction of the UniGrid
index accessed. It is clear that the fraction of data ac-
cessed is linearly proportional to increasing projection
dimensionality. Therefore, the approach scales well with
increasing projection dimensionality.

6 Conclusions and Summary

In this paper, we presented a method for distance
function computation and indexing of high dimensional
uncertain data. We designed an effective method for
performing the distance function computations in high
dimensionality, so that the contrast in the distances
is not lost. We explored the unique issues which
arise in the context of performing range or similarity
searches in a subset of the dimensions. Such queries
cannot be easily resolved with the use of traditional
index structures. In order to effectively handle these
issues, we designed the UniGrid Index which uses a two

level inverted representation for querying purposes. We
tested the effectiveness of the method on a number of
real data sets, and show that it continues to be efficient
and effective with increasing dimensionality.
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